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§0. Introduction.

Recently the theory of vector valued hyperfunctions has been developed
by Ion, P.D.F. and T. Kawai [5]. It has been done by the method of
'soft analysis’ in parallel with Sato’s theory of hyperfunctions. The exten-
sion of Sato’s theory to the theory of vector valued hyperfunctions is
worthy to be considered not only for its own sake but also for applications.
It would be also worthwhile that we extend the theory of Fourier hyper-
functions in this direction. In fact, one of the coauthors has found the
applications of the theory of vector valued Fourier hyperfunctions to some
problems in the quantum field theory (see Nagamachi, S. and N. Mugi-
bayashi [12]). We have done these extensions by the method analogous
to Kawai’s method of constructing the theory of Fourier hyperfunctions.
We construct the sheaf % of H-valued Fourier hyperfunctions over D",
as the n-th derived sheaf of #7 with support in D" where D" is the ra-
dial compactification of R" and H is a separable complex Hilbert space
and 7@ is the sheaf of slowly increasing H-valued holomorphic functions
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over D"Xv—1R". Next we realize H-valued Fourier hyperfunctions as
continuous linear operators from ¢(K) to H. Namely, we show that the
space Hi(V, "7) of Hwvalued Fourier hyperfunctions with supports in a
compact subset K of D" is isomorphic to the space L.(¢ (K) ;H) of all
continuous linear operators from ¢~ (K) to H equipped with the topology
of bounded convergence. We also show that the space HZ(V,”7)is iso-
morphic to the tensor product HZ(V,7) ® H of the space HE(V.7) of
scalar valued Fourier hyperfunctions with supports in K and the Hilbert
space H. The sheaf ?#is a flabby sheaf and its restriction to R”" coin-
cides with the sheaf % of H-valued hyperfunctions over R” and its glob-
al sections are stable under Fourier transformation. Hence any H-valued
hyperfunction on R"” can be extended to an H-valued Fourier hyperfunction
on D" and then we can consider its Fourier transformation. §1 is de-
voted to the preliminaries from functional analysis, especially, the exten-
sions of Hormander’s existence theorems for the Cauchy-Riemann operator
to the case of H-.valued functions. In §2, we define the sheaf ?Z and
the sheaf “Z of rapidly decreasing H-valued holomorphic functions over
D"xv—1 R" and construct their soft resolutions. In §3, we mention the
generalizations of Oka-Cartan theorem B and Malgrange’s theorem and
Martineau-Harvey’s theorem. In §4, we prove the analogue of Runge’s
theorem. In §5, we prove the pure-codimensionality of D" with respect
to 7 and define the sheaf 7% and then study some properties of H-valued
Fourier hyperfunctions. In §6, we prove two isomorphism theorems
HRV, "0 )=L,(0(K); H)=H}(V,0) ® H. In §7, we define the Fou-
rier transformation of H-valued Fourier hyperfunctions on D” and study
its properties, especially, we give an operation formula of an H-valued Fou-
rier hyperfunction on -7, as a continuous linear operator. Lastly we prove
an analogue of the Paley-Wiener theorem.

§ 1. Preliminaries

In this section, we prepare some fundamental facts from functional
analysis.
First, we mention sevral properties of tensor product of Hilbert spaces.

DerINITION 1.1.  Let X and Y be complex Hilbert spaces. We denote
the algebraic tensor product of X and Y by X®Y, which is composed of
all the elements of the from jZ;lxj®yj wheve x;€ X, v; €Y for j=1.2,-,
n. Then X®Y 1s a pre-Hilbert space with the norm
Hjﬁlxj@yj | =[2:(xa,x5)x (v, v "2, where (, ) x and (, ) v denote the
inner products in X and Y, vespectively. We denote the completion of
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X®Y by XoY.
Now, we assume that Y is separable. Then Y has a countnable ortho-
normal basis {ey, es, -, €n 1, so that in the expression z = L %®y;
o0 J‘__

(x; € X,y;€Y), each y; can be written in the form yj:kZ_',l a;, ex With
1§1 | @;5 |? <oco. Hence
[ n
Iz 12 = 2 (v, 2)x(ws )r= £ 15w 17 <oo.

Thus, every element z = jé %;®y; of X®Y can be written in the form
z= kZ:llzk@) er, where z,s € X satisfy the following conditions,
F { (1) Z lzx % < o0
(ii) each Zr 18 a linear combination Z a;.x; of a finite number of

elements X1, X2, Xn In X with coeff1c1ents satisfying the pro-
perties Z | a;, |? <o for j=1,2,

Conversely, any element z in X®Y of the form z= Z z2:®e,(z,€ X) is

contained in X®Y wheneverAzks satisfy the cond1t1on (F). Hence, in or-
der that an element z in X®Y of the form z= kZ_jl Zx®ep(z,€ X) is con-

tained in X®Y, it is necessary and sufficient that {z,| satisfies the above
condition (F). .
Now, we put Z = {Z. zi®emze € X(k=1,2,), Z lzx 1% <oof.

Then it is easy to see that X ®Y15 isomorphic to Z, and the latter is iso-
morphic to the Hilbert direct sum 691 X of countable copies of X.
n=

Thus we have the following proposition.

ProrositiON 1. 2 Let X and Y be complex Hilbert spaces. Then if
Y is separable, X®Y is isomorphic to the Hilbert divect sum (—D X of
countable copies of X.

DEerFINITION 1.3.  Let X, Y and H be complex Hilbert spaces. For a

linear operator T from X z‘o Y wzth domain D(T), we can define a lin-
ear opervator T®1 from X®H to YOH whose domain is D(T®I) =D(T)
®H, putting TO1(L 2, h;) iijmz for x; €D(T), hy;e H(j=1,

2, n). Here 1denotes the zcientzty opevator of H. If T®I s closab-
ble, we denote its closure by T®I.

In the above definition, if H is separable, each element .}il x; ® h; in
D(T®I) =D(T) ®H can be written in the form ilxj® h;= kfilzk(@ er,

where (e, 5. is an orthonormal basis in H and z.'s € D(T) satisfy the con-
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dition (F) for D(T) and ;‘1 ITz,ll2< o0, and T®I(ﬁ1xj® n) =3 Tz:® e
= Jj= k=1

Then, if T is closable it is easy to _see that T®I is closable. If T is

closed, D(T®I) = {z= sz®ek,{zk}e@D( ), Z | Tz,|%<oo}, where

@ D (T) is the Hllbert dlrect sum of countable coples of D(T). In fact,
1t is trivial that the right hand side is contained in D (T ®I)

Conversely, if z= sz®ekeD(T®I), there exists a sequence {z,= flz'i
k=

®e,t € D(T®I) such that lim z,= z and hm (Tl (z, = lim ;TzZ@ek =

n—-

(T (2) = Z ur®e,. Since T is closed, zkeD(T) and Tz.,=u, Hence
{24} eélD(T) and kZ:1 1Tz, |2 <oo, and (T®I) (2) :};Tzk(@ek.

LEMMA 1.4. Let X, Y and H be complex Hilbert spaces and let T be
a linear, closed, densely defined operator from X to Y, whose range is
closed.  Assume that H is sepavable. Then Im(T®1) = (ImT) ® H and
Ker(T®I) = (KerT) ® H.

Proor. We take an orthonormal basis{es! 2 in H. Then it was seen
above that Im <T&>I) =X Tu®ew €D (T), X2 Iwelk <oo. 2 [ Taelly

<ool and (ImT) ® {Z yk®ek,yke]m'l‘ Z | v |2 <ool. Thus we see
that Im (T®I) is contamed in (ImT) ® H. Hence in order to prove the
lemma, it is sufficent to show that (/mT) ® H is contained in Im(T®I).
However, by the theorem in Hormander [ 3] (p.91, Theorem 1.1.1), for
each y,eImT we can find an element x,eD (T) such that Tx,= v, and
lxxlx< Clye |y where C is some constant. Thus, the last inequality
shows that Z lx.l% < oo when ;1 |l yoll2< co. Therefore Im (T ®I)
— (ImT) ® H.

Next we will prove that Ker(T®I) = (KerT) ® H. We note that,
for a closed operator T, KerT 1is a closed subspace of X. Then

(KerT)@ H= {Z Xx® e xn€ Ker T, gl [x.l%<oof. On the other hand,
Ker(T®1) = ;kz:lkak, xeD(T), £ lxili<oo, & I Txulf <o,
(TON (£ xu®es) = 0
= (L neenxieker T, & lxili<ool.
Therefore Ker ?T ®l) = (KerT) ® H. This completes the proof.

ﬁ'[\jg Il

PropositioN 1.5. Let X, Y, Zand H be complex Hilbert spaces
and let H be separable. In the sequence XI>Y—+Z, let T and S

be two liner, closed, densely defmed operators. If XI Y§Z s an

exact sequence, then X®H T®IY H SOI Z&H 1s also an exact
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sequence.

Proor, Since ImT = Ker S is closed, by the lemma 1.4, Im (T ®1) =
(ImT) ® H= (KerS) ® H= Ker(S®I). This completes the proof.

