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§1. Introduction

Consider a n-dimensional autonomous differential system
(1.1) — =X(x),

where X(x)e CL[D], D being a domain in the x-space. Let x(t) be a desired w-
periodic solution of the autonomous system (1.1).

For the numerical computation of the periodic solution x(t), we transform ¢
to t by

(1.2) r=—%’—t,

then equation (1.1) is rewritten in the following form:

dx w
(1.3) 7=7X(x).

The problem then is reduced to the one of finding a 2-periodic solution of (1.3),
but in our case w is also unknown. Hence, we consider the following differential
system:

dx _ o

@ =2 X@,
(1.4)

do _

dt =0,

where x and @ are unknown functions. The periodic boundary condition for (1.4)
is then as follows:

(1.5) x(—1)=x(1).

As is well known, when x(?) is a solution of the autonomous system (1.3), x(t+ o)
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is also a solution for an arbitrary constant «. The fact tells us that no 2-periodic
solution of (1.3) is uniquely determined by the boundary condition (1.5). Hence,
we add one more condition, say,

(1.6) Ix)=4,

where I(x) is a linear functional and f is a constant number.
We shall write the set of boundary conditions (1.5) and (1.6) in the following
form:

(1.7) f(w)=0,
where
_(x@) _(x(=1)—=(1)
(1.8) a=(oi) F0 =" 5 ).
Then the boundary value problem (1.4)—(1.6) can be rewritten as follows:
du
2 v,
(1.9) { ar =V
f@)=0,

where ¥V (u)=col [% X(x), 0] .

In the present paper, we firstly consider a more general boundary value problem

du
% _y(u),
(1.10) { ar =V

f@)=0,

where u and V' (u) are real (n+ 1)-dimensional vectors and f(u) is a operator map-
ping some set of C[I] into R"*!. Here C[I] is the space consisting of (n+1)-
dimensional vectors whose components are continuous functions defined on the
interval I=[—1, 1].

In the next section, we shall establish an existence theorem of the boundary
value problem (1.10) and give a method of calculating an error bound on the ap-
proximate solution obtained.

A criterion how to choose the additional linear functional /(x) will also be
given.

Finally, in the last section, we shall apply our results to compute the periodic
solution of van der Pol equation in Chebyshev-series.
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§2. Basic Theorems

Let D be a domain in the u-space. Consider a product space Q=1I1xD and
put

S={u(®)|(t, u(t)eQ foralltel, u(t)e M=CI[I]},
S'={u@®)|(t, u(t)) e Q foralltel, u(t)e C[1]}.

In (1.10), we assume that ¥ (u) is defined and continuously Fréchet differentiable on
S’. By V, @) and f'(u) we denote the Jacobian matrix of ¥ (u) and the Fréchet
derivative of f(u) at & respectively.

We shall denote the Euclidean norm by |---||, and for any wu(t) € C[I] we define
its norm |lu|, by

]l . =sup [lu()] .
tel

Consider also a product space N=C[I]x R""1, and for any n=[u(t), v]e N we
define its norm ||r|| by

(2.1) el = lleefl .+ [[o] -

Then the product space N is evidently a Banach space with respect to the norm
==l

Now we consider an additive operator T mapping M into N of the following
form:

(2.2) Th:[‘fi—’; — A(D)h, Lh] :
where A(t) is an (n+1) x (n+ 1) matrix continuous on I and L is a linear operator
mapping C[I] into R"*'. By ¥(1), let us denote an arbitrary fundamental matrix
of the linear homogeneous system
dz

and by L[ ¥(t)] we denote the matrix whose column vectors are L[¥ (1] (i=1, 2,...,
n+1), where ¥(t) (i=1, 2,..., n+1) are column vectors of the matrix ¥(¢).

Let F(u) be a continuously Fréchet differentiable operator mapping an open
set D of a linear normed space M into a Banach space N. Then applying the Newton
method to the equation

(2.3) F(u)=0,

we get the following theorem.
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Theorem 1 (Urabe [5]).

