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§ 1. Introduction

The set &y (X)= Ey(X, m) of all (based) homotopy classes of homotopy
equivalent H-maps of an H-space X=(X, m) to itself forms a subgroups of
&(X), which consists of all homotopy classes of homotopy equivalences of X
to itself.

The purpose of this note is to study the group é”H(X) for some H-space
X. One of our main results is stated as follows:

THEOREM 3.8. Let X=X X X;X----- x X, be the product H-complex of homo-
topy associative H-complexes X;. Then the group &y(X) is isomorphic to the
Jollowing group of matrices:

Hay) | ajel X;, X1, (ay;) is tnvertible,
Qb+ ayip;= appi+agp; o [ X, Xl

where [ X 7 Xy is the subset of the homotopy set [ X j’ X,] consisting of H-maps
and p;: X—— X is the projection.

This theorem is proved in §3. Also we study in Theorem 3.11 the condi-
tion that & (XX X,) is equal to the product group Ey( X)) x Ey(Xy).

In §§4—5, we consider the H-complexes S”, SI%S" (=3 or 7) and S°
x ST and obtain

THEOREMS 4.1, 4.3 and 5.2. Let n=3 or 7. Then
Ey(S™) = E(SPxST) =1, Ey(StxS")=2,,

Jfor any multiplication on each H-complex.

Furthermore, we study the sets M( X) of H-equivalence classes of multi-
plications on these H-complexes X (Theorems 4.1,4.4 and 5.3).
Finally in §6, we compute the group é”H(X, m) of a product X of two
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Eilenberg-MacLane complexes for any multiplication m on X (Theorem6.3).
As an example, we see that there are two homotopy associative multipli-
cations m and n on X=K(Z,, 6)<XK(Z,2) such that éDH(X, m) and éaH(X, n)
are finite groups with different orders (Example 6.5). This gives a counter
example to the assertion of M. Arkowitz and C.R. Curjel [1, p. 147].
I am grateful to Professor M.Sugawara and Doctor S.Oka for many
helpful discussions and for their kind encouragement.

§2. The group &y(X, m) and the set M(X)

In this note, spaces, (continuous )maps and homotopies are always assumed
to be based.

A topological space X is called an H-space, if there is a map m: XX X
—— X, called a multiplication, such that m | XX * =1 =m|* XX in the homo-
topy set [ X, X]. Let M(X) be the subset of the homotopy set [ XX X, X] con-
sisting of homotopy classes of multiplications on an H-space X, and Let &(X)
be the group of homotopy classes of self(homotopy )equivalences %: X——X.
Then, we can define the action

(2.1) X=Xx:MX)X 6 X)—— M(X)

by xx(m,h)=hm(h 'xh™1) for (m,h) e M(X)x E(X), where h ! is a
homotopy inverse of 4 This action is considered by C.R.Curjel [2]. Under this
action we can consider the group &(X) as a transformation group of M(X),
that is

(2.2)  x(m, 1)=m, y(m,g)=x(x(mg),f), for meM(X), fged(X).
By the definition of y we have immediately the following

PROPOSITION 2.3. If meM(X) is homotopy associative( or homotopy com-
mulative), then so is y(m, f) for any f € §( X).

Let J;: M(X)XM(Y)—>M(XxY) and J,: &X)x (Y)—— E(XXY) be
the natural inclusions. Then we have

PROPOSITION 2.4. ¥ x y(; X)) =J;(xx X x y) (1X TX1),
where T: M(X)X 6(Y)—— E(Y)XM(X) is the twisted map.

For H-spaces X=(X, m) and Y=(Y, n), a map /:X—— Y /s called an H-
map if fm=n(/xf)in [Xx X, Y], and the set of homotopy classes of H-maps
J:X—— Yis denote by [(X, m), (Y, n)] or simply [X, Y] ;.

For an H-space X=(X, m), let &y( X, m) be the subgroup of &(X) consi-
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sting of all homotopy equivalent H-maps f: (X, m)— (X, m). Then we have

PROPOSITION 2.5. &y (X, m) is the isotropy subgroup of m under the action
Y MX)x E(X)—— M(X) of (2.1).

