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§0. Introduction

The set & 4(X) of all (based) homotopy classes of H-equivalences (homotopy
equivalent H-maps) of an H-space X to itself forms a subgroup of the group &(X)
of all homotopy classes of homotopy equivalences of X to itself.

Assume that an H-space X is a CW-complex, and let {X,, f,: X=X, p,: X,—
X,_1} be the Postnikov system of X. Then X, is an H-space such that f, and p,
are H-maps, and we obtain naturally the homomorphism

¢7n: éaH(X) - éaH(Xn) such that &n(h)fn =fnh7
and we can prove the following
THEOREM 1.3. (ii) @, is isomorphic if n=2dim X.

Furthermore, the group &(X,) can be determined by the results of Y. Nomura
[9] inductively on n (Lemma 1.6), and also we study a condition that some elements
of #(X,) belong to & x(X,) (Lemma 1.9).

By using these results, we determine the groups &(X,) and & 4(X,) for the case
that X is the special unitary group SU(3) in § § 2-3, and obtain the following

THEOREM 3.1. (iv) £ 4(SUQ3))=Z,, generated by the conjugation c: SU(3)
-SU@3). :

Also, we see that & 4(U(3))=Z, x Z, (Theorem 3.5 (ii)), by using the general
result that U(n) is naturally H-equivalent to S x SU(n).

In the same way, we consider the case that X is the symplectic group Sp(2) in
§ §4-5, and obtain the following

THEOREM 5.7. (iv) & 4(Sp(2))=1,

by noticing that the localization Sp(2) s, at 5 is not homotopy commutative (Proposi-
tions 5.1 and 5.6).

The author wishes to express his gratitude to Professor S. Oka who read
this manuscript and gives him the benefit of many helpful conversations.
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§1. Some relations between & 5 (X) and &5(X,)

In this note, all (topological) spaces are arcwise connected spaces with base
points and have homotopy types of CW-complexes, and all (continuous) maps and
homotopies preserve the base points. For any spaces X and Y, let [ X, Y] be the set
of all homotopy classes of maps of X to Y. For a map f: X—Y, we denote usually
its homotopy class in [ X, Y] by the same letter f.

A space X is called an H-space, if there is a map m: X x X > X, called a multi-
plication, such that m|X xx=1=m|+x X in [X, X]. For H-spaces X=(X, m)
and Y=(Y, n), a map f: X— Y is called an H-map if fm=n(fxf) in [XxX, Y],
and let [X, Y], be the subset of [X, Y] consisting of all homotopy classes of H-
maps. Let £(X) be the group of all homotopy classes of self (homotopy) equiva-
lences of X. For an H-space X =(X, m), let &x(X)=¢&4(X, m) be the subgroup
of &(X) consisting of all homotopy classes of H-equivalences (homotopy equivalent
H-maps) of (X, m) to itself.

Let {X,, f,, p.; be the Postnikov system of X, that is, it consists of spaces X,
and maps f,: X—>X,, p.: X,—X,_, such that n(X,)=01if i>n, f,s: 1(X)>7(X,)
is isomorphic if i<n, K(r,(X), n)—X,-2X,_, is a fiber space and p,f,=f,_,
in [X, X,_,]. Then, as is well known, a cell-structure for X, can be given by

(1.1) X,=X U(Uert?) U (Ueyt3)---
a B

Since f¥: [X,, X,]—[X, X,] is bijective by (1.1), we can define a homomorphism
(1'2) ¢n: éa(X) - g(Xn)

as the restriction of the composition [ X, X] Lrx, X, A e » X,]. Assume that
X is an H-space with a multiplication m, in addition. Then it is easy to see that m
induces the unique multiplication m, on X, up to homotopy such that p, and f,
are H-maps, and we can define a homomorphism

(1'2), (zn: é”H(X):é’H(X, m) - @@H(Xn):éaH(Xm mn)
as the restriction of ¢, in (1.2).

THEOREM 1.3. Let X be an l-dimensional CW-complex and an H-space with
a multiplication m. Let X, and ¢, be as above. Then, we have the following
(i) and (ii).