Suppose that equation (2.3) has an approximate solution u=ii € D for which
there are an additive operator T mapping M into N, a positive number é and a non-
negative number k<1 such that

(1) T has a linear inverse operator T™1,

(ii) D;={ul|u—a| <5, ueM}cD,
(i) || F'(u)—T| £ ‘Z’ on D,

(iv) wpr/(l—x)<9,
where r(=0) and u(>0) are the numbers such that
IF@ Il =r,
1T =p.
Then the Newton iterative process
u,,1=u,—T'Fu, (p=0,1,2,.), uy=i

yields a fundamental sequence {u,} (p=0, 1, 2,...) in D; and we have

”up—l_“”cé lﬁrK (P‘_‘Osl, 25--')'

If the above fundamental sequence {u,} (p=0, 1, 2,...) converges in M, namely,
there is an we M such that

lu,—ul,—0 as p— oo,
then @ is an unique solution of (2.3) in Ds and we have

ur
l—x"

1A

e —all

We have also the following theorem.

Theorem 2 (Urabe [5]).
If the matrix G=L[¥(t)] is non-singular, namely,

(2.4) det G=det L[¥(£)] #0,

then the operator T defined by (2.2) has a linear inverse operator T™', and for
T~ we have

2.5 IT=H smax(|H,ll, 1H],).
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Here H, is the linear operator mapping C[I] into M =C'[I] < C[I] such that

@6 Hg=v0| Yeg6ds- YO LI\ O]
-1 -1
and H, is the linear operator mapping R"*! into M such that

2.7 H,o=¥(1)Gv.

When an approximate solution @&(f) of the boundary value problem (1.10)
has been obtained, it is necessary to find an error bound on @(t). For this purpose,
we take A(f) and L respectively such that

2.8) A=V (a(),
2.9) L=f@(1).

Then we have the following theorem.

Theorem 3.
Assume that the boundary value problem (1.10) possesses an approximate
solution w=ii(t) in S such that the matrix

(2.10) G=f"(@) [¥(1)]

is non-singular, where ¥(t) is the fundamental matrix of the following linear system
satisfying the initial condition W(—1)=E (E is the unit matrix):

dz

(2.11) o

=V,@@@))=s.

Let u and r be the positive numbers such that

@.12) p=max (|H 1 1Hal)Z 1711,
(2.13) 2|4 _y@)| +If@.

If there exist a positive number 6 and a non-negative number k<1 such that

(2.14) (i) Diy={u|l|lu—a|.L£6,ucC[I]}<=S",

(2.15) (i) V@) =V,@)|.+|f @ —f @] é% on Dj,
ur

2.16) (i) <9,

then the boundary value problem (1.10) has one and only one solution u=wu(t) in
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(2.17) Ds;={ul||lu—ua|.<5, ue M},

and for this exact solution u(t) we have

T 4
(2.18) la—al < 2.

ProOOF. Let us put
(2.19) F)=| % —v), fw |,

then F(u) maps S<M into N and the boundary value problem (1.10) is rewritten to
the equation

(2.20) F(u)=0.

The Fréchet derivative F'(u) of F(u) at u can be written as follows:

(2.21) F'@h=| -4 V. @h, f@h |,

where h is an arbitrary element belonging to M. Then, by (2.2), (2.8), (2.9), (2.15)
and (2.21) we have

(2.22) I F'(u)—T|| < % on Dy Dj.

For the approximate solution @(f) € S we have from (2.13) that

(223) IF@ =% —v@|.+ | f@l <.
From (2.14) and (2.17), we have
D;< Dj
and
DscS'.
Hence we have
(2.24) DscS'nM=S.

By Theorem 2, the operator T has a linear inverse operator T~! satisfying (2.12).
The facts tell us that the Newton iterative process

(2.25) u,,=u,—T 'F(u,), u,=a (p=0, 1, 2,...)

is well-defined in D; and we have a fundamental sequence {u,} in D;= M < C[I] with
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respect to the norm |---|,.
By the completeness of the space C[I], there exists a vector-function @(t) € C[I]
such that

lu,—all,— 0 as p-— oo.

Since u, € D;, it is evident that

and ue D;<S'.
Hence we have

V(a)— A(Hue C[I]
and La—f(u) e R*"!. However, by (2.2), (2.19) and (2.25) we have
Tu,,,=Tu,—F(u,)
= [V (u,)— (s, Lne,— flar,)]
and hence
(2.26) u,, =T [V(u,)— A(Du,, Lu,—f(u,)] (p=0,1,2,...).
Letting p— oo in (2.26), we have
(2.27) u=T"[V(a)—-A(Hu, La—f(w)].