An H-space X is called an H-complex if X is a CW-complex. By [8, Th.
2.3] we have

LEMMA 2.6. Let X=(X, m;) be an H-complex, then any multiplication me
M(X) can be written uniquely as

m=amr+ my e XXX, X] jor ae[XNX, X],
wherve m: XX X—— XA X is the collapsing map and + 1is the usual sum induced
by my,
By Proposition 2.5 and the above lemma, we have

PROPOSITION 2.7. If X is an H-complex such that [ XA X, X]=0, then we
have (X, m)= 6(X).

Let m and 7 be multiplications on an H-space X. Then m is called H-
equivalent to # if there exists a homotopy equivalent H-map f: (X, m)— (X,
n). Let M( X) be the quotient set of M(X) by this equivalence relation. Let
M(X)/ (X) be the set of orbits under the action y of (2.1). Then we have

(2.8) M(X)=M(X)/ EX).

PROPOSITION 2.9. A{fﬁ{ 6(X)/ (X, m)} s equal to N( <) for any me
M(X), then we have # M(X)=4 M(X)/N, where #A is the number of the ele-

ments of a set A.

PROOF. The number of the elements contained in the orbit of z(under
the action y) is equal to #{ 6(X)/ ébH(X, m)}=N. Therefore, by (2.8) we
have the desired result. g.e.d.

§3. The group (XX xX,)

Let X,=(X,,m;) (1=1,- ,7) be homotopy associative H-complexes,
and consider the product H-complex

whose multiplication me= 2> -+ X m,, is the one induced by m; In this sec-
tion, we consider the group &y(X)= (X, m).
Denote by
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M(n, Ay), Ay=[X, X],

the set of all (=, n) matrices (az-j), where az e N The multiplication of
matrices is defined, as usually, by

(3.1) (@) (by) = (azbyjt -t a;,b,;)

where + is the sum in the homotopy set [ X 2 X,] induced by m;.
Now, consider the maps

¢
<3.2> [X, X:J Z__gé———’MM/l,Ai]‘),
which are defined as follows:
¢(f):<f2])) fl]:pzﬁ]; for fGEX, X])
¢ (al.].>:(a11p1_{_ ...... +a1npnr ...... ’an1p1+ ...... +a7mpn>’ for (az.].)eM( n’Az']')

where z']-: X]-—>X 1s the inclusion and b X— Xj is the projection.
Then, we have the following lemmas.

LEMMA 3.3. (i) ¢ =1id.
(ii) ¢p=1d on [X, X]

PROOF. We can prove the lemma by the induction on 7, and so we prove
the lemma for n=2
It is clear that the cofibering

X VX, T X T X AX, (X=X, xX,)
induces the exact sequence

0——[ X, A X,, X]—0[ X, X]#[Xl\/XZ,X]—w,

where [ XV X, X]=M(2 A i), 7" =¢ and j*¢ =id. Futhermore, any element
fe[ X, X] can be written as

J=¢ ¢(f)+ar for some ae[ X;AX,, X].
If fe[X, X]py, then f= m(fxf)(ilxiz) by definition, and so we have
f=mfiyXfiy) = ¢ ¢ (f),
which shows (ii). g.e.d
LEMMA 3.4. ¢ of (3.2) s homomorphic on [ X, X1y

PROOF. It is clear that DJgi;=pifiypr 8T+ +pl~fz'npngz'j if f, ge[ X, X] g,
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which shows the lemma. g.e. d.
Consider the subset GL( n,AZ»]-) of M(n, A z‘j) consisting of all matrices (az-]-)
which have right and left inverses, and the subset

(3.5) HL(%,AZ]>:{(CZZ])€ GL(%,AZ]> ‘ ai]-e[X]-, Xi]H, d/eipi+ak]'pj:dkjpj‘f‘
app; m [ X, X,]1
LEMMA 3.6. é( é“H(X))cHL(n,AZj).

PROOF. It is clear ¢( @”H(X))CGL(n,AZ-]-) by Lemma 3.4.
Assume fe[ X, X] ;. Then it is clear Ti=bf el X » X ;1 Furthermore,

Tirbrt Tiby =0 Cipbp+igpy) = 0 g+ iy ) =Fiyby+Finbp-
Therefore we have the lemma. g.e.d.

LEMMA 3.7. ¢(HL(n, A ;) CLX, X] and ¢ is homomorphic on HL(n,

Ag).