(i) If n=1, then ¢, is monomorphic,
(ii) If n=2l, then ¢, is epimorphic.

Proor. By [11, Lemma 7.1], we obtain
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(1.4) ¢, isisomorphicif n=I.

Hence, (i) is obvious.

(if) Since ¢, is isomorphic by (1.4), for any h e & ,(X,) there exists an element
he £(X) such that f,h=hf,, and hence f,,m(hx h)=f,,hm since f, is an H-map.
In the same way as [14, p. 405, 23 Cor.], we see that f,.: [X x X, X]-[X x X,
X,]is injective by the assumption n =21, and hence the element i belongs to & 4(X).

g.e.d.

In the above theorem, we have the following example such that & 4(X,) is not
1somorphic to & x(X) for 2I>n=>1.

ExAMPLE 1.5. Let X=S'(1=3,7) and m be any multiplication on X. Let
{X,} be the Postnikov system of X=S!. Then,

&(X)=2, if 1=n<2l
& u(X,)=
eu(X)=1 if 21=n,
Proor. Since X,A X, is 2I—1 connected, we have [X,A X,, X,]=0 for
I€n<2l and so &y(X,)=6(X,)=6(X)=Z, for I<n<2l by [12, Prop. 2.7] and
(1.4). The rest of the proof is obtained by Theorem 1.3 and [12, Th. 4.1].  g.e.d.

The following lemma will be used in §§3 and 5.

LemMMA 1.6 (Y. Nomura [9, Th. 2.1, 2.9]) For each n, the fibering K(n,(X),
n)—X, P», X, | with the k-invariant k"' in the Postnikov system of a simply
connected H-space X induces the exact sequence

0——H,—*>&X,)—G,— 1.
Here  H,=pyH"(X,_; n,(X))/(Qk" ), [X,, QX,_,],
G,={(h, &) e &(X,_ ) x E(K(n,(X), n+1)), kn+1h=gkn*1
in H""(X,_; m(X)},

K is the homomorphism defined by the same way as (1.7) below and p*: H(X
(X)) H"(X,; n,(X)) is always monomorphic.

n—l;

Let (X, m,) and (Y, m,) be two H-spaces and f: X—Y be an H-map. Let E,
be the mapping track of f and k: E; x QY—E be the action on the induced fibering

QY —>E fL>X . Then it is well known that E is an H-space such that i, p and k
are H-maps (cf. [5, Th. 2]). We define a map

(1.7) k:[E;, QY] — [E,, E/]

by k(a)=k(1 xa)d for ae [E;, QY], where d is the diagonal map. Then we sce
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easily
(1.8) k(o)=1+ia for ael[E, QY].

LeMMA 1.9. Assume that (Qf)y: [E;ANE;, QX]->[E,AE;, QY] is trivial.
Then for a € [E,, QY], k(«) is an H-map if and only if o« is an H-map.

Proor. Since k is an H-map, the "if” part is obvious.
Conversely, assume that x(«) is an H-map, and let m be the multiplication on
E; as above. Then by (1.8) we see that

k(ym=m++iam, m(k(a)xk(@))=m+im,(axa).

Therefore we have iam=im,(ax «) by [3, Th. 1.1]. By the assumption, i,: [E, A
E,, QY]—[E;AE,, E ] is monomorphic and hence we have am=m,(a x «).
q.e.d.

§2. The Postnikov system of SU(3)

Throughout this and the next sections, let {X,, f,: SU3)—>X,, p,: X,»X,_}
be the Postnikov system of the special unitary group SU(3) and we shall compute the
groups &(X,) and &(SU(3)).

There is the principal bundle

@2.1) S3 i, SU3) —2> S5

with the characteristic element 5 € m,(S3). So the lower homotopy groups 7, (SU(3))
are computed from Toda’s table [17], and we have

LEmmA 2.2 (M. Mimura and H. Toda [7]).
n;(SU3))=Z with generator iscs,
ns(SUQ3))=Z with generator [2¢s],
ns(SUQ3)=Z¢; with generator i,
ng(SUQ3))=Z,, with generator [o;]+[2¢5]vs,
n(SU(3))=0 otherwise for i<8=dimSU(3),

where [o] denotes an element such that py[a]=a€n(S®%), and the elements [a,]
and [2¢5]vs in ng(SU(3)) are of order 3 and 4, respectively.