DerFINITION 1.6.  Let H be a complex Hilbert space and let 2 be a
measurable subset of R" with respect to the Lebesgue measure dA in R".
We define the space L* (2, H) ="1* (2) of H-valued L*-functions as a
Hilbert space of all H-valued measurable functions f defined on 2 which
satisfy the condition

171 = ([ 15 () J5aa) " <oo.

ProPOSITION 1.7. Let H and £ be as in the definition 1.6. Further
we assume that H is separvable. Then I1* (2 H) is isomorphic to L*(2)
® H wherve [* () is the Hilbert space of complex valued square integra-
ble functions on 2 with the norm

1F be= ([ 170 12 dd)™™.

Proor We take some orthonormal basis {ef 2 in H. Then each
element 7 (x) in I? (2, H) can be written in the form f (x) = kZ=1 Fulx) e

where f.(x) € L*(2). Since |/ (x) lz = ki;l | 7 (x) |*, we have '
L) I/ (x) I7dA= ké | £ |2 <co. Thus, to f(x), we can associate an ele-
ment 7 (x) = Iilfk(x)@ek in L*(2) ® H.  Conversely, to any element

flx) = kilfk (x) ®e, in L*(2) (Q)H,We assign an H-valued function f(x)=

glfk(x) ex. Then f(x)is in I>(2 H) and f (x) corresponds to f(x) by
the above correspondence. Since the above correspondence is isometry,
this shows that I? (2, H) is unitarily isomorphic to L? (£2) ® H The proof
is completed.

We shall now mention the existence theorem for the #4 operator.

In the following we assume that H is a separable complex Hilbert space.
Let £ be an open set in C”. For a continuous function ¢ in £, we de-
note by “I? (£, ¢) the space of H-valued measurable funktions in £ whose
H-norm is square integrable with respect to the measure ¢ *dA, where dA
is the Lebesgue measure. Then, by the proposition 1.7, “L? (2, ¢) is iso-
morphic to L? (2, ¢) ® H, where L* (2, ¢) is the space of complex valued
functions in £ which are square integrable with respect to the measure
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e?dA. We put "L*; o) (2 ¢ = H1H 8, @) ® A(p, 5y Where Ao is the space
of forms of type (p, q) with coefficients in C. We assume that “I2, o
(2, ¢) has the norm of the Hilbert direct sum ®“1%(®, ¢) of (%) (%) copies
of "I’ (2, ¢) and we denote this norm by | | in abuse of the notation.
Then "I 5 o (@, @) is isomorphic to I ¢ (2 ¢ ® H where I2sq (2, 0
is the space of all forms of type (p, ¢) with coefficients in L2 (£, ¢).

For two continuous functions ¢, and ¢, in £, we can define the linear,
closed, densely defined operator o from L2 o (2, @1) to L% g1 (2, @)
We call this operator the Cauchy-Riemann operator. We can define the
generalized Cauchy-Riemann operator ¥3 putting 79 = d®I. From now on,
we also call this operator 74 the Cauchy-Riemann operator.

Now we assume that £ is a pseudoconvex domain in C” such that
Ssupz.e|Imz | <M<oo. Let ¢(z) be a plurisubharmonic function in £.
By 7(z) we denote the modification of ;l lz; | near {z;,=0 for some ;!

so that it becomes C* and convex. Put
X =" g0 (25 (1/ ) n(2) +4log 1+ 121%) + ¢(2))
V=" 025 (1/7)n(2) +2log 1+ [21%) + ¢(2))
B ="y (25 (1/ /) n(2) + ¢(2)).

Then {"X ;}, {*Y;} and {"Z;} become weakly compact projective sequences,
and we define FS*-spaces, X = hmHXJ, Y=1lm"Y; and Z = hmHZ (see
Komatsu [8]). 5

LemMa 1.8. Let %3 be the Cauchy-Riemann opervator. Then

8 H
X-Y ﬂ Z s exacl.
Proor. Put

X;= L a0 (R2;(1/7)n(z)+4log 1+ [z 1%) + ¢(2))
Y= 22 (1/7)n(z) +2log 1+ [21%) + ¢(2))
Zi=Loam( 5 1/ j)n(2) + ¢(z) ).

Then X; i Y; g Z; is exact (see Kawai [ 7] . 470, Lemma 2.1.1).
Since "X;= X; ®H Hy, = Y ® H and Hz. = Z, ®H by the proposition 1.5,

HA
the sequence #X; 9 ”Y ”Z,- is exact. Hence

H
HX;) 3 *y,) 2 (#Z) is exact, where (“X})", ("Y,) and (j’Zj)’ are
the dual spaces of “X;, Y, and “Z,, respectively, and #¢9= (*3)". There-
fore, since X’ = lim (”X)’ Y’— lim *Y,) and Z' = hm (*Z,)’, we have the

exact sequence X’ 0 Y Z X, Y and Z/ bemg injective limits of
Hilbert spaces, are DFS*spaces. Hence, if ¢> 1, it is trivial that the
theorem is valid by the so-called Serre-Komatsu duality theorem (see Ko-
matsu [ 8], p.381, Theorem 19). When ¢ =1, in the exact sequence
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g g
X Yy’ & 7’ we need to prove the closed rangeness of X’ < Y. We
shall now prove this. Since DFS*-space, being the strong dual space of a
reflexive Fréchet space, is fully complete, so, in order to prove the closed
rangeness of 79 , it is sufficient to prove that Im ("9) N V" is closed in V"
for the polar set V° of any neighbourhood V of 0 in X. Then Im(*9)NV"
is bounded in X', so that, for some k&, Im("9) "V°= u.(Bx) is a bounded
set in (X,)" and u, is a weak homeomorphism (see Komatsu [ 8], p. 372,
Theorem 6). Now assume that “du,—fc V". Then “Yu, converges
weakly to fin (¥X,)’. Here we need the following lemma.

H
;0
s

Lemma 1.9. If ue (Y;) and "sue ("X, (j>k), then there ex-
ists some v in ("Y' and "ou="9v holds.

ProoF OF THE LEMMA 1.9. We take a sequence of C” functions ¢n(z)
—exp(— (1/ m) glzj-%). Then, by the definition of 9, “9(enu)=

o9 u. Since we have assumed that sups.e!|Imz | = M< oo, gnu belongs
to (Y,)’ for all m. On the other hand, ¢, 9u converges to "9« in
("X, by Lebesgue’s theorem because ¢, is bounded zind converges to 1

HS H
. 3 .
pointwise in 2. However, the sequence "X, 9 Hy, 8 Hy is exact.

H
Hence "X, Qo Y, is of closed range, so that, by the closed range theorem,
"9 is a closed range operetor from ("Y,)’ to (“X,)’. Therefore "du =
Ime, du = lim 79 (gnu) € “9(("Y,)’). This means that there exists some

m— oo 00

H , m H _H -
ve (Y, such that "9u = "9v. This completes the proof.

We now continue the proof of the lemma 1.8 in the case ¢ =1. By
the lemma 1.9, we may assume not only Hou, € ("X, but also u, €
(?y,)’. However, since Im ("9) is closed and convex in (“X,)’, it is weak-
ly closed in (*X,)’. Hence there exists some v € ("Y,) " such that f =
H9y, which shows that Im (79) N V" is closed in V°. Therefore this
means that Im (79) is closed in X’'. Because DFS*space is the strong
dual space of FS*-space which is a Fréchet space, then Im (73) is closed in
Y (see Komatsu [ 8],p.381, Theorem 19). Hence, by the Serre-Komatsu
duality theorem, the lemma is proved in the case g =1(see Komatsu (8],
p. 381, Theorem 19). This completes the proof.

Next we prepare the H-valued version of the theorem of Hormander
[37 (p.109, Proposition 2.3.2). In the following, we use that "L’ ¢-1)
(2, —¢) and "L’ 41) (2, @) are antiduals of each other with respect to
the sesquilinear form
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{u, v = /QZ?,K(MI,K, 1, k) ndA

where

U= 2\n-piki=a-rtnxdz’ NdZ" €L 1) (2 —¢)
and

v=2ln-niki=a10rxdz'Ndz¥ € "L 54 1)(2 ¢).
For the terminlogy, we refer to Hormander [ 3 ].

ProposiTioN 1.10.  Let 2 be a pseudoconvex domain in C" with C*
boundary. Let ¢ and ¢ € C*(Q) be strictly plurisubharmonic in 2, and
let u be a form in "L’ 41,8 —@), let u=0 where ¢ >0 and assume
that <u,v> = 0 for every solution v such that "9v = 0 and ve
HI2 gy (2 0+ AdT) for some A; here ¢" = sup(¢,0). Then thre is
a form f € "L (8 loc) such that f vanishes where ¢ > 0 and satis-
fies "0 f = u and

~/-QZ?,KZJ',k(fI,jK, f1. k) 1(0°9/ 02;02:) € dA < .«/-QH ul®eda.

Proor. Let {eml »=1 be an orthonormal basis in H. Then we have u =

leu(m)em, u"e L2 g1y (8 — @), Since Ker (#9) = (Kerd) ®H by the lemma

1.4, for any v € L%p o1, (2, @ + A¢™) such that dv= 0 which is identifi-
ed with ven € “L%, 1) (2 ¢ + A¢T), we have

<y, v> = /QZ},KM(}")K o1, xkdA and #™= 0 where ¢ > 0.