Since T~! is a linear operator mapping N=C[I] x R"*! into M =C![I], the relation
(2.27) shows that e M.

Hence, by Theorem 1 we see that w=u is a unique solution of (2.20) in D; and we
have

This completes the proof.

In the numerical computation, a desired periodic solution of (1.1) is usually
assumed to be “‘isolated”. For autonomous systems, the isolatedness means that
characteristic multipliers of the first variation equation are all different from one
except one characteristic multiplier. The reason why the “‘isolated” is employed is
that there is no other periodic solution near the periodic solution in question, if the
above condition is fulfilled.

On the other hand, the isolatedness of a solution w(f) of the boundary value
problem (1.10) means that

(2.28) det £/(it) [O(1)] #0,
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where O(t) is an arbitrary fundamental matrix of the linear homogeneous system

ds _ N
(2.29) g = V.(@)s.

(Urabe [5]).
The additional linear functional I(x) given in (1.6) is closely related to the
isolatedness of solution.

Theorem 4.
The isolatedness of a periodic solution x(t) of (1.3) is equivalent to the one of
a corresponding solution u(t) of the boundary value problem (1.9) if and only if

(2.30) I[X(x)]#0,
where u(t)=col [x(t), &(?)].
ProOF. Let
b4
(2.31) o@)= ( ® p(t)> ,
q*(0) 5@

where Y(f) is an n x n matrix, p(t) and q(t) are n-dimensional column vectors, s(t)
is a scalar function and ¢*(¢) is the transpose of g(t).
The first variation equation of (1.4) clearly reads as follows:

w A 1 .

_d_z_ _ TXx(x) 7X(x) .

dt ’
0 0

Replacing z by O(t), we have the differential equations in ¥, p, g and s. Making use
of the initial conditions

(2.32) W(~1)=E, p(-1)=q(-D=0, s(-D=1,

we see that
(1) Y(1) is the fundamental matrix of the equation

d w .
=5 X (x)y

(2.33) -

satisfying the initial condition ¥(—1)=E and then we obtain
(2.34) W)=, <%t>

where ¥ () is the fundamental matrix of the equation
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dy _ «
(2.35) —ir =X, (®)y

satisfying the initial condition 'I’o<— %>=E,

(ii) p(1), q(r) and s(t) are obtained as follows:

t

(2.36) pO=3 %0\ PHOXHONE,
(i) q(*)=0and s(r)=1.

Now let us note that

d A _ A w N
L X[E(0] =X, [#(0]-5- X[5()] ,
that is, X[x(7)] is a 2-periodic solution of (2.33). Hence we have
(2.37) X[x(t)]=P(H)e
for some constant vector ¢#0. Equation (2.37) implies
Y-1(HX[x()]=c.

Hence, from (2.37) we have
(2.38) PO=2(t+DX[EO].
Hence we have

(W(t) —(%QX[sea)])
O = .

(2.39)
0 1
From (2.37), it is clear that
(2.40) Y()c=c.
By (1.8), we then have
E-%(1) )
(2.41) S@[e@]= ( 3 —é«l[(t+1)X(£:)] )

19

Let us set ¢, =c/|le| and Q be an orthogonal matrix whose the first column

vector is ¢;.
Consider the matrix
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o0
K= ,
0 1
then K is also an orthogonal matrix. Write Q as

0=[ey, 041,

where Q, is an nx (n—1) matrix whose column vectors are unit vectors and more-
over they are mutually orthogonal. By (2.41), we then have

O*[E-¥(D]Q  —Q% >

(2.42) K*f (@)[O@)]K=
4 < w10 LILE+DXE)]

However

(2.43) o*¥(1)Q >'f’(1)[01, 0]

Il
1Q (]
k3 -3k

&)
—-%

C
< >[‘P(1)ch Y(1)Q,]

>[01, Y(1)Q,]

=%

0
(1 ml)Ql)
Lo orrng, )

Hence the eigenvalues of ¥(1) are 1 and those of QFf ¥(1)Q;.
Now

0 —ch’(I)Q1>
0 E-Q7¥(1)0,

cf lell
Q*C=< cl-||6|l=< -
of 0

By the linearity of I(x), we have

I[Y10=I[¥][e, 1]
=[I[¥e,], I[¥Q,]]

=] oK, ive |.