From this lemma, the partial Postnikov system {X,},<g of SU(3) is given by the
diagram
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XS P8 X7 Pz X6 Ps XS pPs X4 P4 X3=K(Z, 3)

(2.3) lke l’” lks

K(Z129 9) K(Z61 7) K(Za 6)5
and X, =X, =x.

ProposITION 2.4. In the above diagram, the group
Hn+1(Xn—1; nn(SU(3)))’ n§8’ is g’:ven by

n 1,2,3,4 5 6 7 8
HH (Xo1; 7(SU3))) 0 Zs Zs 0 Zis

and the k-invariant k"*! generates this group.

Proor. We consider the Serre’s exact sequence of the integral cohomology
groups derived from the fibering X s-2%>K(Z, 3) % K(Z, 6):

HS(Z, 6) £ HS(Z, 3) 225 HS(X ).

Since SU(B)=S*Ue’Ue8, we have Xs;=(S3Ue’Uet)Ue’U--- by (1.1) and so
H®(X5)=0. Also, we have H%Z, 6)=Z and H%Z, 3)=Z, by [2, Th. 5]. There-
fore, k¢ is the generator of H®(Z, 3) by the above exact sequence. Next, since
Xe=(SPUeuet)uedu - by (1.1), we have HYX¢; Zg)=H"(X¢; Zs)=0. There-
fore, by the Serre’s exact sequence derived from the fibering X 2% X 5—"—7—*K(ZG, 7N,
we see that H'(Xs; Z¢)=Z4 which is generated by k7. Finally, we consider the fol-
lowing exact sequence:

m5(S3 U €%) —L% mg(SU(3)) — ng(SU(3), S3 U €9),

where j: S* U e5—SU(3) is the inclusion. Here, ng(SU(3))=Z,, by Lemma 2.2 and
ng(SU(3), S3 U e’) is isomorphic to ng(S®)=Z by [1, Th. II]. Therefore j, is
epimorphic. By (1.1) and by this fact, X, has a cell-structure of (S3U e U e8) U
€ U --- in which the attaching element of e° is j,({) for some element e 74(S3 U €3).
Hence we have H3(X;; Z,,)=Z,,. Also, H Xg; Z,)=Z,, and H%Xg; Z,,)
=0 by (1.1), and we see that H%(X,; Z,,)=Z,, which is generated by k° by the
Serre’s exact sequence derived from the fibering X ¢ -2 X, %5 K(Z,,, 9). q.e.d.

As is well known, the integral cohomology ring of SU(3) is the exterior algebra
(2.5) H*SUQB))= A(x3, x5), degx;=1,
and each generator x; is primitive. Then we have

LEMMA 2.6. Let c¢: SU(3)>SU(3) and v: SU(3)>SU(3) be the maps given
by c(a)=a (conjugate matrix of o) and v(a)=a~1, respectively. Then,
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c*(x3)=x3, *(x5)=—xs5 and c*(x3-x5)=—x3-Xs,
v¥(x3)= — X3, V¥(x5)=—x5 and v¥(x;-X5)=X3-Xs.
Proor. Since the diagram
S3 —i5 SU@3) 2> $5
2.7) l j l—u
S35 SU@3) 2 83

commutes (up to homotopy) by the definition of ¢, we have ¢*(x;)=x3, ¢*(x5)= —x5
and also c*(x; - xs5)=c*(x;3)c*(x5)= — X3 Xs. q.e.d.

Since f§: H¥Xg; Z,,)>H&SUQ3); Z,,) and ¢g: £&(SUB))-&(Xg) of (1.2)
are isomorphic, we can define the elements &, € £(X,) (n=8) by

(2.8) Se=K((f§) (x3-%5)), &y=0utp5'(Cs),
where x; € H(SU(3); Z,,) is the mod 12 reduction of x; in (2.5). We also define
(2.8) E=¢5'(Ls) € £(SUQ)).