PROOF. For the simplicity, we prove the lemma for the case n=2. Let
(al-]-)€HL(n, AZ-j), and let g;: XX X—— X be the projection onto the i-th factor.
Then we see easily

(@y1019) + @ 15054y, a9 P1d) T Ggobody )+ (ay1 010y + @9Dody, Aoy D1y GonPyds )
=( allpl(q1+q2> +a12p2<q1 +(Z2)y a21p1<ql +512) +422ﬁ2<q1 t4, )

by the condition that (aij-) € HL(2, AZ-]-). The above equality shows immediately
m¢a;)X ¢(a;))=¢(a;m  The equality ¢ ((a;)¢(b;)=¢ ((a;) (b)) can
be proved by the similar calculations.

By the above lemmas, we have the following g.e.d.

THEOREM 3.8. The group Ey(X) of the product H- complex X= XX enees X
X, of the homotopy associative H- complexes X; is isomorphic to the group HL(n, A Z-]-)
of (3.5) by the homomorphisms in (3.2).

REMARK 3.9. Similarly we can consider the above discussions for the case
that X; is not homotopy associative, by defining a;ta,+-eeee +an:(((a1+a2)
e )+a,) in [ Y, X;], and Lemmas 3.3,3.4 and 3.6 also hold for this case.

By applying this theorem to X=5°%S% or S”xS” we have

EXAMPLE 3.10. For the H-complex Sz( (=3 or7) with the usual multiplication,

G(S'xsh=1(g) €G6L22), ama=115, p=c=172 ()

2 2
wherve e=ad—bc (==%1) and ky=24, k,=240.
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RROOF. Let #:S°—— S be the map of degree n, then by M. Arkowitz
and C.R.Curjel[1, Prop. D] we have
nelS® S*1y if and only if n(n—1)=0 @i.
Also, we have easily
n+m=m+n in [S°xS® S*] if and only if nm=0 (2.
By these facts, we have <‘CZ g) ¢ HL(2, Z) if and only if
ad— bc=¢, ad=cd=0 (12 and n(n—1)=0 @) for n=a, b, ¢, d.

By the easy calculation we see that this condition is equivalent to

1+¢ 1—¢
2 2

ad—bc=¢, a=d= @4) and b=c= @24).

Therefore we have the result for S%.

By the same way, we see that HL(2, Al-j)is given by the left hand side of
the example for #=2 and X;= XZ—S7. Since S7 is not homotopy associative,
we have to prove Theorem 3.8 for n=2 and X,=X, —=S7 more carefully The
obstructions for f+{(g+(h+k))=f+((g+h)+k)= <f+(g+h)> =((f+g)+h)+

k= (frg)+(h+k) in [S'xS"xS"xS" S (f g h ke 7[7(57» are contained
in 7, (ST) or mye(ST).  Since wy)(ST)=Zy+2Z, and xug(S)=Zz+Z, by
[13,p, 187 and 5, p.325], the above obstructions vanish if the degrees of two
of f, g, h, k vanish mod 24. Therefore we see by the same proof that Le-
mma 3.7 holds for our case. qg.e.d.

Now, we consider the condition that &p(X;XX,)= Eg( X)X Ey(X,).

An H-map f: X;— X, is called central if /p,+p,=p,+/p; In [ XXX, X,
We denote by[ X, X, ]y the subset of [ X, X, ]y consisting of central H-maps
of X, to X,, which is an abelian subgroup of [X;, X,] if X, is homotopy
associative (cf.[1]).

THEOREM 3.11. Let X;=(X;, m;) be an H-complex for i=1,2. If [ X}, X,]
=X, X|Jeg=0 or [ X, X,] cpy= [XZ,X]H 0, then we have

gH<X1><X2): 6)@[{<X1>>< gH<X2)
Conversely, if X, and X, are homotopy associative and the above equality
holds, then we have [ X|, X,] cy=1[ Xy, X{] cpr=0.
PROOF. Assume [X;, X,] =0, and take % € 8 (X, xX,). Then ¢(h)=

(35) € HL(2 A ) by Remark 3.9 and Lemma 3.6. Therefore ¢(k) has the

left inverse, and so there is & e[ X, X;] such that ¢ ¢=1 in [ X, X;]. Since
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ae[ Xy, X;]py, we have also a e[ X, Xl]H. Hence the condition ap1~|—bp2:bp2
+ap, implies py+dbp, = a‘bp2~|—p1, which shows a’be[XZ, Xl]CH. Therefore
b=0 if [X,, X;]oy=0, and we have the first half of the theorem.