Thus each coefficients " satisfies the conditions of the theorem of Hor-
mander [ 3] (p.109, Proposition 2.3.2). Hence there is a form f"™e
L o (2 loc) such that f™= 0 where ¢ >0 and 8f"= ™
/QZ},Kij f(r;l:fK 7%21{(32 (0/ azjagk) e’ dA < [Q | u(m)}zéa dA.

Hence, if we put f= ilf(mém, we have f<€ “L%, (2 loc) which vanishes
where ¢ > 0, and, since 79 = ¢ (Q)I, we have “9f= u and

/‘QZ,I,KZJ‘, 2 (Frik f1. ek (82 9/ 0202 ,) e dA < .fg |2 ef dA.

This completes the proof.

§2. The sheaves #~ and # and their resolutions.

In the following sections, we assume that H is a separable complex
Hilbert space. In this section, we give definitions and soft resolutions of
sheaves "7 and i over D" x v —1 R" of some kinds of H-valued holomor-
phic functions, where D" is the radial compactification of R"(see the fol-
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lowing definition 2.1).

DerFINITION 2.1 (Kawai). We denote by D" the compactification R™[ ]
St of R", where R"| 1S%? denotes the disjoint union of R" and an
(n — 1)-dimensional spheve SZ* at infinity. When x is a vector in
R"— {0}, we denote by xo the point on SE' which is represented by
x in the identification of S¥' with R"— {01}/ R*. The space D" is
given the natural topology, that is: (1) If a point x of D" belongs to R”,
a fundamental system of neighbourhoods of x is the family of all open
balls containing the point x. (i) If a point x of D" belongs to SE*, a
Fundamental system of neighbourhoods of x (=yoo) is given by {(C+a
U Cw | Co 2y} where C is an open cone generated by some open neigh-
bourhood of vy with its vertex at the origin, a is some vector in R”,
namely C+ a is a cone with its vertex at a, and Cw denotes the poinis
at infinity of that cone.

We shall mainly consider the space D" x v —1 R" from now on. Here
we give the definitions of sheaves *7" and "7 over D" x V—1R" In the
following sections, we denote by “7 the sheaf over C” of germs of H-val-
ued holomorphic functions.

DEerFINITION 2.2.  (The sheaf of slowly increasing H-valued holomorphic
functions.) We define H to be the sheaf subordinate to the presheaf
VAZ(Q) ), where, for an open set 2 C D" x v —1R", the section module
Q) s the set of all H-valued holomorphic functions f (z) (€ #7(2 N
C™)) such that, for any positive € and any compact set K in 2, f(2) sat-
isfies the condition sup,cxncr |f (2)e 1% lu<oo. It is easy to see that
the presheaf \"7(2)| is a sheaf over D" x v —1 R".

ReMARK. By the above definition, it is easy to see that HF | o = Hp
holds.

DerINITION 2.3.  (The sheaf of rapidly decreasing H-valued holomorphic
functions.) We define "7 to be the sheaf subordinate to the presheaf
{17(Q) |, where, for an open set 2C D" X v —1R" the section module
HA(Q) s the set of all H-valued holomorphic functions f(z) (€2 N
C")) such that, for any compact set K in £, there exists some constant
Sk so that it satisfies the condition supzcxnctlf(z) &« |u<oco. It is
easy to see that the presheaf \"0(2)| is a sheaf over D" x v —1R".

REMARK. By the avove definition, it is easy to see that 7| C" ="
holds.
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DEerFINTION 2.4.  (Topology of #7(K).) Let K be a compact set in
D"xv—1R" and {Unl be a fundamental system of neighbourhood of K
satisfying UnD D Unyir, (wherve Un> D Upnsr means that Uni has a com-
pact neighbourhood in Un with respect to the topology of D" x v —1R").
Let "% Un) be the Banach space of all H-valued holomorphic functions
flz) (€ 9(U, N C") which are continuous in UnN C* and there ex-
ists some A such that |f (z) |o< AeV™=, The norm of “0m (U, is
7N = sup zexner £ (z) ™2 | . Then we give "7(K) the inductive
limit topology lim " (Ux). The topology of "C(K) is well-defind and it
becomes DFS*-space (see Komatsu [ 8]). Especially, when K= D" we
denote "¢ (D™) by "%,.

Next we construct some soft resolutions of the sheaves #7 and “Z.

DEFINITION 2.5. Let 2 be an open set in D" X v —1R". We define
H7(R) to be the set of all H-valued (0,7) forms u on 20N C" which sat-
isfy the following conditions: for any positive € and any compact set K
in L2,

2 —€7(2) _
/KHC” fuliie oo and KNC™ 10w e =" dA < oo.

We denote by "7; the sheaf subovdinate to the presheaf {"7;(2)1}.

DEFINITION 2.6. Let 2 be an open set in D" xv —1R" We define
Hy.(R) to be the set of all H-valued (0,7) forms u on 2NC" which sat-
isfy the following conditions: for any compact set K in £, there exists
some positive constant 8k such that

[ lulie " @dh<oo and [ 1"3ulie’s " di <oo.
SENCT JKrnen
We denote by "%; the sheaf subordinate to the presheaf (7%;(2)1.

Then we have the following proposition.
ProrosiTioN 2.7.  The sheaves "7 and "7; are soft.

Proor. Let £ be an open set in D" x v —1R" We define #(2) to
be the set of all functions ¢(z) in C* (2N C”) which satisfy the follow-
ing conditions: for any compact set K in 2, sup, exnc™ | ¢(2) | <oo and
sup sexnc |V @ (2) | <oo. We denote by .+ the sheaf subordinate to the
presheaf | «(£2)!. Then «is a sheaf of ring with unit and the sheaves
Hyoand #7; are ~modules. Hence, in order to prove that “7; and *7%;
are soft, it is sufficient to prove that .is soft. However, formany com-
pact set K in £, we can find C,= K; X v —11; such that KCJQ}CJ- CCQ,
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where K is a relatively compact open set in R” or an open convex cone
and I, is a relatively compact open set in R". Hence we can find a C*
function ¢ (2) on C” which is equal to 1 on some neighbourhood of K N
C" and vanishes outside 2 with sup |@ ()| <o, sup|F¢(z)|<co. Hence
= is soft. This completes the proof.

PropPOSITION 2.8. | 22} and {#%;} give the soft resolutions of the
sheaves "7 and "C , respectively. That s,

H2y H Hg Ho Hg Ha H g Hg H
0 "0 - iz, — 2 > e D1 —> 2, — 0 (exact)

and
HA HA Hy Hy

0 = fHg— 17 = By — o > By > "7, — 0 (exact),
Let @ be an open set in D"x Yy—1R". Then we have the Dolbeault
isomorphisms:

H?(247) = {u e %2,(2) ;% ou= 01}/"9 ("2, (),

H2(2%0) = {ue2,(0) ;" u= 01/"9("%-.(2)).
(By H2(8,%0) we mean the p-th cohomology group with compact support.)

PrOOE. By the definitions of #7 and " and the existence theorem for
H3y = f with bounds (see lemma 1.8), we obtain the above soft resolutions
of 7" and #2. (We can use Cauchy’s integral formula to change the L
norm to the sup-norm for holomorphic functions.) This completes the proof.

Now we give another representations of the cohomology groups H(£,
#5) and H5(8, 7). For that purpose, we need some more function spaces.

DEFINITION 2.9. Let 2 be an open set in D" Xy —1R". We define
HX,(2) to be the set of all H-valued (0,7) forms u on 21 C" satisfying
the following condition: for any compact set K in £ and any positive e,

[ lulte™® dr <oo.
KNC"

o

DEFINITION 2.10.  Let 2 be an open set in D" X v/ —1R". We define
By () to be the set of all H-valued (0, j) forms u with compact support
in 2 satisfying the condition: for some positive 0,

[l lhem da <o

From the above definitions, it is evident that “X;(£2) has the natural
FS*.space structure and #Y;(2) has the natural DFS*-space structure and
By, (2) = [¥X,;(2)]. Then obviously H? (2 "7) is isomorphic to the p-
th cohomology group of the complex
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Hé Hé
o= IX, (2) = X, (2) > X (2) -
and H% (2 %) is isomorphic to the p-th cohomology group of the complex

;Hg _Hg
o> 1Y, 1 (2) - Y, (0) - Y (2) — -

§ 3. Vanishing theorems and duality theorems of cohomology groups.

In this section, we shall mention some vanishing theorems and duality
theorems of cohomology groups with #7 or 4 as their coefficient sheaves.

We shall also mention the relative cohomology groups with support in a
compact set K of D" x v/—1 R™.

DeriNiTioN 3.1(Kawai). We call an open set 2 in D" X/ —1 R" an
/-pseudoconvex domain if it satisfies the following conditions:
(i) supzexncr I Imz| = M< oo,
(ii) There exists a plurisubharmonic Junction 6 (z) on 2N C*"
which satisfies 1z;6 (2) < clC C 2 for any real ¢ and sup,., nenl (z)
=M. for any L C C 2, where M, is some constant.

THEOREM 3.2. For any /7-pseudoconvex domain 2 in D" x v—1R"
we have H*(2,%7) = 0 (s= 1).