PRrOPOSITION 2.9. Put c,=¢,(c)e&(X,) and v,=¢,(v) e &(X,), where ¢ and
v are the maps in the above lemma. Then

(i) &(X,)=Z, with generator v, for n=3,4,
(i) &(X,)=Z,xZ, with generators ¢, and v, for 5<n<7,
(i) &(X,)=D,xZ, for n=8, where D,,=D,(&,, v,), and

the second factor Z, is generated by c,. Here DJa, b) is the dihedral group of
order 2i generated by a and b with the relations a'=1=>b? ab=ba™!.

(iv) &(SUQB))=D,,xZ,, where D,,=D,,(&, v), and the second factor Z,
is generated by c.

Proor. We shall compute £(X,) by using Lemma 1.6 repeatedly. (i) follows
from the facts X,=K(Z, 3), AutZ=Z, and Lemma 2.6.

(il) We have easily H"(X,_,; n,(SU(3)))=0 for 5=n=<7, and so &(X,) is
isomorphic to the subgroup G, of &(X,_,)xAutrn,(SU(3)) in Lemma 1.6. kS
is the generator of H®(X,; ns(SU(3)))=Z, by Proposition 2.4 and Autns(SU(3))
=Z, by Lemma 2.2. Therefore from the definition of G,, we have Gs=Z,x Z,
and so &(Xs5)=Z, xZ, which is generated by c¢s and vs from Lemma 2.6. Since
k7 is the generator of H'(X 5; ns(SU(3))) =Z, by Proposition 2.4 and Aut ng(SU(3))
=Z, by Lemma 2.2, we have

h*k’=k? or —k7 (hed(Xs)),



On H-Equivalences of SU(3), U(3) and Sp(2) 39

and k7# —k’7. Therefore from the definition of G, and from the fact X,=X,,
we have §(X;7)=6(Xg)~&(Xs).

(i1i) and (iv) By Proposition 2.4, k° is the generator of H(X,; ng(SU(3)))
=Zy,. Since the elements of order 12 of H(X,, ng(SU(3))) are +k°® and +5k°,
we have the following equality

for each he &(X,). Therefore, from the definition of G, in Lemma 1.6, we have
Gg~&(X7)~Z,xZ,. Next, we shall compute the subgroup Hg of &(X,) in
Lemma 1.6. We have easily H8X,; ng(SUQ3)))=Z,, by (1.1). Let L=S3Ueé’
be the 5-skeleton of SU(3) and let S7—£— L—>SU(3) be the cofibering. Then we
have the following commutative diagram of the exact sequences:

[SUQB), QX1 L5[L, QX155 7,(QX5)

Jv(.st)* J((st)*
ns(QX,) — [SUQ), QX,] -5 [L, @X;]1 15 7n,(QX;)
l(.(?k‘))* l(mw)*

H¥(SUB); Zy,) HM(L; Zyy),

Since ng(2X,)=n,(2X,;)=0 in this diagram, the lower j* is isomorphic. Since
H3(L; Z,,)=0, the right (2pg)s is epimorphic. Since Sf: S8—SL passes through
S* by [4, (3.1)] and 74(Xg)=0, we see that (SB)*=0: [SL, Xg]—ng(Xg), which is
equivalent to the triviality of the upper *. Hence the upper j* is epimorphic. From
these facts, the left (Qpg)y is epimorphic. Therefore, (Qk°),[SU(3), QX,]=0.
This shows (Qk°),[Xg, 2X;]1=0 because f¥: H¥Xg; Z,,)~>H&SUQ3); Z,,) is
monomorphic. So, we have Hg=pfHS(X,; ng(SUG))/(Qk)[Xs, QX,]1=Z,,.
Thus the short exact sequence in Lemma 1.6 is given as follows:

0——*212‘—)éa(X8)——)g(X7)=szZ2’—>1.