Conversely, if fe[ X,, X|] g is not zero, then it is easy to see that

¢ ((1) ]1(> e bp( X, xX,), and € 6y(X))x Ey(X,). q.e.d.

EXAMPLE 3.12. Sy(XXY)= (X)X Ey(Y) holds for the following cases:

(i) X is a simply connected H-complex and Y is the product of q-copies of
the group S L

(ii) X s the product of p-copies of the group S®and Yis the product of q-
copies of the H-space S 7,

PROOF. (i) is obtained immediately by Theorem 3.11. The case (ii) is
proved immediately by Theorem 3.11 and the following lemma.
%)

/9

LEMMA 3.13. (F.Sigrist[12, Th. ]) Let & be the nonzero element of 7,(S
then €: (57, Wl>—>(53, n) s not an H-wmap for any multiplications m and n.

§ 4. The groups é”H(Sn) and @@H(SIXSn) for n=3,7

It is clear that &y(S')=Z, and #M(S)=1.
For the H-space S™(n=3 or 7) we have the following theorem which is

well-known.
THEOREM 4.1. For any multiplication m on S3 or ST, we have
Ey (S m)=1, Ey(S’,m)=1,
and hence
# M(S®) =6, #M(S™)=60.

PROOF. Let ¢, em,(S") (n=3 0r7) be the identity class, then &(S")
=Z, is generated by -¢,. For any multiplication m we have y(m,-¢,)=
mT by the definition (2.1), and mT+ m since S” has not a homotopy com-
mutative multiplication [4,p.176]. Therefore, we have (Q@H(Sn, m)=1 by
Proposition 2.5. Also, since #M(S%):ﬁ 7274(5”) by Lemma 2.6, we have the
desired results by Proposition 2.9 and [13, p. 186]. q.e.d.

From now on, we determine the group éDH(Slen,m)(MZS or7) for any
multiplication m.

Let n ,emn+1 (S™) be the generator, T Stxs" S be the collapsing
map, and pi: Stxs” st and Py ST S" 5 S™ be the projections. Put

n—+1

0,= (=) Xty t,=¢yX(—¢,) and v, = (b, 1, ™1t Ds),
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where + denotes the sum induced by the usual multiplication on S” Then, we
have by [11, Example 4]

(4.2) éD(SlXSn):ZZ+Z2+ZZ, generated by ¢, 7,, v, (n=3 or 7).
Now, our main results of this section are summarized as follows.
THEORFM 4.3. Let n=3 or 7. For any multiplicaton m on Sl xS we have

é”H(SIXSn, m)=Z,, generated by o,

91%.3.5,

THEOREM 4.4. #M(S'xS%) =27.3, 4 M(S'XST).=
we prove the above theorems by showing the following lemmas.
LEMMA 4.5. Let y be the action of (2.1), then

x(m, o, )=m for any m eM(SIXSn>.

PROOF. Let m, and /) be the usual multiplications on St and S respec-
tively. Then, by Lemma 2.6, any multiplication m€M(Sl><S ) can be written as

(4.6) m=(mgy, ar+m}) for some ae[(STxS")A(SIxS"),S"].
This and the definitions of y and o, show that
x(m, o) =((=cy) X0, ) (M, am+my)((—cq) X, X (—eq)Xe,,)
={(mg, am( (= )Xo, X (=) Xy ) tmi=(my, alo, No, )7+ m).
Therefore, it is sufficient to show that
(4.7) alo,No,)=a for ae[(STXS™)A(SIxS™), S"].

Consider the following commutative diagram

0——[STAS"AX, S"2 H[XAX, S (STvS"IAX, S" 0
{((—zl)/\cn)/\a,,]l* o, /\a% {((*41)\/174)/\07,2:*
0———[SIAS" A X, S ]——>[X/\X S"— (St S AX, S"]— 0

where X=S'x 5", and (S S") A X L XA X225(SIAS™AX s the cofibering.
In this diagram, the horizontal sequences are exact [8, Cor.2.2]. Also, we
can define a splitting map 6:[(STVS")AX, S"]——[(S'xS")AX, S"] by
the similar way as in (3.2), and this satisfies

(4.8) 0{(*(1)\/5 )l/\a 1 =10, Noy, 0.