Q*[E-¥(1)]0= (

and
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Hence we have

0 —c§ ¥(1)Q, —lel

K*f'(@) [6(0]K = 0 E-Q % ¥ ()0 0
W-;.I;WI[X(&)] I[¥0,] %l[(t+l)X(§;)]
This tells us that
det f'() (@] =det [K*f'() [(O]K]
= I[X(®)]-det [E-QF¥(1)Q,].

As is seen from (2.43), the isolatedness of a periodic solution x(#) of (1.3) is
equivalent to det [E—QF¥(1)Q,]1+#0.

On the other hand, by (2.28) the isolatedness of a solution of the boundary value
problem (1.9) is detf'(iz) [@]#0. Hence, the both of conditions are equivalent
mutually if and only if /[[X(x)]#0. This completes the proof.

ReMARK. Theorem 4 is given by M. Urabe [9] without proof.

§3. Application to van der Pol equation

In the previous paper [3], M. Urabe, H. Yanagiwara and the author have
computed the w(4)-periodic solutions of van der Pol equation

d*x 5.1 2\ dx .
(3.1 72 Al x)dr +x=0,

where w(4) (>0) is the period of the desired periodic solution of (3.1). In the paper
[3], we rewrote equation (3.1) in the following first order system

dx _
dv 7>
(3.2)

%JT)—- =—x+A1—x2)y
and used the predictor-corrector method for computing the periodic solution of
(3.2). But, we gave no error bound for the numerical results obtained. Hence,
we could guarantee no significant figures of the numerical results.

The present paper will present a practical method for computing a Chebyshev-
series-approximation to the periodic solution of van der Pol equation (3.1) and give
an error bound on the Chebyshev-series-approximation obtained.

Now, by the transformation 7=wt/2 equation (3.1) is rewritten in the following
form
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X _ 1 _x2) @ dx gy _
(3.3) M1 —x?) 5 +(2 x=0

and the problem is reduced to the one of finding a 2-periodic solution of the boundary
value problem:

(3.4) D= (L) x+-Zaa-xy,

x(—1)—x(1)=0,
3.5) [

y(—=1)—y(1)=0.

As is shown in the first section, the boundary value problem (3.4)-(3.5) is clearly
incomplete. Hence, we consider an additional condition of the form

(3.6) tw=2{ FO Twa=p,

where u=col [x(1), y(t), o(t)] and T,(t) is a Chesbyshev polynomial of degree #
such that T ,(cos 8)=cos 7.

In order to get a Chebychev-series-approximation to the boundary value problem
(3.4)-(3.6), let us consider a finite Chebyshev-series

(3.7) w, (1) = pifo epat, To(1)

with undetermined coefficients a,, «,,..., a,, where

0 for p<0,
1

(3.8) &=\ 5 for p=0,
1 for p>0.

By the formula in Fourier analysis, we see that coeflicients a, (p=0, 1, 2,...)
can be evaluated by the formula

z

u,(cos 6;) cos pb; (p=0,1,2,..),

3.9 a,=
i=1

2‘ ™)

where N is a non-small positive integer greater than p and
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2i—1

bi==5n

r  (i=1,2,.,N).

In our cases we have chosen N always so that N =64.
The boundary value problem (3.4)-(3.6) can be written briefly as

G0 o X,
(3.11) ) =0.
Here,
y
(3.12) X(u) = _<%>2x+%m_xz)y ,
0
x(—=1)—x(1) L /0
G313 fay= D7D o
k%gil\/—l’gz—nmm B

—Lau(—1)—Lu(l) +ng

1

-1
where L, and L, are matrices such that

1 00 [0 0 0\

L,=/0 1 0, L2=‘OOO

000 100

and B=col[0, 0, f].
The Fréchet derivative f’(u) of f(u) at u reads

(3.14) f’(u)[h]=LZSil%\/?(_t)t2 To(@)dt+ Ly[h(—1)—h(1)] .
Let
du,(t) _ "

= p;o gyoay, Ty(t),

then we have

23
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(3.15) a,=afa)=3 &_,v,_,-s-@, (p=0,1,2,.,m—1),

where

a=collay, ai,..., a,]
and
(3.16) v;=1—(=1).