Proor. In our case where @ is paracompact, H°(2,%7) is isomorphic
to the Cvech cohomology group. Hence we have only to prove the vanishing
of the Cech cohomology group. It is sufficient to prove q!iény} Hs({,},
™) = 0, where {2,! satisfies the following conditions:

(i) £ = U ,ev2, (locally finite open covering),

(i) 2, N C*= V, is convex.

The theorem is the special case of the following lemma 3.3.

We define “C*(Z{% o (1 V.| ; infraexponential)) to be the set of all H-
valued cochains ¢ = {¢,} which satisfies the following conditions:

<1) chy: 0 in Vu,

(ii) For any positive ¢ and any finite subset M of NS*!

Svew [ leullf e di < co.

Lrmma 3.3. For any ¢ € “C°(Z} ) ({ V.| ; infraexponential)) which
satisfies 8¢ =0, there exists some ¢’ € "C ' (Z'% 4 (1 V,}; infraexponential) )
such that éc’ = c. (8 means the coboundary operator.)

Proor oF THE LEMMA. Let {x./ be the partition of unity subordinate
to { V.l which satisfies the condition sup| Fx, | <co. Put b= X,;%:Ca
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Since 8c= 0, we have 8b= c. Hence 8%9b= 0 because “dc= 0. By
Cauchy’s inequality,

-[Va Ibelfe™" dA = ZJ_[Va 25 I Cialie™"% dA

for any positive e.  Since "9b, = X;0%; N Cjo from the condition on c,
by the assumption of {x.l, we have

ZaerVa HHgba H;zle_w(z) dA< CZ.JZ aEM Via H Cja H,?Ie“e”(z) dA< oo R

for any positive € and any finite subset M of N°, where C is some con-
stant.

We consider the case s = 1. The fact that 8§(¥4b) = 0 implies that
23b defines a global section f in this case. Then f satisfies the condition

2 ,—€n(Z)
[ o1 f e di< oo

for any positive € and any KC C 2 Hence, by the lemma 1.8 and the
existence of #(z), we can find a solution « of 3w = f such that

[ dulze™@(1+ 217 *dAa< oo
J KNC”

for any positive ¢ and any KC C £ We define ¢, = b, — u | V,. Then
H9c,=0 and ¢’ € #*C*(Z'% 4 (1 V.}; infraexponential)) and 8c'= éb=c
This proves the lemma in the case s= 1.

In the case s>1, we use the induction on s. By the induction hypoth-
esis there exists & € #C572(Z 5 4+ (1 V.}; infraexponential)) such that &b’
=%3b Then, by the lemma 1.8, we can find 5”€ #L%!%5(V,) such that

»="3b" and

Zaen |, 10615 (1+ 12 |") *dA< oo

for any positive € and any finite subset M of N°'. If we define ¢’ =0
— 8b”, it satisfies all the required conditions. This completes the proof.

Tueorem 3.4. Let K be a compact set in D™. Then H?(K, %) =0
p=z=1).

Proor. Since K is a compact set in D” K has a fundamental system
of neighbourhoods composed of 7-pseudoconvex domains £;(see Kawai
[77 p.473, Theorem 2.1.6). Then H*(K, ") =lmH*(L;%7). Hence
it is sufficient to prove li_;)nH"(.Qj, H7) =0 (p=1)] For any cocycle {cy}

in H?(2,,%7) we can assume that d = {d, = coshez X ¢, | 2.1} defines
a cocycle in H?(2;.1,77 ) for some positive e. Since H?(2;,1, "7 ) =0,
{d.} is a coboundary in H?(82;.,,%7), that is, d = 6d’ where ¢ denotes
the coboundary operator. If we put ¢’ =1{ cosh(—ez) X d’,}, c|l2;,,= dc’.
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Hence the image of H” (2, %) in H?(2;,,,% ) is zero. Therefore

y ~

lim H?(2;,%) = 0. This completes the proof.
THEOREM 3.5. Let 2 be an open set in D" x /' —~1R". Then H"(£,
) =0.

Proor. We use the notation in §2. From the last statement of §2,
in order to prove the theorem, it is sufficient to prove
has
0
Hy () — X, (2) — 0 (exact).
Let {K,} be an increasing sequence of compact sets which are contained
in 2 and exhaust £, and define

X (K,) = {u e LB (2N €7 fx.mc" o |z 73 gA< ool

Then "X, (2) =lm "X} (K,;) and #Y, (@) =lm ("X7(K,))’. We represent
("X7(K;))" by
\e "LE, (C") 5 supp uC K,N C* and [ lulGe?"® dA<ool

and (3 ="9. (Here we have used the natural identification of (0, /)
form with (0, »—/) form.) Then, in order to prove the surjectivity of
H3 it is sufficient to prove that “¢ is injective and of closed range.
However, since “® becomes an elliptic operator from “Y,(2) to “Y,-.(2),
it is trivial by the unique continuation property that “¢ is injective. Now
we will prove that "¢ is of closed range. For that purpose, by the usual
argument of DFS*-space (see the proof of the lemma 1.8), it is sufficient
to show that f € Im (¥9) assuming that “du, converges to f weakly in
IXI KD
We denote by K., the closure in D"x+—1R" of the union of K,

N C" and all the connected components of (C”— K,.,) which are relatively
compact with respect to ;che topology of R?”. Then,for each "du,,there

ists some wv,€ (*X3(K;.)) such that #9u,="9v,. In fact, if "du €
(X3 (K,)) and we ("X%(K.)) (j<k) then supp uC K,., because "9
is elliptic. On the other hand supzex;., n ¢~ |Imz | <oo follows from the
definition of the topology of D" x v —1R" Therefore it is seen from
Lebesgue’s theorem that

0= [((ouu), "0t = [ (0 (pm), gludd = [ (@n"9u, gludh—

J J

[ (ng,g)l‘ld/{y
where ¢,(z) = exp(— (1/ m) _:anz_'jz), 2D DLDDI%J-H and g€ X7, (L)
satisfying “dg= 0 and (, )» denotes the inner product in H.

(X (L) = lg LEE (N ) [ lglhe " di<ool )
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Hence, by the proposition 1.10, we may consider that "$u € 73 (HXJ;A(L))’
Then, using the ellipticity of “9 again, we can find some w € HX5(K;41))"
such that “du = "9w. Hence, by taking K; = K;, we may assume that

“9u, € ("X31(K;))" and uy € ("X3(K,))" and "9u, 2> fin ("X (K)))
from the beginning. Choose L so that K; CCLC C &, then

0= [ (9u, g)uar~ [ (,8),d2

for any g € #X7_,(L) such that “dg= 0. Then we have f="9ve ™9
(“X3,(L))’ by the proposition 1.10, again. Since by the unique continuation
theorem supp vC f{j(: K;), this means that f is in the range of “¥:
(X5 (K;)) ' — (¥ X7%_,(K,))’, and this completes the proof. )

THEOREM 3.6. Let 2 be an open set in D" x v —1R". If dim H?(L,
a7) <oco (p= 1), then (H’(77)) = HE (2% ) for j=0,1, -, n.

Proor. We consider the following dual complexes which was introduced
in the last part of § 2 - -

H Hg H H

0 0 0
0 — H)I?O(AQ) —)HX1<'Q> — HXn—l(‘Q) - HXn(‘Q)—) 0

_Hg 1 _Hy ong =
0 — Y, (2) « w1 (2) <o < HY Q) «— 1Y () <« 0.
From the assumption, we may conclude by Schwartz’s lemma that each” F]
in the upper row is of closed range (see Komatsu [9], p. 382, Theorem 20).
Hence the theorem follows from the Serre-Komatsu duality theorem for

FS*-spaces (see Komatsu [ 8 ], p. 381, Theorem 19).

THEOREM 3.7. Let K be a compact set in D™ x v —1R" for which
H*(K %) =0(p=1) hold Let V be an open neighbourhood of K.
Then we have H%(V,%7) =0(p+n) and Hx(V,*7) =["7 (K)], where
H2%(V,%7") denotes the relative cohomology group with support in K.

Proor. By the excision theorem, we may assume H?(V, %7 ) = 0(p=
1). Consider the following exact sequence
0 — HYV,"7) — H'(V,"2) — H(V=K,"7)
— Hx(V,"7) > HY(V,*7") - H' (V=K,"7)

— H}(V,"7 ) - H"(V,"7) > H"(V-K,*7) — 0.
Here H?(V,%7) = 0 (p= 1) by the assumption on V and H%(V,*7") =
0 by the unique continuation theorem. Hence we have the isomorphisms
(HX(V,"7) = H(V=K,"7 )/ H*(V,"7),
\HE(V,"7) = H (V=K,"7) (b= 2).
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On the other hand, we have the following exact sequence
0 —» HV-K"%) —> HNV,%) > H' (K, %)

y ~

— HNV=-K %) - H:(V,"¢) — H'(K,7)

— H2(V-K, %) - HE(V,"0) —> HY (K %7) — - .

Here H?(K, %) = 0 (p= 1) by the assumption on K. Therefore we
obtain the isomorphisms

{H °*(K,%7) = H. ( K1),

HE(V-K20) = B2 (V.72) (b2 2).