By the fact that 7,(S”)=Z,, 75(S")=Zy+ Zy+ Z, and m, _(S™)=Z,[13, p.186]
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and by using the homotopy equivalence S(S1xS”)=~SS'v SS"VS(SIASH)
([3,11.10]), we see that the left and right vertical homomorphisms in the above
diagram are the identity maps. Therefore, by (4.8) the middle vertical homo-
morphism is also so . This shows (4.7). g.e.d.

LEMMA 4.9. For any méM(Slxsn), we have
(1) x(m, v) #+ m,
(11) x(m,v) # m,

(iil) y(m, vr)E m,

PROOF. (i) Let iy S"——S' xS” be the inclusion. Then by the difinitions
of y and 7z and (4.6) we have

x(m, ©)(iyXiy) = (1 X (=) (my, amtmy) (X (=) X ey X (=) (i X 2)
=( =, myT+(—c,)anliyXiy)) =+, (my+am(iyXiy)) T)
F(*, mb+a7r(i2><i2)):m(ig><i2>,

because the multiplication me+am(i,X17,) on S " is not homotopy commutative.
(ii) Also, let z'l: Sl S'x S be the inclusion, and Py SnXSl——>Sl, P
S"% S5 S" be the projections. Then

2 (m, )iy X i) = (b, g+ Do) (g, @+ M) (DL 7y + Do )X (D1, My Py)} (25X i)
= (py, npmy H o) (D), am(iy X i) + D)
= (P}, n,my (DY, am(iyXiy)+py) +am(iyXip)+p5)
# (P, am(ig X iy )+ py)=mliyX 1)),
because 7,7 (p], am(iyXiy)+py)=n,7F0
(iii) By the definitions of y and v we have
¥ (m, ) (i X i) = (B, 7y +bg) (g, @+ 1) (35X 1))
=(, am(iyXiy)+my)=m{iyXiy).
Therefore, we have
x(m, vir) (i X iy)=x(x(m, ©), v)(i;Xiy) by (2.2)
=y (m, t)(i,X1,) by x(m, v)(iyXiy)=nligXiy)

+m(iyX1y) by (ii). q.e.d.
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PROOF OF THEOREM 4.3. The theorem is obvious by Proposition 2. 5,(4.2)
and Lemmas 4.5—4.9, q.e.d.

PROOF OF THEOREM 4.4. By using Lemma 2.6 and [13,p. 186], we have
(4.10) £ M(S'xS%) =23 #M(S'xST)=21".3.5.
By (4.2) and Theorem 4.3, we have
E(S'XS™)/ (ST S", m)=2Z,+Z, for any multiplication .

Hence the desired results follow from Proposition 2.7 and (4.10). q.e.d.
3 7 ) 7
§5. The group &y (S”x S, m) and the set M(S°xS*).

This section is devoted to compute the group ef’H( S3><S7, m) for any
multiplication » and the set M(SSXS7). The computations are based on pre-
vious result [10] on the group é’(SSXS7>.

Let pq: S‘°’><S7—>S3 and p,: 53><S7—>S7 be the projections, and let 7y S3
><S7—HSIO:SB/\S7 be the collapsing map. The usual multiplication on S?
(resp. S7) is denoted by m(resp. #,). The homotopy group 7r7(53) is isomor-
phic to Z,[13,p. 186] and we denote its generator by &.

Define the elements ¢, 7, v and A(aq, §) €£(SB>< S7) for af€77‘10(53>, /367710(87)
as follows:

ol :(—53)><47, Z':£3><(_l7>y
v :(ﬁ1+§p2r pg), /Ma;ﬂ):(pl"‘aﬁppg“‘ﬂﬂ'l)o

Then, A is a homomrphism contained in the following split exact sequence
[10; Cor.5.8]:

0 —m1(S?) +r10(87) 2o §(S3x STV > 2,4+ 2,4 Z, — 0,

and the subgroup Zo+Zy+Z, of @@(SBXS7) generated by o, r and v is mapped
isomorphically onto the right group. In particular, any element of & (53><57)
can be written uniquely as

& & &
(5.1) AMa, B)v L2203 for e;=0or 1, aer[lo(SS), B€n10(57).
Now, our main results of this section are stated as follows:

THEOREM 5.2. The group 5H<53><57, m) s the unit group for any multi-
plication m on S3xS”.

THEOREM 5.3. #M(S°xS7)=2%2.313.54.7,



On the self-equivalences of H-spaces 27

Before we prove the above theorems, we show several lemmas.

