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In a Finsler manifold provided with a linear connection ij(x) a Finsler
connection such as I''= iz, r(zy. ]kf can be considered, where Cj=
%g 5.9 The connection I'" is called the Finsler connection associated
with lek(x). In this case, the h-covariant derivative P, v-covariant deri-
vative Pr and the Av-curvature tensor P}ij , which have been defined by
Matsumoto [8], can be also considered.

In his paper [1], Hashiguchi has treated a Finsler manifold admitting a
linear connection with respect to which FPkgij=0 holds good. He has called
the manifold as a generalized Berwald space and investigated it in detail.

On the other hand, in the previous paper [3], the present author has
introduced a notion of a Finsler manifold modeled on a Minkowski space.
This is a Finsler manifold with the property such that the tangent Minkow-
ski spaces at arbitrary points are congruent to a unique Minkowski space.
As this example, he has created a notion of a {V, H}-manifold and proved
that the {V, H}-manifold is a generalized Berwald space.

Next, in the paper [4], he has proved that the standard generalized
Berwald space is a {V, H}-manifold. He has also treated a Finsler
manifold with a linear connection satlsfylng ch =0. The condition
VkC ;=0 is equivalent to the condition P .=0. It is apparent that Prgij=20
1mphes VkClj—O but the converse is not true. Even so, it is an unsolved
problem whether the Finsler manifold satisfying VkCh,«j:O is a generalized
Berwald space or not. In other words, the question is whether the Finsler
manifold with a linear connection ka(x) satisfying Phl-kj:O admits another
linear connection f;k (x) with respect to which ﬁ'kgij=0 holds good.

The main purpose of the present paper is to solve this problem. It will
be shown that the problem is solved affirmatively under some condition. For
the present aim, it is sufficient only to show that the Finsler manifold with
a linear connection satisfying Phl-k]:O is a {V, H}-manifold. In the paper
[5], the present author has clarified the geometrical significance of the
condition sz] 0. The result in [5] and Kobayashi-Nomizu’s well-known
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theorem [7] will play an important role in the development of the present
discussion. The main result will be shown as Theorem 4 in the last sec-

tion.

§1. First we introduce the well-known result which is shown in
the text written by Kobayashi-Nomizu [7].

Lemma 1. Let G be a subgroup of the orthogonal group 0(n) which
acts irreducibly on an n-dimensional rteal wvector space R". Then every
symmetric bilinear form on R" which is invariant by G is a multiple of the
standard inner product (x, y)zigxiy{

The proof has been shown by Kobayashi and Nomizu in the appendix of
[7]. By virtue of this lemma we can prove the following lemma by the si-
milar method as Kobayashi-Nomizu’s.

LEMMA 2. Let M be a manifold endowed with two Riemannian metrics
g and g* If the Riemannian connection of g coincides with that of g* and
its linear holonomy group is irreducible, then there exisis a positive con-

stant ¢ such thal g*=cg.

Proor. Let I' be the Riemannian connection, and let x be any point of
M. The linear holonomy group H(x) of I' with reference point x is airre-
ducible subgroup of O(n), and H(x) leaves both g and g* invariant. Hence,
Lemma 1 shows us that there exists a positive constant Cx such that g(X,Y)
=C.8(X,Y) for all X,YeTz(M), that is, g#=Cx8x. Since both g*and g are
parallel tensor fields with respect to I' , Cx is constant.

§2. Let V be a Minkowski space. That is to say, V is an n-dimen-
sional real vector space on which a Minkowski norm is defined. In the
sequel, we assume that a Minkowski norm is a real valued function on
V, whose value at £€V we denote by [£l, with properties:

(1) &l can be represented explicitly by [lél=f(& &7+, &)

for any vector &= &le, + %, + -+ + E"en(=E%a)  where f{eo} is a fixed

basis of V, and the function f(&!, &Z--, £&") is 3-times continuously dif-

ferentiable at & # 0. For brevity we write (&, €2 -+, €9 as f(£&%

or f(&).

(2) ligl= o.
(3) |IEIlI=0 if and only if £=0.
(4) k&= k€] for k>0.

The quadratic form FRETL: 7°n# is positive definite for all values of 7?

~2p2
Now, if we put gw:%—ggzé%ﬂl then g.5(€)d€%dEP gives V a positive de-
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finite Riemannian metric. The coefficients of the Riemannian connection
are given by CZYZ’%QM %?Z

We call, hereafter, that the Minkowski space V is irreducible when the
linear holonomy group with respect to the Riemannian connection Cpsy is ir-

reducible. This is well-defined because of

where (¢g%) is the inverse of (gap)-

THeOREM 1. Let {e, and (e, be two bases of a Minkowski space V.
Let us express the Minkowski norm, with respect to the bases {e, and{e.,
by the function f(£€) and f(&) respectively. Then the Riemannian metrics
derived from f(€) and f_(é) are mutually equivalent.