By the theorem 3.6, H? (V H7) = 0 (p= n). Thus we have the follow-
ing isomorphisms

[HE(V-K, %) =0 (p+1,n)

VHE(V=-K ) =["7 (V)]
Now we consider the following dual complexes,
p H3 79, Hon2 Hon1
0— "X, (V— K) %X (V-K) Xt (V=K) ——"X,(V=K)—0

I _Hg I _my e _n3 7

0 Y, (V-K) ——"Y, , (V-K)— ——QHYl(V~K)<——°HYO(V—K)*—O].
Then, since H¢(V-K, "7 )= 0 (p+ 1,n), the range of (—%3;) is closed
except for j=0, n—1. However, 73, is of closed range by the theorem
3.5. Hence, by the closed range theorem, —%3, is of closed range (see
Komatsu [ 8 ], p.381, Theorem 19).

In order to prove the closed rangeness of (—79,-1), we consider the
following commutative diagram,

HAV-K
n-1.

0 « Y, (V-K)<— Y (V=K)
Tio gy

0 « #Y,(V) Y1 (V)
(the map ¢ is the natural injection). However, in the dual complexes for
V, #3¥ is of closed range since H'(V,%7") =0. Thus, by the closed range
theorem, Im (—%8,%) = i=* (Im"3)_,) is closed. Therefore all —#3/ ¥ are
of closed range. Hence by the Serre-Komatsu duality theorem, we have
the isomorphisms [H?(V—K,"7 )] = H*?(V-K,"7 ). Hence we have
(H(V=K,"7)]" = HN(V=-K,%) = HX(V,% ) ~ [H(V,"7")]".
Here H(V-K,"7") and H°(V,"/") are both FS*spaces, a posteriori, re-
flexive. Hence we have the isomorphism H°(V, %7 ) =~ H°(V—K, 7).
Thus Hi(V,*7) = H(V-K, %77 )/ H(V,* 7 )=0. If p= 2, p+ n, we
have 0 = HF#H(V,"0) = HF " (V=K% ) = [H"(V-K,"7") ]" = [HE
(V, #77)]". Hence HZ(V,"77) = 0. In the case p — n, we have
(HZ (V" 7))V =[H™Y(V=-K,"7) "= H}(V-K,"0 ) = H*(K,"¢ ) ="/ (K).
Since ¢ (K) is DFS*-space, it follows from the Serre-Komatsu duality
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theorem that the above isomorphism is a topological isomorphism. Hence
we have the isomorphism HZ(V,#7)=["7 (K)]’. This completes the proof.

§ 4. Approximation theorem in "7 (K).
In this section we prove the analogue of Runge’s theorem.

Theorem 4.1. Let K be a compact set in D".  Then "7, =% (D"
is dense in %0 (K).

Proor. We need the following lemma.

LEMMAﬂ4.2<KaW3i). Let K be a compact set in D", and put U; = D"
V—11y 12;1 yi< (1/ 7). Then there exists 12}, a fundamental sysem

of meighbourhoods of K, which have the following properties:

(a) U;,DD 8, DDK and /s tend to K decreasingly.

(b)  For any j and any T(CC8;) there exist an open set V and 0 (2)
which is strictly plurisubharmonic in U; such that they satisfy the
following conditions:

(i) TccvVvccd;,
(ii) 6(z2 <0 on TN C,
(iii) 6(z) > 0 near 3VN C7,
(iv) For any LC C 8, there exists a constant M, such that
supzernctl (z) £ M, <oo.

PROOF OF THE LEMMA. See Kawail 7 ], p. 476.

Now we continue the proof of the theorem. For the proof of the the-
orem, we need some spaces. Let 2 be an open set in D" x+v—~1R" For
a continuous function ¢ on 2N C", we define “L2.(£2 ¢) to be the set

of all H-valued measurable functions f (2) on £ C”" which satisfy

[ oI flhe? di<o
for any KC C 2. Then, for a positive ¢, we define “ofc?(2) =L
(2, —2en(z) NPz (2N C" and "L%:° (R) =7L2.(2, —en(z)) and
HX~¢(Q) to be the closure of #« %% (R) in "L °(2).

Then we have the following lemma.

LEMMA 4.3. If e< 8 (<2¢), then "37°(R) is contained in "X (
2).
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Proor oF THE LEMMA. If we put

Hoy By > 208120 (Q) =ML GE.(R, — 87 (2) —2log(1+ [21%) N*7 (&N C7),
and & <4, we have

HJ/%(’)C_ZE' —2108(1+]212) (,_Q) ' HVQ/%C—ZE (.Q) - HM%C—S (.Q)

'S Hy%bga’, —2108(1+{z2|2) (,Q) )
|
Hence, in order to prove the lemma, it is sufficient to show that

Hort, =8, —210804129 (0 {g dense in Zo%s? —21081+1219 () when 8 < 4. We

also put HLE S 20012 (0) = H[ 2 (0 —en(z) —2log(1+ [21%)). We wish

to prove that p € (#L% % ~2°50+129(Q))" is orthogonal to "o foc® ~2EC+E0(Q)
if it is orthogonal to "o %% #80HZ9( Q) If we assume that ¢ is not or-

thogonal to fo %% ~2080H29( Q) by the Hahn-Banach theorem we can

find some # whose support is compact in £ with

[ ol e 2050412 g2 < oo

so that <u, v> = fng”(U’ u) udA for any v € ALE. "28HAN () If ¢ be-

longs to "o ~20e1H120 () and <u,¢> + 0, then ¢ (z)exp(—(1/ m) fz?)
Jj=1

belongs to "% c® ~20e0+27(0) under the condition supzeenc® |Imz | <oo.
Therefore we have

0 =<, @ (@exp(~(1/m) £ 23) >= [ (¢ exp(—(1/m) 22, u),dA

encC?® i=1

- /chn(“” u)udA = {u, @>

by Lebesgue’s theorem. This contradicts the assumption on ¢. Thus we
have proved that o 3,o% ~2080+20( Q) {5 dense in "% ~2080+29(0) 50
that we have proved that #«%:°(2) is contained in #X °(2).  This
completes the proof of the lemma 4.3.

Now we return to the proof of the theorem. Since "7, = lm#7Z({;)
and “(K) = lim “X°(2,), it is sufficient to prove the following state-
ment (*). &7
(*) If an element g of (!X ~°(2,))’ is orthogonal to B= " (U;,N C™")N

Hr 2 (U;,—87n(2), then p is zero.

From now on we fix ¢ and j, so we denote by “X the space 7X~°(2;)
and by U the open set U, and by £ the open set £,, Now we assume
that # +£0. Then, by the Hahn-Banach theorem, there exists some u
such that supp u is comact in £ and

fC"Hu [2e 7@ dA <oo and <#,v> = fgmc"<v’ u)gdA for any v €"X,
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Take supp v as T and fg: V and 6 (2) which corespond to 7 in the
lemma 4.2. We define C:Aszl{v € ILE(U; A6" — 8" n(2) —2log(1+ [21?) |

Hoy = 0} where 6*(2) =max {0,8(z)} and 2¢ > 8" >38. Then, by the
condition (iv) on f(z) in the lemma 4.2, C is contained in B. Since x¢is
zero on B and supp uC C £,

p, v> = fng"(U’ U)ydA = fm Cﬂ(v, UlndA = 0
for any v in C. Moreover, by the condition (ii) on #(z) in the lemma 4.2,
u (2) is zero where #(z) > 0. Defining gs (2) = cosh (8” z) we have

fUﬂC"(U’ u)ndA = fUﬂC”(vgs" (2), u/gs(2))udA,

where 2e > 8” > 6’. Here, from the first, we choose ¢ so small as to se-
cure gy (2 +0 in U. (The assumption has no essential significance.)
If we put 2 = #/gs (Z), then, by the proposition 1.10, we have some F
which satisfies the following conditions (i), (ii) and (iii) :

(i) %="9F,

(ii) F= 0 near aV N C",

(i) FefLEn(U;— (8" —8) n(2) +2log(1+ [217).

Then we may consider that f (z) = F (z) gs (2) satisfies the following con-
ditions:
(@) of=u,

(b) supp fC VCCU,

(©) fe®Lén(U;0'n(z) +2log(1+ [217).
Therfore, by an integration by parts, we can prove the following equality
for any v € o} (2) where 2¢ > 8" > ¢,

0= [, "0 udd= [ C,A”? (vgs(2)), £/ g5 (2))udA
= (vgor (2), "9(f/ gor (2)))ndA = f 0, 59 f ) ud A

ener
= fng"(v’ U)pdA = <p, v>

Thus we have proved that # is zero on a dense subset of X, so we may
conclude that ¢ is zero. Tl;lis contradicts the assumption on #, so that
must be zero. This completes the proof.

§5. The sheaf “% of H-valued Fourier hyperfunctions over D"

In this section, we shall prove the pure-codimensionality of D” with re-
spect to ?77. Then we shall define the H-valued Fourier hyperfunctions
and the sheaf ## of H-valued Fourier hyperfunctions over D" and study
some of their properties.
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First we shall prove the pure-codimensionality of D" with respect to
H
.