Therefore 6(Xg) is generated by the three elements &g=w(x) (x=fF"1(x;-Xs)), Cg
and vg of order 12, 2 and 2, respectively. By Lemma 2.2 and (2.7), we have c,=
—1: ng(SU3))»ng(SUQ)). Thus c¥k®= —k° by [6, Th. 2.2] and hence k(cg x
(—0))=cgk. Also we have cfx= —x by Lemma 2.6. These facts show that

¢acs =k(1 x x)(cg x cg)d
=k(cg X (=) (1 xx)d
=cgk(l X x)d =cg&s.

Obviously v, = —1: ng(SU(3))—>ng(SU(3)) and vik®= —k°. Also, we have vix=x
by Lemma 2.6. Therefore by the similar way as the above, we have &gvg=10g(Eg) L.
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These and the facts cgvg = ¢g(cv) = g(vc) =vgcg show the desired results for &(Xs).
Since dim SU(3)=38, (iv) and (iii) for n=>9 are obtained by (1.4). g.e.d.

REMARK 2.10. The above (iv) gives a different proof of our previous result
[10, Example 4.5]. For the element A(«) defined in [10, Example 4.5] by using the
cofibering L——SU(3)— S® and for the clement & defined in the above (2.8)" by using
the fibering K(Z,,, 8)—%> X422 X ,, the following equality holds:

Mo)=EF for some 0<k<ZI11,

where k can be determined uniquely for aeng(SU(3)) as satisfying ¢g(on)fy=
igk(x3-x4) in [Xg, Xg].

§3. H-equivalences of SU(3) and U(3)

In this section, we shall determine the subgroup & 4(X,) of &(X,) by using the
results for &£(X,) of the previous section, and we obtain the following theorem which
is the one of our main results.

THEOREM 3.1. Let {X,} be the Postnikov system of the special unitary group
SU(3). Then, we have

(i) &u(X,)=Z,, generated by v, for n=3,4,
(1) €u(Xs)=Z,xZ,, generated by c¢s and vs,
(i) Fx(X,)=Z,, generated by c¢, for n=6,
(1v) &u(SUB))=Z,, generated by c,

where ¢, and v, are the elements of &(X,) defined in Proposition 2.9 and ¢ and v
are the elements of &(SU(3)) defined in Lemma 2.6.

Proor. Since [X,AX,, X,]=0 for n<5, we see &yx(X,)=6(X,) by [12,
Prop. 2.7]. Therefore (i) and (ii) are obtained by Proposition 2.9 (i) and (ii).

Since ¢ € & 4(SU(3)), we have
3.2) c, €8 y(X,) forall n.

Let i: S3—-SU(3) be the inclusion in (2.1). By the definition of vs, we have vgfgi
= —f¢i. Assume that vse &yx(Xs). Then, this equality shows that —fsi is an
H-map, and hence (fgi)yp=0 in [S3x S3, Xc], where ¢e[S3xS3, S3] is the
commutator map. Let n: (S3xS3, S3v S3)—(S%, %) be the collapsing map, and
consider the commutative diagram
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76(S3) — 1(SU(3)) £ mg(Xy)
[S3xS3, 83] L, [$3x 83 X.].

In this diagram, n4(S3)=Z,, 1,(SU(3))=Zs, iy is an epimorphism by Lemma 2.2
and n*’s are monomorphisms. Also it is clear that ¢ en*(ng(S3). Therefore
(fel)«¢® =0 implies 6¢ =0, which is contradictory to the result of I. M. James [3,
p. 176]. Thus va& & y(Xe). By Proposition 2.9 (ii), ¢ and vg generate the group
&(X¢)=Z,%xZ, and we obtain (iii) for n=6, 7.