For the equations (3.10), (3.11) and the finite Chebyshev-series (3.7), we consider
the following determining equations

(3.17) Wnld) P X (1)),

(3.18) [, ()=0,

where P,,_, is an operator which expresses the truncation of the Chebyshev series
of the operand discarding the terms of the order higher than m—1. Then the
equations (3.17) and (3.18) are equivalent to the equations

{ F(a)= ES"X[um(cos 0)] cos pbdd—a,(@) =0 (p=0, 1,... m~1),
(3.19) T Jo

F (@) =f(, () =0.

Put

(3.20) F(a)=col [Fy(a), F\(a),..., F,(@)],

then the determining equation (3.19) can be written briefly as
(3.21) F(a)=0.

Since the function X(u) is nonlinear in u, F(a) is also a nonlinear equation in a.
Hence, for numerical solution of the nonlinear equation (3.21) the Newton method
will be used.

Starting from a certain approximate solution a&=a,, we compute the sequence
{a,} successively by the iterative process

J(a,h,+F(a,) =0,
(3.22)
ap+1=ap+hp (p=0> ]72,"‘),

where J(a) is the Jacobian matrix of F(a) with respect to @. In order to practice
the iterative process (3.22) on a computer, it suffices to evaluate F(a) and J(a) for
known a.
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Given a suitable small positive number 4 and a positive integer : (maximum
number of iterations), if the convergence criterion

| — e <4

holds for some p=: and for all k (0<k<m), then we regard that the sequence {a,}
has converged and stop the iterative computation (3.22), where a,=col [a!?,
alV,..., ai]. In our example, we shall set 4=1071° and =20, respectively.

Let J;j(a) (01, j<m) be the following 3 x 3 matrices:

(323  Ji(@)= %Squ[um(cos 8)] cosiOcosj0d0—¢; ;-v;_;-j-Es

and

(3.24) Imf(@)=f"(w,) [e;T(NEs] (0= j<m),
then we have

(3.25) J(@)=((a)),

where E; is the unit matrix such that

1 0 O
E3= 0 1 0
0 0 1

The starting value @, =ao(/=1) necessary for the Newton method for small A=
can be obtained by the Chebyshev expansion of

x{t) =2cos %t,
(3.26) Y= —wsin L,

L

w=27,

which is a periodic solution of the equations (3.4) and (3.5) with sufficiently small
J. (See [6]).
For not small 4, tracing the curve

F (a, 1)=0 (p=0,1, 2,..., m)

through the point @y(1), we can obtain the starting value a, for not small 1. (See