Let 7: S x S"x S x §"——(S¥x STYA(S7%xST) and 7,: 8% S"— 5" A S
— S be the collapsing maps. Then we have

LEMMA 5.4. {m(vXv)(iyXio)|* =1{m{iyXiy)1* as a homomorphism of
[(S*xSTHYA(S%ST), 8% S"] 10 [S"x ST, 3% 5],

PROOF. Consider the following commutative diagram for »=3,7 and X=
STx s’

j*

A1)* .
0 —[S*ASAKX, s”}“ﬂJ»USstUAX, S [(SPVvSHAX, S"—0

i “5/\(7)/\1}* {§><£7/\1}* {§Vl7)/\1}*
AL v *

—i@-—))us’fxs?'mx, "L (STVSTIAX, $7]— 0
Sinse Szfzo by [13, (5.9)], the left vertical homomorphism is trivial and

the right vertical homomorphism is equal to {( = \/17)/\1§*. Therefore, by the

similar way as in Lemma 4.5, we have §(§><47)/\1}* ={( = ><z7)/\1}*. Also

we have {1A(EXc)}* ={1A(x X))} " 1 [(SPXSHA(SPx ST, §7]—[($°xST)

/\(S7>< 57),5"] by the similar way. According to these equalities, we have

[EX DA EX e =1 (X eq) A Xep)}* , and so we have {7(vXv)(i,X 1) |"=

HETIVNES 57))77'2}* = {((*, )N (x, 47)>7Tgf* :{W(ZKZXZ.ZH* g.ed

LEMMA 5.5. Let Semyy(S°) and fe[S'xS', S, then
my(Emy, ) ds trivial in [STx ST, S,

l
0—[S'ASTAX, S

PROOF. This lemma follows from the following commutative diagram

(79, 1) .
2l) | Glay o7 3 52l

STxs?
|
J (¢ ]) J £x1 l S7¢
SPxSsT—— giygT L g0
Where 7 SHxs” 5% isa collapsing map . g.e. d.

LEMMA 5.6. For any multiplication m on S3% S, we have the Jfollowing
relations.

(i) x(mf) = m ¥ r=xap)r @B, AlaBvr,
(i) y(mf) + m i f=A(a By 't 2o for e;=0,1,
(i) y(m x(aB) = m i (@, )F0 in 7S +m(ST).

PROOF. By Lemma 2.6, m can be written as
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m=(ar+my, br+mny) for some (g, b)e[ (S°xST)A(S*xS"), §3x 57,

(1) By the definitions of y and = we have p,x(m, 7)(i, X i) =nyT
+(—0bw(i,X7,)) and by the similar way as in [10, Lemma 6.5] we have ny T
+ (= bm(iyXiy))=(—br(iyXiy) )+ nyT=(br(i,X1,)+ny) T. Therefore, we have
(5.7)  Pox(m, t)(igxiy) = pymliyxXiy) T#pym(iyxiy) in [S'xS7, S7],

because the multiplication p,m(i,X4,) on ST is not homotopy commutative.
By the easy calculation we have

x{(m, Aa, B))(iyX1iy)
bar(iyXiy)+ny))
and so by Lemma 5.5 we have
(5.8) x(m, Aa, B)) iy X i) =m(iyxiy),
By (2.2), (5.8) and (5.7) we have
(5.9) x(m, Ala, B) ) (i X iy) =y (m, 7) (iyXiy)F miy X iy).
By Lemma 5.4 we have

where p;: ST ST— 57 is the projection to the i-th factor. On the other hand,
by Lemma 3.17 we can write

Epi+Epy+ E(bnliyXiy)+my = cm, for some nonzero element ¢ of 7r14(57).
This and (5.10) show that
(5.11) x(m, v) (g X iy) F m(iyXiy).
By (2.2),(5.8) and (5.11) we have

(5.12) x(m Ala, Blv) (g Xdy ) = x(m, v)(iyXiy)+m(iyXi,).

Also, by (2.2), (5.8) and (5.10) we have
)((Wl,?&(a,;?)yr)(iZX2'2)-:(43><(“£7>>)((m,u)(i2X1'2)(<“£7)><(—~z7)>
=(am(iyXiy)+cmy, ng T4 ((—b)m(iyXiy))).