Since X g A Xg is 5-connected and 7, (QX;)=0 for i=6, it holds [ Xg A X3, 2X ]
=0 and hence the assumption of Lemma 1.9 is satisfied for f=k° X=X,, Y=
K(Z,,,9). Then, for aec H¥}Xg; Z,,),

k() e &x(Xg) ifand only if ael[Xg, K(Z,, 8)]y-

The later condition means that « is primitive in H*(Xg; Z;,) (cf. [16, Th. 10.1]).
But H8(SU(3); Z,,) has no non-trivial primitive element and hence H¥Xj; Z,,)
is also so. Therefore

3.3) k(o) & g(Xg) for any a(#0)e H¥(Xg; Z,,).

We see that k(o) fzi=fgi by the definition of x and so x(a)vgfzi=xw(a)fsvi= —fgi.
Thus, in the same way as the above proof of v & (X), we have

3.4 K(0)vg & & y(Xg) for any oe H¥Xg; Z,,).
From (3.2-4), we have
K(o)cg & & g(Xg) for w(#0)e H¥Xg; Z,,),
K(o)vgeg E & g(Xg) for ae H¥Xg;Z,,).

Thus, the proof of (iii) for n=8 is completed.

For n>9, ¢g: & x(X,)— & 4(X) is monomorphic by Theorem 1.3, and & 4(X,)
contains the non-trivial element c, by (3.2). Hence, ¢ is isomorphic, and the proofs
of (iii) for n=9 and (iv) are also completed. g.e.d.

For the unitary group U(n), we have the following

THEOREM 3.5. (i) The natural map p: S* x SU(n)-»U(n), p(x, f)=af (e S!
=SU(1), e SU(n)), is an H-equivalence.

(i) Ex(Un)=Z,xE(SUn)), and &4(UB)=Z,xZ,.

Proor. (i) The homotopy p,: S' x SU(n)— U(n), given by
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plo, py=a"Pat (xSt feSU(n)),

satisfies po=p and p,(a, f)=pPa. This implies that p is an H-map.
(i) follows immediately from (i), [12, Example 3.12 (i)] and Theorem 3.1.
g.e.d.

§4. The Postnikov system of Sp(2)

In the rest of this paper, let {X,, f,: Sp(2)—>X,, p,: X,— X, -1} be the Postnikov
system of the symplectic group Sp(2), and compute the groups &(X,) and &(Sp(2)).
There is the principal bundle

4.1 S3 —15 Sp(2) 2 §7
with the characteristic element w € n4(S3), and we have
LemMA 4.2 (M. Mimura and H. Toda [7)).

n3(Sp(2))=Z with generator iy,
m(Sp2)=2Z,, 7ns(Sp(2)=2,,
n(Sp(2))=Z with generator [12¢,],
T o(Sp(2))=Z,,0 with generator izo,+ige; s+[v,],
n(Sp(2))=0 otherwise for i<10=dim Sp(2),

where [a] denotes an element such that p.la]=aen(S7?), and the elements iu,,
ix0y 5 and [v4] in mo(Sp(2)) are of order 3, 5 and 8, respectively.

From this lemma, the partial Postnikov system {X,},<;o of Sp(2) is given by
the diagram

XIO P1o X9 P9 XS ps8 X7 P7\X671767X5 Ps X4 pPa X3=K(Z,3)

(4.3) lku 1ks 1,(6 lks

K(Z, 5, 11) K(Z, 8) K(Z,,6) K(Z,,5),
and X, =X, ==

PRrROPOSITION 4.4. In the above diagram, the group
H"™ (X, -1; m(Sp(2))), n=10, is given by

" 1,2,3| 4 5 6 7 8,9 10 ]

H™ (X215 7a(Sp(2))) 0 Z, Z, 0 Zi, 0 VAP ‘
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and the k-invariant k"1 generates this group.

Proor. In the same way as Proposition 2.4, this proposition is proved easily.
g.e.d.

As is well known, the integral cohomology ring of Sp(2) is the exterior algebra
(4.5) H*(Sp(D)= A (x3, x7), degx;=1,
and each generator x; is primitive. Then, we have
LEMMA 4.6. Let v: Sp(2)—>Sp(2) be the map given by v(a)=a~!. Then,
v¥(x)=—x; for i=3,7 and v¥(x3-x;)=X3-X;.