[8D).
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Table

Chebyshev-series-approximation

40 40 40
X= Z EnanTn(t): x= Z enbnTn(t)5 0= Z enchn(t)
n=0 n=0 n=0

2 2
to ‘;t;‘ —0.01 (1—x2)%%§+ (_‘%) x=0.
n a, b, Cn
0 —0.31321 50376 12953 —3.69992 70699 17898 12.56644 91539 70990
1 1.10057 49015 49166 —0.91649 59756 09040 0.0
2 —0.50000 00000 00000 ~5.90107 68730 16231 0.0
3 —1.8841 62680 65687 1.08350 40243 90959 0.0
4 0.15717 29832 02010 1.82042 07353 77892 0.0
5 0.20098 89889 80537 —0.17387 98412 25113 0.0
6 —0.01459 36964 26223 —0.18046 91544 27488 0.0
7 —0.01426 14793 94856 0.00124 45158 89560 0.0
8 —0.00041 84671 20066 0.01919 15571 00496 0.0
9 0.00137 42894 17900 0.00793 99898 10619 0.0
10 0.00053 81299 15730 —0.00554 56524 21709 0.0
11 —0.00031 27228 72987 —0.00282 26085 03982 0.0
12 —0.00014 26724 37307 0.00133 42507 83998 0.0
13 0.00005 91335 36510 0.00060 15299 91390 0.0
14 0.00002 54248 93182 -0.00020 32211 65269 0.0
15 —0.00000 73609 70422 —0.00011 03670 17692 0.0
16 —0.00000 41672 02188 0.00001 76079 47381 0.0
17 0.00000 05067 60232 0.00002 29834 52312 0.0
18 0.00000 07806 53341 0.00000 03780 99495 0.0
19 0.00000 00247 73548 ~0.00000 51200 67952 0.0
20 —0.00000 01534 60277 —0.00000 05632 95308 0.0
201 —0.00000 00177 02283 0.00000 10183 43109 0.0
2 0.00000 00270 48869 0.00000 01802 00561 0.0
23 0.00000 00050 01463 —0.00000 01718 07146 0.0
24 —0.00000 00041 08327 —0.00000 00498 66715 0.0
25 —0.00000 00012 53744 0.00000 00253 92565 0.0
26 0.00000 00005 53622 0.00000 00128 20474 0.0
27 0.00000 00002 92379 ~0.00000 00033 95801 0.0
28 —0.00000 00000 67373 —0.00000 00029 67998 0.0
20 —0.00000 00000 61786 0.00000 00003 77066 0.0
30 0.00000 00000 06525 0.00000 00006 15568 0.0
31 0.00000 00000 11818 ~0.00000 00000 14459 0.0
32 —0.00000 00000 00075 ~.0.00000 00001 17136 0.0
33 —0.00000 00000 02093 ~0.00000 00000 09665 0.0
34 —0.00000 00000 00205 0.00000 00000 21024 0.0
35 0.00000 00000 00351 0.00000 00000 04245 0.0
36 0.00000 00000 00076 —0.00000 00000 03584 0.0
37 —0.00000 00000 00056 ~-0.00000 00000 01211 0.0
38 —0.00000 00000 00019 0.00000 00000 00566 0.0
39 0.00000 00000 00007 0.00000 00000 00235 0.0
40 0.00000 00000 00003 —0.00000 00000 00070 0.0
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Taking account of the Chebyshev expansion of (3.26) and (2.30), we shall set
fi=2 and f=—0.51in (3.13). Numerical result is shown in Table. The computa-
tions in the present paper have been carried out by the use of FACOM 230 at Toku-
shima University.

After having found an approximate solution u,,(f), it is necessary to verify the ex-
istence of the exact periodic solution 7i(f) and to give a posteriori error estimation
for u,(t). For this purpose we begin with checking the conditions in Theorem 3.

In the present case, from (3.14) and (3.12) we have

(3.27) If' ) —f' @) =0
and
0 1 0 \
X, (x,y, w)= —lxya)—%za %l(l—x‘*) %i(l—ﬁ)y—f;x ,
0 0 0

respectively. Therefore, for a Chebyshev-series-approximation iz =u,(t) we have
2
G2 1%, 5, @) =X, % 5, )| ={ (TF-xy0)+ | @+0)F-0) |

+(5) T =3o— =531+ {20 -3y — (1~ 7251

2)3

+(m—xw)} } .

Then, if we assume that
1
(3.29) [(x=X)+(y— )+ (0—d)*]2 =0,
then using
x=(x—=X)+%, y=(—p+y, o=(0-0)+a,

we have

- 1, — 2
(3.30) [/l(xyw—xyco) + L (@+0) (co—co)]

{27182 +18126 42| 715+ 1219 +[62+ 6151+ | 71)
15115173
+ZUBIFI+131 G+ + G+ ) G+15D} (+213)

g 2 +41316+413 |90,
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(3.31) <%)2[(1—x2)w—(1—>?2)63]2

< AL LA+8 20515415 (D2 + | @] 2(5+2] 51)716°
and
(332) G ULA-x)y-(1-F)F]+ (E5-x0)}?

< 4 PLE+2URDE+ TN + (1 +151)7]
+22[E+21FDE+ D+ +IRDTUF] +6+ [ B)])
+LIE1%+ 6+ B1)2}0%.

However, for A=0.01, m=40 we have from Table that
RIS 3 &la,|<3.43550,
p=0

3.33 ) m
(3.33) 17D < p;o g,lb,| <11.97386,

|oo(f)] < 6.28323.
Thus from (3.28), (3.30), (3.31), (3.32) and (3.33), we have
3.34) | X(x, y, o)—X (X, ¥, @) £[0.000156%+0.014367753+0.678332452
+6.74771265+36.9841858]%.
On the other hand, from (2.4), (2.9) and (3.14), we have

335  G=f@[YO]=L, [E—!I’(I)]+L281 2 ¥

S T (H)dt
i Tad

and from (2.6), if det G#0, we have

H = S;Hl(t, $)(s)ds ,

where

‘P(t){E~G—1|:__L1‘I’(1)+L2g:i\/q_;(é)é_z Tﬁ(f)ds]}up—l(s)
G s<1),
H(t,s)=

~v06 ~1y O+ L) 2 GO T )

(if s=1)
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or
PG| L,+L," %\/‘P(é)é Ty(OdE [P (s)
H(t 5)= (if —1=ss<t=1),
(3.36) T(t){G“l[Ll—I-L Ssl 72r\/qll(é) T,,(é)dé] } ~1(s)
(f —1<1<5<1).

