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In [2], the present author has studied the initial value problem for the
modified Korteweg-de Vries (KdV) equation

(1) v,—6v*v,+ v, =0, —oo<x, t<oo

with the step type initial data which tend to +m as x—>*co for some posi-
tive constant m. We have constructed the smooth real valued solutions of

(1) in terms of the scattering data of the Dirac operator

1 0
Liv:i
0—1

0 —v

D+ , D=d/dx.

v 0

In the present paper, we discuss the asymptotic properties of the refle-
ctionless solution vi(x, t) as t—>+ o0, where the reflectionless solution
v3(x, t) is the solution of (1) which is constructed from the reflectionless
scattering data with 2n+1 discrete eigenvalues.

The solution v§(x, #) takes the form of the traveling wave solution
(2) vi(x, t)=mtanh{m(x+2m® i+ &) }.

We call the function which takes the form s(x+kt+35,¢c) (k, ¢>0) the soliton,
where s(x, ¢) =ctanh(cx). The main result of the present paper shows
that the reflectionless solution v)(x, t) decomposes into 2n+1 solitons for
large t.

In section 1, we summarize the general properties of the scattering data
of L,,. In section 2, we construct the reflectionless solutions of (1). In
section 3, we study the asymptotic properties of the reflectionless solutions.

Throughout the paper, c¢* denotes the complex conjugate of c.

§1. Scattering theory of L,

We summarize the general results of the scattering theory of L,, from [2].
Consider the eigenvalue problem
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(3) Lyy=2Ay, y="(y1, y2)
on the real axis (—oo0, o0).
Let &=1¢(A) be the two-valued algebraic function defined by
£r= 22—

and R be the upper leaf of the two-sheeted Riemann surface associated with
& We assume Im¢>0 for A€ R. For ¢eR,=R\[—m, m], put

o=0(&) = (sgn&) (£2—m?) V2
If we assume
£/27(1+ 19D v(3) F mldy+ sup sy iz |v(y) Fm|<oo,

then, for A€R, there are unique solutions fiof (3) (called Jost solutions)

which behave as

felx, A)=F%(x, A) +0(1)

as x— t oo, where

folx, A)="Cim "(&—A), Dexp(ifx)
folx, A)= (1, im (&~ A))exp(—itx).

Then fi(x, A) are analytic in A€ R. Moreover we have the integral ex-

pression
(4) f+lx, A)=E(A)exp(ix) {*(0, 1) + [oK(x, y) exp(2i8y) dy},
K: t(Kh KZ),
where
1 imt (L= A)
EA) =
im (= Q) 1

Note that if y is a solution of (3), then
y*=y3 »1)

is a solution of (3), A being replaced by A*
Put

fi(x9 é):fi(x’ §+LO)’ feRm?

and f. and f% are linearly independent solution of (3). Therefore we can

express as
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(5) Flx, €)=al&)f 5 (x &)+ (&) f (x, £).

From (5), we have
a(€) =m’det(f_, f.)/20(€—0),
so a(€) can be extended to the.analytic function
a(A) =m?det(f_(x, A), fi(x A))/28(A—0), A€R.

The coefficient a(A) does not vanish for A€R,, and has only a finite number
of zeros +x;(j=0,1, -, n) which are simple, where 0= 1,<x,<--<ux,<m.
There are non zero real numbers d; such that

f_(x,ixj) =d;f(x, Tx;).

The constants tx; are eigenvalues of the eigenvalue problem (3) and cor-
responding eigenfunctions are given by f,(x, ixj). Put

co=1d,/2a" (0)
c;=imd;/n;a (x;), j=1,2,+, n,
]2) 1/2.

where 7;,=(m’—x The coefficients c¢; are positive. Put

(&) = b(&)/al€)
(called the reflection coefficient). We call the collection
{T(S)) Cj, xj’ 1:0’ ]-) Tt 77.}

the scattering data of L,,.
The scattering data are related to the kernel K(x, y) (defined by (4))by
the integral equation (called the fundamental equation)

(6) K (x, y) + F(z+)(0, 1)+ [ F(x+y+2)K(x, 2)dz2=0 (y>0),
where
—7}j/m 1
F(x)=2)].9¢c; exp(—27;x)
1 —ﬂj/m

o —im

+n‘1[§_lr(§) { JGXP(ZiUx) do,

—im o
and K*=%K,, K;). Then one can reconstruct the potential v from the

scattering data by solving the fundamental equation as the integral equation
for the kernel K and putting

(7) v(x)=—K,(z, 0) +m.

If the reflection coefficient is identically zero, the potential v is more
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explicitly written by the scattering data as follows. The assumption r(&)=0
implies

_Uj/m 1

(8) F(x):227:0cj [ ]exp(*anx).