Since f{o: H'X 105 Z120)~>H'%(SPp(2); Z150) and ¢4: &(Sp(2))—E(X o) are
isomorphic, we can define the elements &, e &£(X,) (n=10) by

“4.7) Cro=r((fTo) 1 (x3-X7)), &=0,0716(¢10)>
where x; € H(Sp(2); Z,,,) is the mod 120 reduction of x; in (4.5). We also define
4.7 £=016(£10) €S(SP(2).

ProrosiTiON 4.8. Put v,=¢,(v) e &(X,), where v is the map in the above
lemma. Then

(1) &X,)=Z, with generator v, for 3=nz9,

(ii) &(X,) is the dihedral group D,,y(&,, v,) for n=10, with generators v,
and &, in (4.7),

(iii)) &(Sp(2)) is the dihedral group D, ,o(&, v) with generators v and ¢ in
4.7).

Proor. We shall compute &(X,) by using Lemma 1.6 repeatedly. Since
Sp(2)=S3U e’ U e'°, we have easily H*(X,_; n,(Sp(2)))=0 for n<9 by (1.1) and
Lemma 4.2, and so &(X,) is isomorphic to the subgroup G, of &(X,_;) X
Autn,(Sp(2)) in Lemma 1.6. Using Lemma 4.2 and Proposition 4.4, we see easily
that G, is isomorphic to &(X,_;) for 4<n=<10. Hence &(Xy)~E(Xg)~ =~
E(X3)=¢(K(Z, 3))=Z, and (i) is proved.

By easy calculations, we see Ho=H'Y(X,; Z150)=Z;,0 generated by x
=(ffo)"(x3-x;). So, we have the short exact sequence

l—Z50 "> 8(Xy) — E(Xg)=Z, — 1,

and &(X ;o) is generated by the two elements &;o=x(x) (x=fF,(x5-x,)) and v,,
of order 120 and 2, respectively. By the similar way as in the proof of Proposition
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2.9 (iii), we have £;ov,9=0;0(¢;0)"! by Lemma 4.6. Thus we obtain the result for
(X 10)-
Since dim Sp(2)=10, (iii) and (ii) for n>11 are obtained by (1.4). q.e.d.

REMARK 4.9. The above (iii) gives a different proof of our previous result [10,
Example 4.5]. Furthermore, a similar equality as Remark 2.10 holds for the ele-
ment A(x) defined in [10, Example 4.5] by using the cofibering S3 U e’ —>Sp(2)
—"> 810 and for the element ¢ defined in (4.7)" by using the fibering K(Z,,,, 10)

i
10 X10 Pio Xg-

§5. Sp(2) localized at 5 and H-equivalences of Sp(2)

For a simply connected CW-complex X, we denote its localization at 5 by X s,
(cf. [8]). In this section, we shall study the localization Sp(2).s, of Sp(2) at 5, and
compute the group & ,(Sp(2)).

ProrosiTioN 5.1.  Any loop multiplication on Sp(2)s, is not homotopy
commutative. In particular, the usual multiplication m on Sp(2) induces the
multiplication msy on Sp(2)sy, which is not homotopy commutative.

ProoF. Put Sp(2)5,=QY. Let E: SQY—Y be the evaluation map. Then,
by [13, p. 501], we have

H*(Y; Zs)=Zs[y4, ys], degy;=i,
EX(y)=0(x;— ),

where o: H{(QY; Z,)»H*(SQY; Z5) is the suspension isomorphism and x;
is the mod 5 reduction of x; in (4.5).

Assume that the loop multiplication on QY =Sp(2),s, is homotopy commuta-
tive. Then, by J. D. Stasheff [15, Th. 1.10], there is an extension f: SQY x SQY
—»Yof EVE: SQY v SQY—Y, and hence we have the commutative diagram

(5.2)

H*(Y; Zs) —E— H*SQY; Zs)
(5.3) l : lv*
H*(SQY x SQY; Z5) - H*(SQY Vv SQY; Zs)

where F is the folding map and j is the inclusion. Since H¥*(SQY; Zs) is generated
by 1, ox,_,=E*y; (i=4, 8) and o(x;-x,), the commutativity of (5.3) shows that

(5.4) f*y)=0x;®1+1®0x5,

and f*(yg)=0x,®1+1®0x, mod ox;®0x;. But ox;®0x;=(1/2)f*(y3) by (5.4),
and so we can replace yg such that it satisfies



On H-Equivalences of SU(3), U(3) and Sp(2) 45

(5.5 f*(yg)=0x,@1+1Q0x,.

