A Note on Bi-sequential Spaces

By

Tokuro Ono

(Received May 15, 1976)

§1. Introduction

For the following properties of topological spaces, it is well known that (a) implies (b), and (b) implies (c).

- (a) X is a Hausdorff space.
- (b) Each compact subset in X is closed.
- (c) Each convergent sequence in X has exactly one sequential limit.
- H.F.Cullen showed that these three properties are equivalent if X is a first countable space ($\lceil 1 \rceil$ Theorem 2, Corollaries 1, 2).

In this paper, we shall prove the following:

THEOREM. Let X be a bi-sequential space. Then the properties (a), (b), (c) are equivalent.

It is easily shown that a first countable space is a bi-sequential space. Since there is a bi-sequential space which is not first countable ([3] Example 10.4), our theorem is a generalization of Cullen's theorem.

§ 2. Definitions

A filter base \mathcal{F} is a non-empty collection of non-empty sets such that F_1 , $F_2 \in \mathcal{F}$ implies that $F_3 \subset F_1 \cap F_2$ for some $F_3 \in \mathcal{F}$. In a topological space Y, a filter base \mathcal{F} accumulates at a point y if $y \in \overline{F}$ for every $F \in \mathcal{F}$, and \mathcal{F} converges to y if every neighborhood of y in Y contains some $F \in \mathcal{F}$. We say that two filter bases \mathcal{F} and \mathcal{G} mesh if every $F \in \mathcal{F}$ intersects every $G \in \mathcal{G}$. An ultrafilter is a maximal filter base. It should be noted that every filter base accumulating at a point y is contained in an ultrafilter converging to y.

A space Y is bi-sequential if, whenever a filter base \mathscr{F} accumulates at y in Y, then there is a decreasing sequence $\{A_n\}$ in Y which meshes with \mathscr{F} and converges to y. It is easily verified that Y is bi-sequential if and only if every ultrafilter \mathscr{F} converging to a point $y_{\varepsilon}Y$ contains a decreasing sequence $\{A_n\}$ converging to y ([3]).

§3. Proof of the theorem.

It is sufficient to prove that (c) implies (a). Note that a space in which every filter base converges to at most one point is Hausdorff. Suppose that X is not Hausdorff. Then there exist two distinct points x, y and a filter base \mathscr{F}' which converges to both x and y. Let \mathscr{F} be an ultrafilter which contains \mathscr{F}' . Since X is bi-sequential, there exist two decreasing sequences $\{A_n\}$ and $\{B_n\}$ which are contained in \mathscr{F} and converges to x and y, respectively. Then $A_n\cap B_n\neq \phi$ for each n by the definition of the filter. Choosing x_n in $A_n\cap B_n$ for each n, we obtain a sequence $\{x_n\}$. Since $\{A_n\}$ converges to x, any neighborhood U of x contains $A_{n(0)}$ for some natural number n(0). Since $\{A_n\}$ is a decreasing sequence, $A_n \subset A_{n(0)}$ and $x_n \in A_n \subset A_{n(0)} \subset U$ for each $n \ge n(0)$. Thus the sequence $\{x_n\}$ converges to x. Similarly $\{x_n\}$ converges to y. This is a contradiction. Thus X is Hausdorff.

Remarks.

1. It is known that a locally countably compact (locally sequentially compact, locally compact) sequential space X with unique sequential limits is Hausdorff ([2] 5.6 Proposition). But the following example of a bi-sequential space with unique sequential limits which is not locally countably compact shows that the above-cited proposition does not imply our theorem.

Example. ([4] Example 58) Let X=Z be the set of all integers with the topology generated by the sets of the form $a+kZ=\{a+km|a, m\in Z, k\in N\}$, where N is the set of all natural numbers. The base sets are simply the cosets of factor groups of Z and each base set is closed. Then X is a first countable Hausborff space and hence, X is a bi-sequential space with unique sequential limits. The set of primes is an infinite set without a limit point, so X is not countably compact. The function $a+km\longrightarrow m$ defines a homeomorphism between any base element and the entire space X. Therefore no neighborhood of any point is countably compact and X is not locally countably compact.

2. A bi-sequential space is a Fréchet space and a Fréchet space is a sequential space. However we cannot replace in our theorem the term "bi-sequential space" by "sequential space" or "Fréchet space", since there exist a sequential space and a Fréchet space with unique sequential limits which are not Hausdorff ([2] 5.3 Example, 6.2 Example).

Faculty of Education Tokushima University

References

- [1] H.F.Cullen, Unique sequential limits, Bull. Unione. Math. Ital., III-20 (1965), 123-124.
- [2] S.P.Franklin, Spaces in which sequences suffice II, Fund. Math., 61 (1967), 51-56.
- [3] E.A. Michael, A quintuple quotient quest, Gen. Top. Appl. Vol. 2 (1972), 91–138.
- [4] L.A.Steen, J.A.Seebach, Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.