Let K(x, y) be the solution of the fundamental equation (5). Putting (8) into
(6), we see that K(x, y) has the form

K(x, y) =22 5=0¢; g;(x)exp(—27;(x+y)),

where gj(x):t(glj(x), g2;(x)).. Substitute this into the fundamental equa-
tion (6), and we have the system of 2(n+1) linear algebraic equations

n —7]J/m ]. )
(9) gi(x>+2j=0cj . ) (77i+77]«) exp(—27,x) g;(x) = —(1, 0),
—n;/m
7; (i=0,1, -, n),
whose coefficient matrix is easily seen to be nondegenerate. Let g;;(x)

(i=1,2 and j=0,1, -, n) be the unique solutions of (9). By (7) we have
the reflectionless potential

(10)  vi(x) 2227:0cj (milnjg”(x)—gzj (x))exp(—2n,x) + m.
Put
he (x)=c,(1+m 'p)exp(—2n;2)(g,(x) £g,,(2)),

where j=1,2,, n for+and j=0,1,, n for -, and we have the another

expression of (10)

(11) v,‘z(x):Z;L:Oh*j(x) -t hy; (x)+m.

j=1
The formula (11) is more convinient for studying the asymptotic properties

of the reflectionless solution. The functions h,; satisfy the systems of

linear algebraic equations
(12+) a;exp(me)hii(x)+Zj(ni+nj)_lhij(as):—l,

where ailzci(l-; m'n,). The coefficient matrices of (12+) are easily

seen to be nondegenerate.

§2. Reflectionless solution
Let v(2)=v(x, t) be a smooth solution of the modified KdV equation (1)
which tend to +m as x — . We assume that v, belongs to S, the space
of C®-functions which are rapidly decreasing together with all its derivati-

ves. 1In[2], it is shown that the eigenvalues of L, (¢) do not depend on i



On the Reflectionless Solutions of the Modified Korteweg-de Vries Equation 13
and time dependencies of the coefficients 7(§) and c; are given as
r(& t)=r(&expli(8c®+12m” o) t}
and
(13) cj(t):cjexp{(877?—12m277j)t}.

Converse statements of this fact are valid (see the present author [2,
Theoremb5.2]). Especially, we have

THEOREM 1. Let vy(x, t) be the reflectionless potential which corresponds
to the reflectionless scattering data

{O) Cj(t)v Kj7 ]:07 1, Ty n}

for each t, where c]—(t) is defined by (13). Then vi(x, t) is a solution of
the modified KdV equation (1).

We call the solution %] (x, t) the reflectionless solution with 2n+1 dis-
crete eigenvalues.

Put

_ 2
zj=x+tpjt,

where p;= (6m*—4 77]2) Ve,

Put

Note that p; are positive and p; <p;(i<j).

biij(x, t)zag%exp(ZmZi) é\U+( 77l+ 77]) !

and h.;(x, t) be the unique solutions of the systems of linear algebraic
equations

whose coefficient matrices A «(ax, ) =(b+;;(x, #)) are easily seen to be non-
degenerate. Then by (11) and (12), we have the formula for the reflection-
less solution with 2n+ 1 discrete eigenvalues

(15) vﬁ(x, t) :Z?:Oh—j(x’ t)_Z?:1h+j(x, t)-f-m

§3. Asymptotic properties of vj(x,t)

The reflectionless solution v{(x, ) takes the form of the traveling wave
solution

vi(x, t) =s(xz+2m’t + 06y, m),

where

s(x, k) =k tanh(kx) = k(exp(kx) —exp(—kx))/(exp(kx) +exp(—kx))
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and
So=(2m) 'log(m/cy).

We call the function which takes the form s(x+ kit +6, ko) (k;>0) the
soliton.

We now states the main result of the present paper.

THEOREM 2. As t—>t oo, the reflectionless solution vi(x, t) decomposes into
2n+1 solitons;

vala, ) — s(x+2m’t+ 05(+), m)—2 1 {s(x+plt+85(+), ;)
—s(x+pit+87(=), n;)}—0
uniformly in x, where
é\](+)=(27Ij)_llog{anmHJi';é(van,»)Z/Cj(m+77j)Hf;(l)(ﬁi_ﬁj)z}(() <Jj)
S —=)=(2n;) Nogl2n,mIiZ)(n:+7,) Y c,(m—p)I'_1(n;—7n,;) (1<)
05(+)=(27;) _llog{ZUij’;-‘sz(??j-%-m)Z/Cj(m-!-nj)ﬂ?:jﬂ(??j—m)2}(0\<j)
8;(—=)=(27;) _llog{anmHLjH(nj-Fm)z/cj(m~77j)ﬂ?=j+1(77j~—7]i)2}(1\<j).
Proor. We express h,;(x, t) by the Cramer’s formula as
hyj(x, t)=Dix, t)/det Alx, t) (k=j for + and k=j+1 for -),

where Di;(x, t) are the determinants obtained by replacing the i-th column
of det AL by (=1, -, —1). Note that detA . are polynomials in exp(27,z;)

with positive coefficients and non-zero constant terms(Lemma 2 of [1]).

We have
(16) |hyilx, 1) ] < C(Q+exp(27;2;)) ', t>0.

