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In the previous paper [5], the present author has treated Finsler manifolds
with such a property that the tangent spaces at arbitrary points are congruent
(isometrically linearly isomorphic) to a single Minkowski space, and introduced,
as a typical example of such a space, the notion of {V, H}-manifolds. At the
same time, it has been shown that the { V, H}-manifolds are generalized Berwald
spaces defined by Hashiguchi [3] and Wagner [9].

Now, the present paper has two main purposes. One is to consider the
converse of the above-mentioned result. After some preparation, it will be
proved, in §3, that if a generalized Berwald space is connected, it is actually
a {V, H}-manifold.

Next, in a Minkowski space is presented a Riemann metric, which is different
from the Minkowski norm. Therefore, geodesic lines with respect to this
Riemann metric can be introduced in the Minkowski space, which we call C-
geodesics.

A connected Finsler manifold M with a linear connection F]Z-k(x) is to be
considered. With regard to arbitrary two points p and ¢ in M and any piece-
wise differentiable curve C joining p and ¢ we can define a linear isomorphic
mapping o between the tangent Minkowski spaces 73(M) and 7;(M) by pa-
rallel displacement with respect to I‘}k(x) along the curve C.

Now, the other main purpose of the present paper is to find a necessary
and sufficient condition for ¢ to map any C-geodesic in T,(M) to a C-geodesic
in T,(M). It will be shown, in the last section, that the condition is C;'ki =
0 or equivalently P;k =0 with respect to the Finser connection associated with
the linear connection I‘;-k(x).

§1. Minkowski spaces

Let Vbe an »n-dimensional Minkowski space, that is to say, an #-dimensional
linear space on which a Minkowski norm is defined. In this paper, a Minkow-
ski norm on a linear space V means a real valued function on V, whose value
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at eV we denote by |£], with properties:
(1) |€| can be represented explicitly by

lel=A &L €% eene) €9

for any vector §:§1el+ §2e2+ ------ +§"en(:§aea) where {e | is a fixed basis of
V, and the function flgl £2 ...... , & is 3-times continuously differentiable
at £+0. For brevity we write A &L £2---... , & as flE) or fE£9).

(2) lgl=0.
(3) [€&l=0 if and only if £=0.
(4) [k = k¢l for &>0.
(5) The quadratic form

242
27AE) cap
2EDED ¢
is positive definite for all values of ¢¢

It is to be remarked here that the condition (5) leads us to

N
but the converse is not true [8].
Now, if we put
G={T|TeGL(n, R), |T¢|=|¢&| for any é&eV},
then G is a Lie group [5].

As a matter of course, the Minkowski space V admits a Minkowski metric
£, and furthermore, it admits a Riemann metric like the following:

If we put
1 2,2
<1.1) gaﬁ:_z%aa(f%)

then gaﬁ( £) is a tensor field on V and g, /S’< £)d £%d £F is a positive definite Rie-
mann metric on V.

The distance A_B( R) between two points A and B with respect to th@_) Rie -
mann metric, however, does not coincide with the Minkowski norm |AB| in
general.

Now we put

1 98
(1.2) Copr=7 95;7/9 and Cj~gCyp,,
where (gaﬂ) is the inverse of ( gaﬂ), then C ZY is the Christoffel symbol with

respect to the Riemann metric S
With respect to this Riemann metric, we may consider geodesic lines, which
we call C-geodesics in a Minkowski space. Generally speaking, a C-geodesic
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is not always a straight line.
Let V and V be n-dimensional Minkowski spaces and ¢ be a linear iso-
morphic mapping from V to V. We shall take {o(e¢,)} as a basis of V and

denote the norm function of V with respect to this basis by £ Then it is easily
seen that

lo( &)=l %) .= 1£%( e, )| =7 ¢ ).

Hence we can take {£% a current coordinate system of V and V in common.

If the relation f:F]7 holds good, then the mapping ¢ is an isometry in
accordance with |o( ) HT/: ||§HV. Hence V is congruent to V in this case.