THEOREM 5.1. Let 2 be an open set in D". Let V be an open set in
D" x v/ =1R" which contains £ as its closed subset. Then H5(V,77) =
0 (p+ n). Here H5(V,%7") denotes the p-th relative cohomology group
with respect to the pair (V, V—8) whose coefficient sheaf is %7

Proor. By the excision theorem, we may assume that V=D"X
J=1I"— 9p~2 where I"= (—1,1) X+ X (—=1,1) and the symbol 4p-2
means the boundary of £ in D" which we denote by 02 in short in the
following. We denote U= D" x /—1I". Then, since U— 2°C V=
U— 32 C U where 2¢ means the closure of £ in D" we have the foll-
owing exact sequence

0 = H%W(UFR7) - H3 (U7 ) - HIV,"0)

o> HIG(U H77) o wreermeeeeeieeieni s,

............................................. — HEYV,HP)

— HY(U 7)) - Hi (U%7) >HZ(V,%7) — HiE' (UR7) = .
By theorems 3.4 and 3.7 we may conclude that H% (U, "7 ) =0 and
Hb (UH7) =0 for p=n+ 1, s0 H5(V,%7) =0 when p=n+1. In the
same way, it follows from theorems 3.4 and 3.7 that H§(V,%7) =0(0 <
p< n—2). On the other hand, the theorem 4.1 shows that j: (¢ (32))’
— (#7 (29) is injective. By theorems 3.4 and 3.7 again, we have the
exact sequence )
0> HZY V%7 ) — (’Lﬁ(a.Q))’L (%7 (29)’. Since j is injective, we have
HZ'(V,%7) =0. This completes the proof.

DEFINITION 5.2. Let 2 gndV be as in the theorem 5.1. Then we
define "% (R), the space of H-valued Fourier hyperfunctions on 2, by
HZ(V,%7"). (By the excision theorem, the space “#(82) is independent of
the choice of V.)

TuEOREM 5.3. The presheaf \"# ()} constitutes a flabby sheaf over
D", whose restriction to R™ coincides with the sheaf of H-valued hyper-
functions over R

Proor. From the theorem 3.5, we may conclude that flabby dim
H7" < n. Thus, by the theorem 5.1 and by the theorem 1.8 of Komatsu
[10], {*2(2)} is a flabby sheaf. The last statement of the theorem fol-
lows from the remark under the definition 2.2. This completes the proof.
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DeFNITION 5.4. We denote by %% the sheaf ("% (R)} over D™ and
call it the sheaf of H-valued Fourier hyperfunctions over D™,

TuEOREM 5.5. Let K be a compact set in D". Then HE(V,"7 ) =
("7 (K))', especially i# (D" = (17,).

Proor. This is a direct consequence of theorems 3.4 and 3.7.

Now we will study the vector valued Fourier hyperfunctions as classes
of vector valued slowly increasing holomorphic functions. Let £ be an
open set in D™ Then there exists an /7 -pseudoconvex neighbourhood V
of 2 such that VN D" = 2(see Kawai [ 7 ], p.473, Theorem 2.1.6).
We define V,;(j =0,1,-,n) by Vo=V, V,=1{ze V;Im z;# 0},

i =1,2,,n Then 7 = {V, Vi, Vol and 777"={V,, - V,} cover
V and V—£, respectively. Since V; and their intersections are also
7 -pseudconvex domains, the covering (7] 7°’) satisfies the conditions
of Leray’s theorem (see Komatsu [ 9], [10]). Therefore, by Leray’s
theorem, we obtain the isomorphism HZ(V,%7) =~ H*(7", 77, %7).
Since the covering 7 is composed of only # + 1 open sets V;(j =0, 1,
-+, n), we easily obtain the isomorphisms

Zn(7, ) =T (0V), I ) 2 @ (N V)
Hence we have

3O, 7 AP E L PP (N Vi) [ VAN = N0 Vi
J= !
Therefore we have the isomorphisms
H3(V,"7) = H*(o", 9,%7) = Z" (7, 7,"7)/8C™ (7", 97,77 )
EHﬁ<ﬂjVJ)/__Z1 N2V
Thus we get .

THEOREM 5.6. Let notations be as above. T@zen we have
H3(\V,*7 ) =H" (7, 7,%) %”ﬁ(ﬂjVﬁ/,:Zl”ﬁ(m#jVi).

§6. H-valued Fourier hyperfunctions as continuous linear operators
from ¢ (K) to H.

In this section, we will show that an H-valued Fourier hyperfunction
with support in a compact set K in D” can be realized as a continuous
linear mapping from ¢ (K) (= “¢ (K)) to H. In the following, we iden-
tify D" xV—1R">~D"x R* and C"=~ R"x V/—1R"~ R" x R".

DerINITION 6.1.  We define Si, »(C") as a space of type S of 1. M.
Gel'fand.
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That 1is,
S1a(C" = {f(2) € C*(C"); supmspzcc'Mp(2) | F(2) | <o (p=2,3,
) }’ where Mp(z) = p(UmQ-1/PIz| (j): 2,3, >’ and m=1,2, .

PRrRoOPOSITION 6.2.  The space Si1,»(C") is a nuclear space with semi-

Nnorms
||f Hm,P: SUp jalsp z€ C"Mp<Z> |f(a)(2> | (p: 2,3, ).

Proor. See Mityagin [11].

ProrosiTiON 6.3. Let K be a compact subset of D" x v —1R". Let
Si.n(K) be the set of all f(z2) € S1, w(C") such that supp f C KN C".
Then S.. »(K) is a nuclear space.

Proor. Si »(K) is a linear subspace of Si, »(C") . Hence S »(K) is
nuclear because Si, »(C" is nuclear. This completes the proof.

DEFINITION 6.4. Let 2 be an open set in D" x /—1R". We define
S1. w(R) to be the set of all functions f(z) € C*(2N C") which satisfy
the following conditions: for any compact set K in £,

SuD\aIéP,zéKﬂC"MP(Z) |f(a) (Z) | < o0 (p: 2,3, ),
where My (z) is as in the definition 6.1.

ProPOSITION 6.5. Let 2 be an open set in D" X v —1R" Then
S1.»(R) is a Frechet space with seminorms

Hf HK mp = Sup\aléP,ZGKﬂC"MP<Z) ‘f(a) (Z) |
for compact subsets K of £ and p =2,3, .

Proor. Let {K;} be a sequence of increasing compact subsets of £
which exhaust £ Then the family of continuous seminorms {1/ lk,, m, p}5=2
becomes a nondecreasing countable basis of continuous seminorms. Hence
S, »(£2) is a locally convex metrizable topological vector space, in partic-
ular, it is Hausdorff. However, it is easy to see that S, »(2) is complete.
Therefore S, »(2) is a Fréchet space. This completes the proof.

PROPOSITION 6.6. Let 2 be an open set in D" x v'—1 R" and let {K;}
be a sequence of increasing compact sets in £ which satisfy K; C C Kjin
and exhaust 2. Then Si »(R) is the projective limit of a sequence of
spaces S m(K;). Hence Sy, »(2) is a Frechet nuclear space.

ProOF. It is easy to see that Sy, »(2)= lmS, »(K,). Since Si, (K
is a Hausdorff space, Si. »(£) is a nuclear space by the proposition 50.1
of Treves [14]. This completes the proof.
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DEFINITION 6.7. Let 2 be an open set in D" x Y —1R". We define
o™ () to be the set of all holomorphic functions on 2N C" which sat-
isfy the condition: for any compact set K in £ and for p=2,3, ",

supzexnc*Mp(2) | £ (2) | <co where My(2) is as in the definition 6.1.

PRroPOSITION 6.8. Let O™(R) be as in the definition 6.7. Then
o™(R) is a Frechet nuclear space with seminorms

Hf HK mp = SUDzEKﬂC”Mp(Z) ’f(Z) |
for any compact set K in 2 and p=2,3, .

Proor. It is obvious that ~™(£) is a closed subspace of S, »(£2).
Hence ~™(2) is a Fréchet nuclear space. This completes the proof.

PROPOSITION 6.9. Let K be a compact subset of D". Let {Unl be a
Fundamental system of neighbourhoods of K in D" x /' —1 R" which sat-
15fy Un D D Unyr and each of whose components contains at least omne
point of K. Then ¢ (K) = lm 7™ (Un).

Proor. Since ¢ (K) =lim 7 (Un by the definition 1.1.4 of Kawai
[ 7], it is sufficient to prové <2(Un) C ™ (Un C 78 (Up). How-
ever, it is trivial. It is also trivial that {#™(Un) ! becomes a compact in-
jective sequence of locally convex spaces. This completes the proof.

CoroLLARY 6.10. Let K be a compact subset of D". Then ¢(K) and
(7(K)) = HR(V, 7) are nuclear.

Proor. Since, by the proposition 6.9, ¢ (K) is a injective limit of a
compact injective sequence of nuclear spaces and it is a DFS-space, the
corollary follows from propositions 50.1 and 50.6 of Treves [14], p.514
and p. 523.

For the case of vector valued functions, we give

DEFINITION 6.11. Let 2 be an open set in D" x v/ —1R". We define
Hoym(Q) to be the set of all H-valued holomorphic functions on 2N C"
which satisfy the condition: for any compact set K in £ and for p =
2,3, ", the seminorms

“|f“|1< m, b= SUDzeKOC”Mp(Z) Hf(Z) HH<°°,
where M ,(2) is as in the definition 6.1.