Consider the reduced power operation 2! on H*(Y; Zs). By the dimensional
reason, we have

2'y,=0 mod(y,), 2'yg=oayg mod(y,)

for some a € Z;, where (y,) is the ideal generated by y, and is invariant under 2.
Since (21)*yg= — P4ys= — y3, the coefficient « is non-trivial.

By (5.5) and (5.4), we see that f*(y3)=20x,®o0x, and f*u =0 for other monomi-
al u of degree 16. Hence f*(2lyg)=2m(0x,®0x,)#0. On the other hand,
Plox;_1=02'x;_1=0, and so 21f*(yg)=0 by (5.5). These facts are contra-
dictory to the naturality of #!. Thus, the loop multiplication on QY is not homo-
topy commutative. g.e.d.

Prorosition 5.6. The multiplication on (X,)s, induced from m on Sp(2)
is not homotopy commutative for n=14.

Proor. Let {W,, q,, g,} be the Postnikov system of BSp(2). Then, {QW,,,
Qq, 1> 29,41} 1s the Postnikov system of Sp(2), and it is easy to see that {(QW,, {)s),
(24u+1)sy (22g,+1)sy; is the one of Sp(2)s. Furthermore (QW)s,=2(Ws)) by
[8, Prop. 3.3]. On the other hand, (W;s)sy=(W;6)sy=(W;7)s) by [7], and we see
that (g15){%): H'(Wys)sy; Zs)=>H(BSp(2)s); Zs) is isomorphic for i<17. There-
fore, we can proved the proposition in the same way as the above proof, by replacing
Y by (W,)s)- g.e.d.

The rest of this paper is devoted to prove the following main theorem.

THEOREM 5.7. Let {X,} be the Postnikov system of the symplectic group
Sp(2). Then, we have

(1) &u(X,)=Z, with generator v, for 3<nZ9,

(ii) &y(X,)=1 or Z, with generator v, or Z, with generator &S,
for 10=<n<13,

(i) Ey(X,)=1 for nz=14,
(iv) €u(Sp2)=1,
where v, and &, are defined in Proposition 4.8.

Proor. (i) Since we have easily [X,A X,, X,]=0, it holds &g4(X,)=6&(X,)
by [12, Prop. 2.7]. Therefore (i) is obtained by Proposition 4.8 (i).

(1) We see easily that Qp,q«: [Sp(2) A Sp(2), 2X,,]1=[Sp2Q) A Sp(2), 2X ]
is epimorphic since Sp(2)=S3Ue’Ue'®. This implies that Qp;oe: [X10A X 0
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QX o] [Xi0A X190, 2Xo] is also so. Hence the assumption of Lemma 1.9 is
satisfied for f=k!!, X=X o, Y=K(Z,,, 11). By the similar discussion to the
proof of (3.3), we can prove that

(5.8) Ekot & u(X10) forany 0<k<120.

Assume that &kv, e &y(X,) for some 0<k<120 and n>10. Then, (&),
=v,(&kv,) and so k=0 mod 60 by Proposition 4.8 (ii). This and (5.8) show (ii).

(i) Assume that kv, € £y(X,). Then (v,)s) is an H-map since (&kv,)s,
=5y for k=0mod 60. Thus the multiplication on (X,):s, is homotopy commuta-
tive. This is contradictory to the above proposition if n>14. Hence we have

Ehv, &6 y(X,) for any 0=<k<120.

By this result, (5.8) and Proposition 4.8 (ii), we have (iii).
(iv) The result is obvious by Theorem 1.3 and (iii). q.e.d.
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