If the linear mapping ¢ maps every C-geodesic in V to the (-geodesic in
ﬁ then the mapping ¢ is said to be a C-projective mapping. Two Minkowski
spaces V and V are said to be C- projective mutually if there exists a C-pro-
jective isomorphic mapping from V to V. It is obvious that an isometry is
C-projective.

Now, let us seek for a condition that a linear isomorphic mapping o from
Vto Vis C-projective. For this purpose, we denote by ;g;g and 557 the
metric tensor and the Christoffel symbol of V with respect to the above men-

2,2
tioned current coordinate system {£%, namely, gaﬁzé%];?(g% and ngz%g“"
28y

220 In such a case, a necessary and sufficient condition for ¢ to be C-pro-

jective is, as is well known, that EZ)yhas the form
(1.3) Cay=Cppt 050, + 0y 95

for a suitable covariant vector field ¢, on V. In our case, by virtue of the
homogenity condition, the identities

Cyt'=Cpre'=0
hold true. Hence, from (1.3), we have
(1.4) 5g¢757+ g“%:o .

Summing for « and B, we get ¢7§7:0. Then (1.4) leads us to §a¢ﬂ:0. Thus
we get ¢ =0, that is,

(1.5) Chy=Cpy .

Conversely, if Eﬁay-—— Cé’},, it is obvious that V is C-projective to V. Thus
we obtain

THEOREM 1. Let V and V be n-dimensional Minkowski spaces, o be a
linear isomorphic mapping from V io f/: and {e,} be the basis of V. Let us take
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{o(e,)} as a basis of V. Then the mapping o is C-projective if and only if the
relation Z‘Zy: ng holds good with respect to these bases.

§2_ Finsler manifolds with a linear connection
Let M be an n-dimensional connected Finsler manifold whose fundamental
function is F(x, y). We denote the metric tensor and C-tensor by

1 2°F? 128
(2.1) 8;=3 vy and Cyj, =5 ayk .

In this section, we assume moreover that M admits a linear connection
P}k(x). Then we can introduce such a Finsler connection I‘*:{F]Z-k, N;-, C;Z'k}

(131, 143, [7D) as
(2.2) 7= (0, Ni=T(0y, Ch=g"Cpjs.

The connection I''is called the Finsler connection associated with the linear
connection F;:k(x). Then %- and wcovariant derivatives with respect to I' are
expressed respectively as follows:

= akT 5 TI‘Zkyl—{—TI‘ TI‘]k,

le —9T+Tka T,/ jk’
where T;: is a Finsler tensor of type (1,1), and 2, and ak mean — k and k
respectively.

If T is a tensor field of M, namely, T; depends on position alone, then
akTZ Vamshes and it holds that

7
]‘ k—v T,
where V7, denotes the ordinary covariant differentiation with respect to I‘]Z:k(x).

Let C={x(t)} be a piecewise differentiable curve in M. We pick up
arbitrarily two points x(«a) and x(b) on C, and consider a tangent vector €4
at x(a). Let¢ (5) be a tangent vector at x(b) given by parallel dlsplacement
of ¢ (a) along the curve C with respect to I‘Z ( ). Then the correspondence
f( a)—>§ defines a differentiable mapping

(2.3) 9. (M>*’T )(M) (Gab(f(a)>:§(b))’

where Tx( a)(M and Tx( b)(M) are tangent spaces of M at x(a) and x(b)
respectively. It follows apparently that o, is a bijective linear mapping. In
the sequel, we simply call ¢, a parallel displacement along C.

We set, for brevity, =0, b=t and Y(0)= yZ'(O);j—CZ.. On putting Y(#)=

dxt 2

0y Y(0), Y(t) is a vector field on the curve C. If we put «’ (”:ZZ‘ i then
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X(f) is a tangent vector of the curve C.
For the covariant derivative of a vector field »(#) along C with respect to
x' (t), we have, as is well-known, that
1 - d '
Vi u0)=lim o) o)~ 2(0)]= (2501 iy )l 2y
In regard to Y(?), however, it follows clearly that vy Y(#) =0, i.e.,

ay'e)

24) i) indEs

Next, we shall be concerned with the covariant derivative of a Finsler
tensor field 7. For instance, we assume 7 is of type (1,2),1i.e

) 2 J k
(2.5) Nx, y)=T(x, y)QdxQdx".
Let T;(l) (M) be the dual space of Tx(”(M) and o¢(; be the dual mapp-
ing of Ty As Y(t):ootY(O), we can define a mapping T bV

(2.6) G T 1), YUO)=Th(x 0, YD) (55 @ () @yl .