ProposITION 6.12. Let K and {Un} be as in the proposition 6.9.
Then "¢ (K) = lim® 7™ (U,).
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Proor. In this case we have the inclusion relation %277 (U,) CH7™ (U
CHo™ 1 (Upyy) and the natural injections are continuous. Therefore, since
B2 (Uy), tmerml is a weakly compact injective sequence, (%7 ™(Un),
Umsz, m] becomes a weakly compact injective sequence of locally convex
spaces. Hence *7 (K) = hm Bo 2 (Unm) ”hmH " (Un) -

This completes the proof

ProposiTiON 6.13. Let 2 be an open set in D" X v/ —1 R".
Then o™(2) R H is dense in 7™ (Q2).

Proor. Let f(2) be in #™(2) and let K be a compact subset of 2
and let € be a positive number. Smce Jim_ My(2) If (2 |ls=0 for any p(=

2,3;), My(2) f (2) is uniformly contmuous in KN C”.- Thus we can ex-
tend M,(z) f (2) to K continuously. Therefore the extension (M,(2) f ()
of M,(z) f(2) to K is continuous on K, so that it is uniformly continuous
on K. Hence we can find a finite open covering V3, -+, V; of K such that
for each 7 =1,2, -, r and each pair z, 2z’ € V;

IMp(2) f (2) — My(2) f (2) [u<e.
In each set V; we pick up a point z,. Let E be a closed subspace of H
spanned by {f (z1), -, f (z,)| and let Pz be a orthogonal projection on E.
Then P:zf (2) belongs to 7#™(2) ® H and for z € V,; we have

I Mp(2) f (2) — Mp(2)Prf (2) |u

< IMp(2) f (2 — Mp(2;) f(25) lu+ | Mp(z;) Pef (2;) — Mp(2) Pef (2) |u

< 2e.
Hence, since {V;} covers K, we have

supzexnc My (2) | f (2) — Pef (2) [u< 2 €.
This completes the proof.

ProprosITION 6.14. LetAQ be an open set in D" X v/ —1R"
Then "™ (2) = o™(2) ® H.

Proor. Since ~™(£) is nuclear, ~7™(82) ® H= o™(2) ® . H. Hence,
because of the completeness of #7™(2) and in virtue of the proposition
6.13, it is sufficient to show that #2™(2) induces on #™(2) ® H the to-
pology €. We observe, first, that “~™(£2) can be canonically injected in
L(H7; o™(2)). Indeed, let f (z) €~ ™(2) and consider the complex val-
ued function, defined on 2, z—<e’, f (2) > where ¢’ is an arbitrary ele-
ment of H’. It is easy to see that the function <e’, f(2)> belongs to
o™(2). Now let K be a compact subset of £ Then (M,f) (K) is a
compact subset of H, where (M,f) 1is the continuous extension of M,f

to K, and then the closed convex balanced hull I" of (M,f J(K) is also com-
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pact since H is complete. Thus it is, a fortiori, weakly compact. If ¢’
belongs to the polar of (1/¢) I, which is a neighbourhood of zero in H7,
we have
sup zex ncMp(z) 1<e’, f(2)> | < e
This shows that the mapping ¢’ b (zt=><e’, f (2)>) is continuous from H;
into #™(2). Now let U= {h; |hl<e} and let U’ be its polar and let
K be a compact subset of 2. Then it is equivalent to say that M,(z) f (z)€
Ufor all ze KN 2or to say that | My(z)<e’, f(z)> | <1 forall ze KNL
and for all e’€ U°. This shows that the topology of #7™(2)is equal to the
topology induced by L.(H7; #™(2)). Hence in virtue of the proposition
6.13, we have N

Hom(Q) =po™(Q) ®. H
and this completes the proof.

ProposITION 6.15. Let 2 be an open set in D" X v —1 R".
Then ("o™(R2)) = L,( 0™ (82);H).

Proor. By propositions 50.5 and 50.7 of Treves [14], p.522 and p.524,
and by the proposition 6.14, we have

(fo™(Q)) = (#™(Q) ® H) = L,(0™(2); H).
This completes the proof.

THEOREM 6. 16 Let K be a compact subset of D",
Then HE(V,"7 ) = L,(Z (K); H).

Proor. Since, by the theorem 5.5, HZ(V,#7") = ("¢ (K))’, we have
only to show that (%7 (K)) = L,( ¢ (K); H). Let {Unl be as in propo-
sitions 6.9, and 6.12. Then, since #7 (K) =lm"2™(U.), we have

=5

m

(%“(K))’th( "(Un) ) ~—~llme( "(Un) ; H).
However, smce Z(K) -—hm ﬂ (Um), we have
Lb(f(K)‘fﬂ“’thb( (Um), H).

Therefore (¢ (K))' =L, (¢(K);H).
This completes the proof.

THEOREM 6.17. Let K be a c/gmpact set in D™,
Then HE(V, %7 ) = HE(V, 7) ® H.

Proor. By the corollary 6.10, and by the proposition 50.5 of Treves
[14], p.522, we have L,(.¢ (K);H) = (¢ (K))'® H. Since (¢ (K)) =
HZV,7) and L,( ¢ (K); H) = HZ(V,"7 ), we obtain the isomorphism
HE(V.87) =~ HE(V, 7) ® H This completes the proof.
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COROLLARY 6.18. LetAK be a compact subset of D7,
Then " (K) ~ ¢ (K) ® H.

ProoF. We notice that the isomorphism (¢ (K)) = (¢ (K)) & H
follows from the theorem 6.17. Since 7 (K) and £ (K) are DFS*  and
DFS-spaces, respectively, and ¢ (K) as well as (¢ (K)) is nuclear, we
have %7 (K) =~ ((¢ (K)) ® H) = ¢ (K) ® H by the proposition 50.7 of
Treves [14],p.524. This completes the proof.

§ 7. Fourier transformation and the Paley-Wiener theorem

In this section we introduce the notion of the Fourier transformation
of the elements of “%#(D"), by which we give the explicit formula of op-
eration of 2% (D" on %,. Next we give an analogue of the Paley-
Wiener theorem.

ProposiTioN 7.1.  If we define .F¢ by fe“"’ “ox) de for ¢ € T =
O (D", then 7 gives a topological isomorphism from Py to 7.

Proor. See Kawai [ 7 ], p. 483, Proposition 3.2.4.

DEFINITION 7.2. Let ¢ be an element of L,(7; H), then we define
S *u by the formula 5 *p () =p(Fe) (V ¢ € %), We also define

Frule) = u(59), where Fo= 1/(2”)”f67i<x’ o (x) dx.

Denoting the closure of j-th quadrant in D” by K, we obtain the fol-
lowing theorem.

Tg;lEOREM 7.3. Every element p € L,(7; H) can be decomposed as
#=2p; where p; € L (& (Ky); H).

Proor. This is a direct consequence of theorems 5.3 and 6.16.

If we define Vo=D"xv—11" V;=D"x/—1{yel": y;+ 0}
(where I = {—1<y<1}), 7 ={V;|’-pand 7 ={V;}%,, we obtain
the isomorphism H™- (D" x v —=1I"%7) = H"( 7, 7"',%7 ) by Leray’s the-
orem (see Komatsu [ 9 ], [10]). Thus we can represent any element # of
Hb (D" x y/=11"%7) by some element in #7° (V,iN - N V,, which we
write by {@., -, ¢} = [@].

Using this isomorphism, the operation of #% (D" on % is given by



On the Theory of Vector Valued Fourier Hyperfunctions 27

Lol (f) =jiZj (—Uklf[lsign ekf _: f%(xl—l- 1€1, """ ,Xn+ 1€,

f<x1+i€1,"‘, xn‘*‘ien) dxi-+ dxn (*)
where |e,| is sufficiently small but not zero and sign €; = ¢,/ | ¢, |
and the integrals are the Bochner integrals. In fact, it is clear that any
[¢] defines an element of L,(.%,; H) by the well defined integration.
We denote by ¢ this map from “% (D" to L,(%,: H). We want to
construct the inverse map x of «.

DEFINITION 7.4. Using the decomposition of ¢ of the theorem 7,3, we
define 7sp = {F;(8)}, which is an element of H"(7, 77,77 ). Here
F;(§) = (—=1) 'y, (e*%). (Im & belongs to the j-th open quadrant.)

Then ¢ is well-defined. For {F;({)! is independent of the decom-
position of ¢ in the theorem 7.3. In fact, since % = ¢ (D" is dense in
2 (K,) by the theorem 4.1, we can consider that L,(Z (K;): H)C Ly(Z
(D™ ; H). Hence the ambiguity of the decomposition # in the theorem
7.3 comes from an element v belonging to L,(Z (K;) ; H)NL,(Z (K. ; H).
Here we consider the exact sequence
0— 0 (K; UKy =0 (K;) DI (Ky) =2 (K;N Ky — HYK; UKy Z)—--.

w v
(f, ) f—g
Then, since H'(K;UK, < ) =0 (see Kawai [ 7 ], p.481), such an element
v can be considered as an element of L.( ¢ (K,NK, H). Hence,

v(e’*%), considered as an element of Hp (D" xy/—11"4>), gives a
null-element. Therefore the above definition 7.4 of .%.# makes sense.