Hence, h.;(x, t) converge to zero as t-—>oo in the half space x>(—plt+e)t,
t>0, where convergence is uniform. By (16), va(x, ¢) converges to m as
t— oo uniformly in the half space x<(—pi+e)t t>0, ¢ being sufficiently
small positive number. i

Now we consider the behavior of h.;(x, ¢) in the infinite sectors (—p%
+e) t<x<(—pi_,—e)t, t>0,(k>j). Letay, -, a, be positive numbers differ-
ent from each other. Put

D(al’ Y ar)‘:det((ap'*'aq) —1) pog=1,", 1

and let Dj(a,-, @,) be the determinant obtained by replacing the i-th column
of D(a;, .+, a,) by 1, -+, 1).
We express det A+(x, ) and Di;(a, t) as
det A+(x, t) =2 _,a 1iexp(2n;z ;) D(ny, -, n,_1) (1+ Pi(x, t))
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and
Dy (x, t) Z—Z‘ilkal} exp (27:2:) Dj( 7y, -+, 74-1) (1+Qi(x, 1)).
Then we have the estimate
|Pu(x, t)] < C(Zf;%exp(Zmzi)+Z?:kexp(—277,~zi))
in the sector. The same estimate holds for QJ(x, t). Hence we have
bz, t)— —D3(n1, =, =)/ D(yy, e, iy) (2> 00, J<k),

where convergence is uniform in the infinite sector (—pit+e)t<a< (—p2_,
—e)t, 0. By the same way, we have

h—j(x’ t) — _D;+1(770, N1, °°% 77k—1)/D(7)o, Ny oty Np—1) (E— oo, j< k)7
where convergence is uniform in the infinite sector. Hence we have
valz, t)—*‘"Z‘jle;(Uo, 0 Ma=1) /D74, -+, 4-n)
+Zf:D;(771, S M) /Dy, )+ m
(t— oo),

where convergence is uniform in the infinite sector (—pite) i<z < (—pi_1
—e)t, t>0.
By brief calculation, we have

Di(ay, -, a,)/D(ay, =+, &) =2a;1l,.(a,+a,)/(a,~a,).
Hence, we have
(A7) 35 D5(n0, +, 1,-1) /D(ng, -+, 7y )
= 25D 0, 1) /Dy, e, i)
=2m3 020,010, =, 1,-) /(0,4 m) Dy, ) 7,_).

D;(no, “*y 1,_1)/ D(7q, -+, 7e-1)(j=1,-, k) are the solutions of the system of
k linear algebraic equations

Yot 2,) X, =1 (=0, -, k—1).

Therefore, the right hand side of (17) coincides with 2m. This implies that
valx, t) converges to —m uniformly in the infinite sector
(—pi+e)t<x<(—,oi._1—8)t,t>0, as t—00. Similar consideration is valid
in the half space x<(—p2—¢e)t, >0 and we have

vilx, t)—=>—m (t—> ),

where convergence is uniform.
Next we consider the behavior of h+;(x, ¢) in the infinite sector
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(—pi—e)t<x<(*,0i+£) t, >0, for j<k (k=1,--,n). In this case, we ex-
press detA (x, t) and D (z, t) as

detAx t)=2"_,, arexp(2n.2,)B(x, t)(1+ Ry, 1))
and

D, (x, t):Z?:kHa:exp(Zniz,-) Cy(z, t)(1+ S, (x, 1)),
where

B, (x, t)=D(ny, -, nk,l)aiiexp(anzk) + D(ny, =, 1)

and C,(x, t) is the determinant obtained by replacing the j-th column of
B.(x, t) by '(—1,—1,-, —1). Then we have the estimate

k

IR (x, 1) ]| <C(Y i;iexp(Znizi) + Z?:HI( —27,2,))

in the sector. The same estimate holds for S,(x, ¢t). Similar considera-
tion holds for A_;(x, t). Therefore, the reflectionless solution vi(x, t) be-
haves as

-1 k o . k+1 o
(18) B a_y jlej(ﬂo, T nkfl)eXp(anzk)+Ej=1Dj(770’ T 771:)

a:}sD(Uo, T Uk-l)exp(zﬂkzk)‘i‘ D(Uo, T, 77k)

—1gk—10 k 0
a+k2 i 1DJ(7717 ) nk—l)exp(anzk)+Zj:1Dj(771, T 77};)

j=

1 + m.
(l+kD(7719 ) 77k71)eXP(277k2k)+D(771’ T 771:)

By direct calculation, we can show that the function (18) coincides with
(19) s(x+pit+ é\:<+)7 Tik)—s(x+pit+5:(—), 7/k>'

It is easy to see that the function (19) belongs to S for each .

In the infinite sector (—,ogfa)t<x<(—,og+e)t, >0, as t—» 00,
h_o(x,t) behaves as slat2m’t+ 6. (+), m) and h,, (x 1) (j=1,, n)
converge to zero uniformly.

The proof for the behavior of v, (x, t) as t——oo can be obtained by the

parallel discussion to above. Q. E. D.

Moreover, we have the formulea for the phase shift of each soliton;

~ —1- Nt —igin n;=0
é\f(i>—3j(i):njlzfizélog 77»_7]11' +7) 12i=j+110g,]]+77. (j=0, -, n)
2 j i
m+n;

oi+)—8(—)==%(279,) log

m—77j
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