Then, with respect to the vector x' (#), the covariant derivative of T can be
defined by

(2.7)  (Vx Dyy=lim (5, Tx( ), Y(1) = T1x(0), ¥(0)).

Using (2.4), we can rewrite (2.7) as

(V¢ D= <<§tT§k<<> Y(1))),=

+ 1, (x(0)) TH(K0), ¥(0)) (%‘Z)FO
~I7(0)) T (0), Y0)) (%l)t O
D00 T 0, Yo)) (&) Ol (), & @) @2ty
Hence we obtain
(2.8) v, T=(Tly, %2 @arigak .

Following Hashiguchi’s definition [3], a Finsler manifold is said to be a
generalized Berwald space if it is possible to introduce such a linear connection
ij(x) that the metric tensor g is A4-covariant constant with respect to the
Finsler connection associated with the linear connection. As to the generalized
Berwald space, we have obtained in the paper [4] that

THEOREM 2. A Finsler manifold with a linear connection I‘ k(x) S a ge-
neralized Berwald space with vespect to the Finsler conmection T assoczated with
P]Z.k(x) if and only ZfFIie_O holds.
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PROOF. Since components of the linear connection I‘Z:k are functions of
position alone the relation (' )’ = 'h(T ) holds true. Therefore we have
8 ( | F ). Hence, F | k*O 1mphes 8i14=0. Conversely, by virtue of

“6—0 We have ZFF!k gulkyyf which completes the proof.

In a Finsler manifold Wlth a linear connection I k(x) if the Finsler connec-
tion I' associated with T k(x ) satisfies the cond1t1on g; il = =0 or F, =0, we say
that the manifold admits a (F, I, g)-structure. If T satlsﬁes the condition C*! kln
=0, we say that the manifold admits a (F, I,C)-structure.

If a Finsler manifold with a linear connection I‘Z.-k(x) admits a(F, I, g)

structure, then the manifold is a generalized Berwald space and also admits
a (F, I,C)-structure obviously.

Now, in a Finsler manifold M, whose metric function is F(x,y), the tangent
space YQD(M) at each point p:(xé) of M can be regarded as a Minkowski
space, where the norm of any vector veTy( M) is given by |v||=F(xy, v). There-
fore %(M) can be called a tangent Minkowsk: space at p.

THEOREM 3. If a connected manifold M admits a (F, I', g)- structure, then
the tangent Minkowski spaces Tp( M) and Ty(M) at arbitrary distinct two points p
and q in M are congruent mutually.

PROOF. Since M is connected, we can take a piecewise differentiable
curve C joining p and ¢g. We represent it by C={x(#)|x(0)=p x(1)=gq}.
Let v be a vector in T,(M). Here we denote by Y(¢) the vector field on C
given by Y( t)=gy; v where ¢, is the parallel displacement along C defined by
(2.3). Of course, we put ¥Y(0)=wv. Then, as is shown above, the mapping
o1 18 a linear isomorphism from 7;(M) to T;(M). And we see, according to
(2.4), that

21_ . s / dxl
SF(0, (1) = (0, F(x, Y)=3,F(x, VT V)G
=0.
This shows us that 01 is an isometry, namely, 72)( M) and T,(M) are
congruent mutually.

REMARK. Zaguskin has obtained this result using another expression and
terminology [12].

§3. {V, Hl-manifolds

Let V be an n-dimensional Minkowski space, whose norm function is
denoted by f and H be a linear Lie group leaving the Minkowski norm in-
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variant. Let M be an n-dimensional connected C*-manifold.

Here, we assume that M admits the H-structure in the sense of a G-
structure.