Since ¢#0, we have
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(5.13) x(m, A(a, B)vr) (g Xiy) + m(1yX1iy).
Now, (5.9),(5.12) and (5.13) show (i).

(ii) By [10, Lemma 6.5] We have m, T+ ((—a)7(i;}i;))=((—a)m(i;X)
+myT. Therefore, by the definitions of y and o we have

(5.14)  x(m, o)(iyxi))=(myT+(—a)m(iyxiy), » )= m(iyx i) T# m(i; X)),

because S° has not a homotopy commutative multiplication.
By the easy calculation we have

(5.15) x(m, f)(iyxi))=mli;Xiy) for f=r v and A(e,p).
By (2.2), (5.14) and (5.15), we have
x(m, ) (i) X)) = x(m, o) (ip X)) #m(iyXi)
for f=A(a B)o, A B)wo, Ala,f)ve and Ale, B)vro.
This shows (ii).

(iii) Let py: ST 8% 5% and Dy S7% 8% 57 be the projections. Then,
by the definitions of y and A(e,8), we have

x(m, Aa, B))(1y X i)
=(py+amy, ot Bm) (amtmg, brtng){(pr+(—a)m, Pyt (=B m) X (P +(—a)
my, bo+ (=gt (igXy)
=(py+amy, pyt+Bm W am+my, br+nyg){(+, py) X (Dy, * )]
—(am(iy X))+ By +amy (an(iyXi)) + By, buliyx i) )+ By), br(iyXi)) +7,
+ B (am(iy X iy )+ py, br(ig X i) +D5)).
On the other hand, it is easy to see that
my(am(iy X i)+ 7, brrliy X i)+ By)=(—c10) m in [STx S, 510,

where 77: S7X53—>S7/\53:510 is a collapsing map.

Therefore, we have
x (m, /\(a,ﬁ))(izxil):(av(i2><z'1)+fl+( —a) my, br(iyXiy )+ Dpot(—p)m)).
Since m( i, X1y )= (am(1,X i)+ Dy, bm(iyX1iy)+Py), we have (iii). q.e.d.

PROOF OF THEOREM 5.2. By Proposition 2.5, (5.1) and Lemma 5.6, we
have the desired results. g.e.d.
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PROOF OF THEOREM 5.3. By using Lemma 2.6 and [13, pp. 186—187], we
have

(5.16) #M((S7xST)=2%.315.5%.7.
By (5.1) and Theorem 5.2, we have
£16(S°xS)/ & p(S*x ST, m)y = 6(S°x ST)=25.3%5
for any multiplication .

Hence, the desired results follow from Proposition 2.7. q.e. d.
§6. The group &y(K(A,p)<K(B,q),m)

In this section, we shall deal with the product space K(A, p) X K(B, q) of two
Eilenberg-MacLane complexes. We shall also given an example of X such
that & (X, m)z & (X, n) for some m, n e M(X).

Let A, B be abelian groups and let

The usual loop multiplications on Kl and K, are denoted by my and m,.
By [6, Th.2.10], [7,Cor.5.9] and [9, Example 4.1], there is a split exact
sequence:

0——HP(B, q; A) — (K X K,) —— E(K)X E(K o) —1.

More precisely

(6.1)  E(K X K,)=1(ab)+8by 10y) |ae E(K,), y€6(K,), BeHP (B, q; A)},
where p;: KX K,— K is the projection, and + is induced by the usual multipli-
cation »; on K. Futhermore, &(K;)=Aut A, &(K,)=Aut B and any ele-
ment (apy+Bpy, 7P») can be written as a matrix <0‘ f8>

By the easy calculation we can see that the group [( (Ky X Ky) N (KX K2),
K, X K,] is isomorphic to HP(K. 2o NKy; A) and so by Lemma 2.6 any multipli-
cation m on K| x K, can be written as

(6.2) m=(m,+6m, m,) for some 6€HP(K2/\K2;A),

Dy XD e ) ..
where 7: K| X K, X K| X Kz—u—KZ X KZ——2>K2 N K, is the composition of the

projection and the collapsing map.
Let  and p' be the projections: Ky X K,—— K, to the first and the second
factors, respectively.