Proor. As a matter of course, there exist n’-~constants A; such that
eg;=Age,. Then, for a vector £=£%,= g‘@éﬂ, we have S“———Agfﬂ. Since |€]
=f(§)=F(§%), we have gu=g,,4745 Hence, for all X=X%,=X"¢, and
Y=Y%,=Y%, we obtain §(X, Y)=g(X, Y).

Q. E. D.

Now we shall prove

TuEOREM 2. Let V and V be n-dimensional Minkowski spaces and let g
and g be the Riemannian metrics derived from the Minkowski norm of Vand
1% respectively. Let @ be a linear isomorphic mappmg from V onto V, and
g*be the Riemannian metric of V induced by ¢ from V. If the Minkowski
space V is irreducible and the Riemannian metrics g and g* determine the
same Riemannian connection, then there exists a positive constant k such

that (&) | y=klélly for any E€V.

Proor. Let f be the norm function of V with respect to a basis {e,/| .
Due to Theorem 1, we may adopt {g(e,)| as a basis of V without loss of
generality. Denote by f the norm function of V with respect to {o(ey)t,

then we have, for any £e€V,

lo(&) = lp(g%e,) li=l€%(e Ny=F(E).

That is, we may adopt {£% as a current coordinate system of V and V in
common. Now let g,4(£) be the Riemannian metric derived from f(£) and
let C5,(§) be the Riemanian connecttion of gu(€). For any p=£&=¢£% eV,

we put ¢=¢(p) =£%p(e,). Then we have o(( aaa)P):( aafa)q- Now, by virtue

of Lemma 2 and our assumption, we see that there exists a positive con-
stant k such that g*=k%. From the definition of g* we have

Koo €)= 035 (£) =03 (52, . (55 ) =5, (o (520, el (5250
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=5, (g <a—gﬁ>q>=§aﬂ<5>.
Thus we have kg &) E°EP=G.o(£) E°€P, that is, Kf (€)=F"(£).
Hence we obtain &l&lly=le(£) 7.
Q. E. D.

8§3. ILet M be an n-dimensinal connected Finsler manifold whose fun-

damental function is F(x, y). We denote the metric tensor by g,(x, »), and

i 1 i 0gik
we put CijEg _8%

is endowed globally on M. Then we can introduce a Iinsler connection
such as I'*= {P;k(x), I, (x)y C;k}. This connection I'*is called the Finsler
connection associated with the linear connection ]"jk(x) ({21, [40]). With

We assume moreover that a linear connection I”};(x)

respect to I't the h- and v-covariant derivatives are expressed respectively
as follows:

V. Ki=, K= 0,K I}y + K= Kul'}

iK'=ax K+ CL KT —KiC

m~jk?

where Kj is a Finsler tensor of type (1,1) and d; and ék stand for %

and respectively. The hwv-curvature tensor P’ with respect to a Fin-
Jjrk p

d
ayk
sler connection {N;k, N;, Cjk}, which has been defined by Matsumoto [8], is

written in the form

P

jrk

=9,N!— 7, CL+CL(I N, —N;).

Since N;kz j—k(x) and N}ZFfj(x)yl for the associated Finsler connection
under consideration, it follows that Plrk=— V,Cji.

In the paper [5], the geometrical significance for the condition P%,,=0
has been found.

Now, in a Finsler manifold M, the tangent space T,(M) at each point

P:(xﬁ)) of M can be regarded as a Minkowski space, where the norm ofany
vector yzyi(FiT)p is given by lyl=F(xb y'). Therefore T,(M) is called

the tangent Minkowski space at p. But the tangent Minkowski spaces at two
distinct points are, in general, not congruent ( isometrically linearly iso-
morphic). Especially, a Finsler manifold with the property that the tangent
Minkowski spaces at arbitrary points are congruent to a unique Minkowski
space is called a Finsler manifold modeled on a Minkowski space [3].

Now we shall prove
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THEOREM 3. Let M be a Finsler manifold provided with a linear con-
nection F;k(x). We assume that M is connected and there exists in M such
a point p that the tangent Minkowski space at p is irreducible, and we
assume moreover that the hv-curvature tensor P}ilkj with respect to the Fin-
sler connection associated with F}k(x) vanishes (or equivalently P,C*=0).

=
Then M is a Finsler manifold modeled on a Minkowski space.

Proor.  Since M is connected, any point ¢ of M can be joined with p by
a piecewise differentiable curve [. Let us denote [.by I={x(#)| 2(0)=7p,x(1)=¢}.
For any vector X,eT,(M), we consider the ordinary parallel displacement of
X, along [ with respect to the linear connection F}k(x). Let Y, be a tangent
vector at ¢ given by the above parallel displacement of X, Then the cor-
respondence X, — Y, defines a linear isomorphic mapping ¢ : T,(M)—T, (M).

On the other hand, in [5], the following has been proved:

The condition P%,,=0 implies that, relating to the mapping o : T,(M) —
T,(M), the induced connection of the Riemannian connection Cilx(1), o(y))
coincides with the Riemannian connection C}(x(0), y).