Let {U} be a coordinate neighbourhood system, {Xj, X, - , Xyt be an #n-
frame of U adapted to the H-structure, and y be any vector in T,( M) with
the expression y=yi(-Z) =¢%x,

oxi
Now, we can express

(3.1) = 1i(0) X o and Xo=2.(x) 2.

We have proved in the preceding paper [5] that the function
(3.2) Flx, )= A6 =flu(x)5)

gives M globally a Finsler metric. This Finsler metric is called a {V, H}-
Finsler metric.  When M admits a {V, H}-Finsler metric, we say that M is a
{V, Hi-manifold. In the {V, H}-manifold, the tangent Minkowski space T,(M)
at any point peM is congruent to the given Minkowski space V. In the paper
[5], we have also obtained

THEOREM 4. Let M be a {V, H}-mam'fald, F(x, y) be the {V, H}-Finsler

melric function given by (3.2), and I‘]Z-k(x) be a G-connection relative to the H-
structure. Then M adwmits a (F, I, g)-structure.

We are now in a position to consider the converse of Theorem 4. For the
sake of this aim, we assume that M admits a (F, [ g)-structure. Then,
according to Theorem 3, the tangent Minkowski space Tj(M) at any point pe
M is congruent to a certain Minkowski space V. If M is assumed to be
connected and to admit a lir;ear connection F;:k( x), then the holonomy group
H of the linear connection P;k(x) is a Lie group [10]. Using these, we shall
now prove

THEOREM 5. If a manifold M is connected and adwmits a (F, T, g)- structure,
then M is a { V, H}-manifold, whose {V, H}- Finsler metric coincides with the given
Finsler metric.

PROOF. It follows from the proof of Theorem 3 that the holonomy group
Hj,at any peM is an isometry of the tangent Minkowski space Tp(M), that
is,

(3.3) F(x, y)=F(x, Ty), VTeH,,

According to the well -known holonomy theorem (e.g. see [10]), M admits
an H-structure and the connection I' is a G-connection relative to the FH-
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structure. Then, in any coordinate neighbourhood system U] there exists an

n-frame {Xj, X, «+-+ , X,} adapted to the H-structure. Apparently we can set
X= /\( )2 . and 2 2 = ‘f’(x)Xa. Denote the Lie algebra of the holonomy group

axt axi
H bys#. Then for any A:(Ag,)e% we have (exp tA)eH. Therefore we

obtain, from (3.3),
(3.4) F(x, (exp tA)y)=F(x,y).

We can set also y= yiﬁiz go‘Xa, then we have y'= /\fga and

d B a B ja
{Z(exp tA)y], BfX A AB 1wy
Differenting (3.4) Wlth respect to f and putting /=0, we have
(3.5) a'].F(xi,y) gAg yP 30,

We denote by I'§ j, the components of T' in terms of the n-frame {Xj}.
Since {X, is an adapted frame of the F structure [11], we have, for any

vector v= vaXa: v'i;} ;o
(3.6) y Xg= vyféiX » Where va;y e .
By virtue of vai]_‘a%z I‘k] 3]3, we have
\VA Xﬁ— v V] /\B xl

. . . Y~ 7,
Moreover, according to the identity » I‘yﬁX —U,u P}’ﬂ/\agxl’

(3.6)leads us to I‘BQ), 7y a v /\B Then (3.5) shows us
é]-F(x, y)/\év V /\BMB =0
for any v. Hence we have

(3.7) o, Xp ] =0,

Now, we set
', 3= Flx' Ax) € =R, £9.
Then f can be regarded as a function of x! and §a. And, we have
2 0 P, F o e
From the definition of (F, I, g)-structure, it follows that
0,F—3, F T} yl=
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from which it is easily seen, according to (3.7), that f =0. Hence fis a
function of &% alone and has a form

(3.8) Flo ) =R €)= Aul()y).

As a consequence of Theorem 3 and (3.8), we obtain that the tangent
Minkowski space at any point is congruent to a Minkowski space V whose
norm function is given by (3.8).