Hence, we may set
(3.37) p=max (IH,]. sup | ¥()G]).
Let

din(t) iy O
g X@()) = p§=0 e,c,T,(2),
then inequality (2.13) is valid if

(3.38) [ (S ol +If@I </

with m’=m+10, where c% are components of vectors ¢,. For computation of ¢,
€y,..., ¢, We have used the formulas (3.9) and (3.15).
Now, we readily see that the conditions (2.14), (2.15) and (2.16) are fulfilled if

i

06[0.000156*+-0.014367756% +0.678332452 + 6.74771265 + 36.9841858]2 < . Z
(3.39)

W -
1—x £0.

In (3.35) and (3.36), ¥(¢) is given in Chebyshev series by solving the linear system

dsz

2 —X, @)

satisfying the initial condition ¥(—1)=E.

Let H;\(t, s) and M, () denote the elements of the matrices H(t, s) and ¥Y(1)G™1,
respectively.
Then we have

nHlncgtz-mpaxg > Hi(t $)ds]?

and
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1
|P(H)G™ || £ [max Z M%j(tp)]i (p=0, 2, 4,..., 128).
p ”J

By (3.37), a number slightly greater than the quantity

max ([2- max SI S H2(t,, )ds]2, [max ¥ M %(1)]?)
p -1 1i,j p i,J

may be taken for the number u, where the above integral may be evaluated by
Simpson’s rule with mesh-size 1/64 and ¢,= — 1+ p/64.
By the above way, we obtain

detG=0.189x 1072, r=0.638x107'* and u=0.101x10%.

Therefore, (3.39) can be written as

(3.40) 5[0.000155% +0.014367763 +0.678332452 + 674771265
36984185872 < K ___
+ 6. 12 =5 10rx10%"
6.45 x 10-°
<
(3.41) X107 <5

Since we expect k<« 1, from (3.41) we suppose
(3.42) 051078,
Then (3.40) is valid if

1
84 .2 K
0[36.98418584+6.7477126 x 1078 4 ---] = 0101 x10%

This inequality is valid if

1 K
2
0[36.9841859]2 < 010X 10%°

that is,

K

vee <
6.08146-+ X § < 5or'=To7

This inequality is also valid if

< K
6.082x3= 5101 x 10%
that is,
< K = .
(3.43) 0= 6082% 0.0 X 10% = 6.142x 105 °
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Then from (3.41) and (3.43) we have

6.45%x107° K
<o
(3.44) -k =6=6.142x103 ’

which implies

6.45x6.142x 107 <k(1—k),
that is,

396159 x 1073 <k(1 —Kk)<k.

Hence we suppose
(3.45) k=4 x 1075,

Then for this value of x, we have

% —6.450258--- x 1079,
(3.46)

.———_K———= P -9

T o = 651253+ x 1072

Thus taking into account (3.42), by (3.44), (3.45) and (3.46), we see that (3.39) is valid
for k and ¢ such that

(3.47) k=4x10"%, 6.46x107°<5=<6.51x107°,

in other words, the conditions of Theorem 3 are fulfilled by é and « specified in (3.47).
In conclusion, we thus see that the boundary value problem (3.10)-(3.11)
possesses a unique exact solution u=uwu(t) in the region

([x— 2O+ [y — 5O+ [0 — B(H]2)? £6.51 % 109
and moreover
([2(0)— K(O12 + [5(0) — FOT2 +[6— B]?} < =6.46x 107 .

The quantity n=6.46 x 10~° gives an error bound to the Chebyshev-series-approxi-
mation w= "(t) given in Table. Hence, for 1=0.01 we obtain @ =6.2832246 which
approximates the exact period & to eight significant figures.
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