Now, let g and g be the Riemannian metrics derived from the tangent
Minkowski metrics of T,(M) and T,(M) respectively. Let g* be the induced
metric of g by the mapping ¢. Then the mapping ¢ is an isometry from
the Riemannian space {T,,(M),g*} to the Riemannian space {T,(M), z}. Since
an isometry is an affine mapping, the Riemannian connection of g* coincides
with the induced connection of Cj-k(x(l), o(y)). It follows, therefore, that
the Riemannian connection of g* coincides with Cjk(x(O), ¥). By virtue of
our assumption and Theorem 2, we have that there exists a positive constant
k such that [@(y) HTq<M):k||y||Tp(M>. Then we have F(x(0),y)=F(x(1), %@(y)).
Now, let us consider the mapping ¢:T,(M)—T,(M) (<//(y):kl¢’(y), VyeT,(M)).
Then ¢ is a linear isomorphic mapping from T, (M) onto T, (M) and is an
isometry. Thus, for any ¢eM, the tangent Minkowski space T,(M) is con-
gruent to the tangent Minkowski space T,(M). That is to say, M is a Fin-

sler manifold modeled on a Minkowski space.

Q. E. D.

§4. Let V be a Minkowski space and f be the norm function of V.
Let us put

G={T| TeGL(n, R), |ITE|=)€&| for any £eV}.

Then G is a linear Lie group [3] Let H be a Lie subgroup of G. If a
manifold M admits the H-structure in the sence of a G-structure, then M
admits a Finsler metric such as F(x} y") = f(#¥(x) y*) where u%x) are =
linearly independent local covariant vectors. This is called a {V, H|-Fin-
sler metric and M is called a {V, H}-manifold [3]. Moreover, in [3], it
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has been shown that a {V, H}-manifold is a generalized Berwald space with
respect to a G-connection relating to the H-structure. The generalized
Berwald space, which has been defined by Hashiguchi {1], is a Finsler
space admitting a linear connection I'(x) satisfying the condition F;9,; =0
with respect to the Finsler connection associated with the I'(x). It has
been also proved in [4] that a generalized Berwald space is a {V, H}- mani-
fold.

Now, we shall prove

THEOREM 4. Let M be the manifold under the same assumption as in
Theorem3. Let V be the tangent Minkowski space at p and let G be the
linear Lie group which consists of all linear transformations leaving the

norm of V invariant. Then M is a {V, G} -manifold.

Proor. Owing to Theorem 3, M is a Finsler manifold modeled on a
Minkowski space V. Let {U, x| be a coordinate neighbourhood such that
pelU. If we put p=(x!) and F(xl,y)=fy"), then f(»)is the norm function

of V relating to the basis {(gx—i)p} .

First, we consider a piecewise differentiable closed curve [ starting at
p. Let ¢, be the congruent mapping from T,(M) to T,(M) along [ as shown
a

in the proof of Theorem 3. If we put gl/p((—a—x—i)p)z(Xi)p, then we can re-
write it as (Xi),,=g{:( aij ), And we see that <//p(yi(aii )p)=g§yj(aii),, and
F(xs, y)=F(x},g/5), i.e, flgiy)=F(y"). Hence we have
d .\ .9 -
¢p((5—;)p)—g’i(ax]«)p where (g7) €G.

Next, we consider a point ¢ in M different from p. Let !y and [; be two
distinct piecewise differentiable curve joining p with ¢. Let ¢; and ¢, be
the congruent mappings from T,(M) to T,(M) along [/, and [, respectively

which are defined in the proof of Theorem 3. If we put ¢1((5%"—) D =(X)),
and ¢2((-a—ii—)p) = (X,),  then we have (X,) q‘—‘-Z]};(Xj)q where (g1)€GL(n, R).

Let {U, z'! be a coordinate neighbourhood such that ¢=(x)elU, and let us

express (X,;), by (Xi)q:p}f(gga:c-k—)q . Then we have that (/jl(yi(aii ),) =
0

i ;0 P~ )
pjy’(ga_;.—)q and ¢,(y (ng)p)=pjgiyk( ag’ci>‘7' Hence we have

fly')=F(xh, y)=F(z}, p} y)) = F(z{,p}{s")= f(giy"),

that is, (g}’i')eG. Thus we have
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G((S20) ) =G 42, where (§)€G.

Hence we obtain that the manifold M admits the G-structure.

Moreover, for any &i(

.
0
85ci)q’ we see that

F(z', 39)=F(&% p! ply*) =f(pi3’).

Hence we obtain that the Finsler metric of M is the {V, G|-Finsler metric.

Q. E. D.

Since any {V, H|-manifold is a generalized Berwald space, this theorem

can be rewritten as

CorOLLARY. Let M be the manifold under the same assumption as in

Theorem 3. Then there exists globally in M such a linear connection fjk(x)

that P,9,4=0 holds good with respect to the Finsler connection associated
wzth f;k(x).
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