For any element T of the Lie group H, we can express it by(Tg) in
terms of the frame {X,} adapted to H, at the same time, we can express it
in terms of the canonical frame {%i}, by (T;:). By virtue of T(y)= ngﬁXa:
le

we have a relation 7:8 yaT]Z/\é Then we see, from (3.3) and (3.8),

REY =Ruy) = Fix', )= R, Ty
= STV =R ST e
=ATE).
Hence the Lie group H leaves the Minkowski norm of V invariant. Thus

M is a {V, H-manifold whose {V, H}-Finsler metric is the originally given
Finsler metric.

2%V

Q.E.D.
From the definition of a Berwald space, it follows immediately that

COROLLARY. If a connected manifold M is a Berwald space, then M s a
{V, H}-manifold.

§4. (F,I', C)-structures

With regard to a general Finsler connection M= {F Tk NZ ]-2}, there exists
the hw-curvature tensor P (see e.g.[7]), which is defined by

(4.1) Pl =5,F); Crki]+C75(2 Ni—F}).

~ In our case, where we treat a Finsler manifold with a lmear connection
;k( x), we take as the I'" a Finsler connection associated with F (%), which
is defined by (2.2). In this case, we have directly from (2.2) that

(4.2) pl =—C!

7 vk|j

Henceforce we shall prove
THEOREM 6. Let M be a connected Finsler manifold with a linear connection

r ;k(x). Concerning the Finsler connection associated with F}k(x), the following
three conditions arve mutually equivalent:
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(1) Py i#=0.

(2) M adwmits the (F,I",C)- structure.

(3) Let p and q be arbitrary two points of M, C be any piecewise differentiable
curve jomning p and q. Then the parallel displacement along C from 1, (M) to
1 (M) is C-projective.

PROOF. It is obvious that the condition (1) is equivalent to the condition (2).
So, it is sufficient to show that the condition (2) is equivalent to the condition (3),
For this purpose, we treat the Finsler tensor field

— y/
C= ]'k<x7 ) axl®dx ®dx
Denote the curve C by C={x(t)|x(0)=p x(1)=¢q} and consider the tangent
, dxt 2

vector x =T oxi -of the curve C. Then, as is shown in §2, we have

vy C=lim {0l 8), Y(8))— C((0), 50))} = { Gl 58 12 g ad

where we put Uotym)_ Y(t). Of course, the parallel displacement 701 is a
linear isomorphic mapping from T( M) to T,(M).

If the condition (2) is satisfied, then a10 C(x(1), Y(1))=C(x(0), H0)) is easily
proved by well-known method. Consequently this result shows us that Tq( M)
is C-projective to Ty M).

Conversely, if the condition (3) is satisfied, then Theorem 1 leads us to V. C=
0. Hence we have that CZM% =0 for any C. Thus we obtain C}k!h—

Q.E.D.

COROLLARY  If a comnected manifold M adwmits a (F,I",C)-structure, then
the holonomy group of I' at p carvies C-geodesics into C-geodesics in T,(M).

As an example of (F, I',C)-structure, we shall consider the following special

Randers space.
Assume that M admits such a Finsler metric as

F<x V)= da.(x)yiyi+ kb~(x)yi,

where Ja ) ¥iyiis a Rlemann metric, bl.(x) is a covariant vector field
satisfying a blbj— 1, and % is a constant of 0< k<1.

Let { ; k} be the Christoffel symbol with respect to a; i We assume moreover
that b.(x) is parallel with respect to { k}

In this case, it has been shown in the paper [4] that M becomes a Berwald
space, namely, M admits a (F,I", g)-structure where T i { j k} And, of course,
this offers an example of a (F,I",C)-structure.

In the sequel, however, we shall treat a linear connection different from

el
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. . ; ; 1.
We take a linear connection I'" such that F]Z'Ie(x)zi;k}‘jajbk- Then we

may consider the Finsler connection I'* associated with this linear connection T.
By direct calculation, we can get, with respect to the I'"", that

@ = s b

! 1
'Ik_sz‘bk’ and Flk_?Fbk'

Using the fact that I" depends on position only, we obtain &ji p=0.8; i and Cz'jkl i
= bhcijk' It then follows, from these, that Czﬁf] ,=0. So, we have shown that
the Randers space under consideration admits a (F,I,C)-structure.
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