THEOREM 6.3. With the above notations, the group Er KA, p)x K(B, q),
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(my+0m, my)) 15 the subgroup

{Capy+ 8Dy, 1hy) | DB+ "B —my f=my" (ab—6(yAy))  in [Kyx K, K]
of 6(K(A, p)xK(B,q)).
'=(a 'p—a By M0y 7 'py) and
i (aby + 8Dy 7Py) X (] + B8Py, 7P5 )1 = (7 Ay) 7, we have

x(m, (apy+BDy 705) )
=(a 'py—a By by 7 by (myt O, my){ (apy 8Dy, YPy) X (B Dy, 7By)]
=(a p—a '8y o v 0y) (aby + BBy + Byt BBy + BCYA )T, byt 7By)

=(py+ta B, tDita ot L0yAYT—a  Blby+By), byt By)
1

PROOF. Since (ap;+Bby, 70y)

:(Wl1 +a_1,6’j)2+ ailﬁphz—?— a O(yA 7)77—0/71,6’”’12, le)-

Therefore, by Proposition 2.5 we have the desired results. q.e.d.
By this theorem, we have immediately the following.

COROLLARY 6.4. For the product multiplication myXmy=(my, my) on
K(A, p)XK(B, q), Sy(K(A, p)<K(B,q), (my, m,)) i the subgroup

{(apy+ 8Dy 1y) | BEHP (B, q; A) is primitive;
of E(K(A p)XK(B,q)).

Now, we apply Theorem 6.1.for K;=K(Z,,6) and K,=K(Z,2) and we
have

EXAMPLE 6.5. Let X:K(ZS,ES)XK(Z, 2). Then
E(X)=Z,xS,, #M(X)=9,
wheve Sy is the symmetric group on three elements; and

E(X)  if mis the product multiplication,

Eu(X,m) =
Zg  otherwise;

i M(X) =5.

Furtheymore, the multiplication m=(my + m, my) on X 15 homotopy associative if
and only if 6=0 or i(a®a2+a2®a>, where a s a generator of HZ(Z, 2;Z5).

PROOF. By (6.1), &(X) is given by the following group of matrices:
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(6,6) 8X)=1 (3 B) ez, pez, yezo)

(Z,=1{1, —1}, Z3=10,1,2}), which is isomorphic to Z,XS,;. It is easy to see
that

(6.7) H(K(Z,2)NK(Z,2); Z3)=Z4+ Za,

and so £ M(X)=9 by (6.2).

On the other hand, any element of H 6( Z,Z;Zg) 1s primitive. Thus we
have the result for the product multiplication # by Corollary 6.4. It is easy
to see that

(6.8) (=1),0 =—6 ((=DA(=1))"0 =—4,

for any element 6§ of (6.7). Therefore, by Theorem 6.3, (6.6) and (6.8) we
obtain

Eu(X, m=1 (3 4) | a=y=1, pezsj=7,

for m=(m, + om, my), OFO0.

By the above argument, we see that the number of the elements contained
in the orbit of (m + 6, m,)(under the action y)is equal to 1 if §=0, or 2 if
0+0. Therefore, we have #M(K(ZB,(S)XK(Z,Z)):S.

For any multiplication m= (m, -+ 67, m,) on X of (6.2), we see easily that
m(mXx1) and m(1Xxm) are equal to

(Dyiy+ by Dy Gy ( Doy X Do) + byia+ O (( Do)+ Doy ) X Do), Doy + Doy + Boly),
(LB + Do+ s+ O ( Dobly X Do) + 67 (Do) X ( Doyt Doy ) ), Do)+ Doy + Do),

respectively, where p;: XX X< X—— X is the projection onto the i-th factor.
Therefore, m is homotopy associative if and only if

(6.9)  Omy( D)X Do)+ Oy (D) + Py) X Py) = Oy (15 X Pig ) + 67y (1) X (D + 13))
in HY(K,x K, K,; Z.),

where p;: K, X Ky X K,—— K, is the projection onto the i-th factor and K,=
K(Z 2).
The element § of (6.7) can be written as

92ka®a2+la2®a for some k, [€Z,,
and we see easily that

O o (D)X Dy) =01, bmy(py X ps)=1R86,



On the selt-equivalences of H-spaces 33
Oy (B, + By) X 1) = (my @1) = kmiya®@d” + [ mya)* a,

Oy (1 X (D + 1)) = ka® (@) + 1" @mia,

and mia=a®1+1®a

Therefore, (6.9) is equivalent to 2(2—/)(a®a®a)=0, and we have the desired

result.

q.e.d.
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