Now we define the map «x.

DEFINITION 7.5. Let ¢ belong to L,(%; H), then we define x(p) =
T T *p).

THEOREM 7.6. The composed map t o x: Lo(Fy; H) = Ly (%,; H) is the
identity map and ¢ is injective, so ¢ and x ave bijective.

Proor. At first, we prove that ¢ o x = id. In fact, we have the fol-
lowing identity for any f of 7.
coxl(w) () =% [ [ viler=) £ (8 d&, - dé,
=Xw( [ [er=or(g) ag)

=v(Ff) = T u(FF) = ulf).
where we put % *u =y, This proves that ¢ o x = id.
Next we prove the injectivity of «¢. Define
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fela) =exp(= £ (- 209/ @a/=1)" 1T (£, 2))

and consider the following path of integration I'{ and I'j on the j-th co-
ordinate plane.

Figure

D" D

Xt; ‘ ri Xt I

If we assume ¢[¢] =0, then

fr‘ x...xpnqa (Z) ft (Z) dz=20

Therefore we have, denoting by (7, -, 7, the #n-tuple of 1 or 2,
@ (t) = Z iy e imr, o n(— 1)i1+m+m_/' n® (2) fe(2) dz

1‘1.1l X+ X T
by Cauchy’s formula. The right hand side, however, belongs to

Y%7 (N +;Vs). Thus we have only to estimate ¢ (¢). Now we have the
estimate ||@ (2) |#< Ae s ee®® on {6< |Im 2, | <8’ <1; j=1, -, nl for
every e, &, &', by the definition of H"( %, 7',%7 ). This means le (¢) I«
< B.e®' as far as |Im ¢ | is sufficiently small. This proves that [¢] is
zero as a cohomology class, that is, ¢ is injective. This completes the
proof.

This theorem proves that the operation of (D™ on 7, is given by
the integral (*). In the definition 7.4, we have defined the Fourier
transform of the element of #%#(D") via “boundary values” of H-valued
holomorphic functions in tublar domains. We call this Fourier-Carleman-
Leray-Sato transformation, and denote by -#s. Then

THEOREM 7.7. Fs= F *.

Proor. For an arbitrary f€ 7
Fanlf) = Ty [usler =) £8) dE=p(f e’ f (2) dE)
=p(5f) =5 *p(f).
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Therefore we may conclude that %5 is the same as . * in the definition
7.2.
This completes the proof.

ReEMARK. We denote by -7 these two Fourier transformations % =
% * symbolically, considering as an operator of “#(D" = H’.(V,%7).

ProprosiTioN 7.8. Let F be an H-valued Fourier hyperfunction over
D" Let (@] be its vealization as a boundary value of H-valued slowly
increasing holomorphic functions and let p be its realization as a con-
tinuous linear operator from F to H Then x(¢) = [¢]. And then,
for any e € H, ([el,e)n=[(p,e)ul € H*"(7; 7', 7) and vipe) € (F)
are both scalar valued Fourier hyperfunctions and k(v .) = (L @], ),
where v e 1s defined by the formula <vi e, f>= (#(f),e)n for all f €
F, and k is the map from (%) to H* (7, 7, 7 ) defined by Kawai
(7], (p.484, Definition 3.2.8). We denote by (F,e)y this scalar valued
Fourier hyperfunction.

Proor. The fact that x(¢) = [¢] follows directly from the definition
of x. Using the formula (*), we have, for f e .%,

Ve, o= ((f),e)n
2n n oo
= (Zl(——l)glsignek/_mqoj(xl+z'sl, N T T N ACTE S LI N Sy

i=

dxl "‘dxn,e)y
an n o )
=2 (—1) Ql sign ekf_w( ilxi+der, r xntten), e)uf (xi+iey, - x,

+ den) dxycc dxy
=< (¢, e)ul, f>.
Hence £ (viue) = [ (@, e),]. This completes the proof.

ProrosiTiON 7.9. Let F be an H-valued Fourier hyperfunction over
D" Then for any ec H, (9F,e)p= F(F,e)n

Proor. Let u be a realization of F as a continuous linear operator
from % to H. Then viye,= (F,e)u, vi ~*pe= (FF,e)n Therefore for
any f € J. we have v s ruo)(f) = (5 *ulf), elu= (1 (Ff), e)u
= Vine( T f) = (Favime) (f). Hence (FF,e)p= F(F,e)n This completes
the proof.

Next we study the Fourier transformation from the view point of H-
valued holomorphic functions in tublar domains.



30 Yoshifumi ITO and Shigeaki NAGAMACHI

THEOREM 7.10. Let I' be a closed and strictly convex cone in R" | that
is, a closed convex cone which does not contain any line in the whole,
and let K be its closuve in D". For the sake of simplicity we assume
that the vertex of the cone I' be at the origin and 'C C {x, = —e}.
(If A and B are cones, A C C B means that the closure of A has a com-
pact neighbourhood in the closurve of B with respect to the topology of
D") Then every ¢ in L, (¢ (K);H) has the following properties;
# (e ) 4s holomorphic in R" X v —1(I")" and satisfies the following
estimate (1).

(t) Forevery I'"CCI” and ¢ >0 we have

lp ()|, =C. exp(elRe {1+ xpn(0Im &), $€ RPx /117,
where Xre(n) =SUDx er—ea,o,-0)(—<x, 7> +¢elxl). (In the above no-
tation T'" means the polar set of I, that is, {€&; <x,€>=0, vxeTIl.)

Proor. In view of the topology of ¢ (K) the proof is immediate.

The inverse of the above theorem is also true. Let F (&) be an H-val-
ued holomorphic function defined in R™ X v/ —1(I)* for some closed and
strictly convex cone I" and it satisfies the growth condition ( T ) given in
the preceding theorem. Then we can consider that F(¢) defines some
cohomology class # in H%(D"x v/ —1I1",%7) in a natural way as"bound-
ary values”. Then # can be considered as an element of L,(%; H) and
we can find some v uniquely such that % *v = g by the proposition 7.1
and the definition 7.2.

Then we have the following theorem.

TurorREM 7.11. The element v can be extended to a continuous lin-
ear operator from ¢ (K) to H where K is the closure of I' in D", that
s, v can be regarded as an element of L,(¢ (K); H).

Proor. The convexity of I' reduces the situation to the case n =1.

At first, we give the proof of the theorem when » =1. By Kawai’s
approximation theorem (see Kawai [7 ], p.474, Theorem 2.2.1) and the
definition of the topology of ¢ (K ), it is sufficient to prove the following
estimate: let 7 (&) belong to ¢.™(Un where Un=Dx/—=11{y; |v|<
1/m!, that is, let supimg<unlf (§)e™| <oco be satisfied by f (&), then,
for any positive e, there exists C. such that

IFA =1 7" F (8 £(0) a8l

= Cesupzere ’(7‘_]“) <Z) ee'z‘ ’ (O < 8< < 1)
where I'e= {x+ iv;x= —e, |v|<el assuming I'={x=0/{. Then v can
be extended to a continuous linear operator from ¢ (K) to H.
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In order to prove the estimate, since 7 : .7, —.% is an isomorphism,
it is sufficient to prove
|[F&) (fe (2 dd dt Iux Cosupacr, |22 e |,

where g (2) = (9 f) (2).
In order to prove this inequality we denote the integral in the left
hand side by /. Moreover we define

Je= v/.&‘+i6, ,:égoF(§> (fx_me—igzg (2) dz) d§,
J-= »/:?+ia ééOF(C> ('/‘xﬂ.seﬂ.gzg (z) dz) d§,

and

Jeo= [ F@OU[ ez do) dt,

Jo-= feﬂ'a, égoF(§> (fx_i& xé_a,e_igzg (2) dz) d&,

S = »L+i8, @goF“’) <fx+ia, x;_ye—itzg (Z) dZ) d§,

Jo=f  FOf . eelz) de) db,
£+i8,£=0 X+i8, x=—8

where 0 <8’ <<1.

Trivially we have /=J.+ J_and J,=Jv+ Joo, J-=J-++ J__.
Since the values | /.. lz and |J_. [l are smaller than the right hand
side of the required inequality by their definitions, it is sufficient to prove
the following statement in order to obtain the desired inequality: for every

>0 and & >0, [J.-+J |u< 8 if & is sufficiently small.

We denote J,_ by J(I,A) and J-— by J(II, B), where the paths of
integration are as below. Just in the same way we denote by J (I, A"
etc., the integral over the path of integration I X A" etc..

Figure
7=Im { ¢ —plane y=Imz
B in A z—plane
1
EY
I
BN
H I
Bilia .
il V| s
Il I
o
yi L1270 N x=Re z
B A I,
£=Re¢

By the condition ( T ) we can easily conclude that J(I,A’) and
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J (11, B’) tend to zero as 7, tends to infinity. While we have (J,_+ J__)—
JILA)+J(1,BY) =], e +J(1I,8) =J((I-11), @) = —J(IIl, a) since
JI+IM—1I,a) =0 by Cauchy’s integral theorem. Hence it is sufficient
to prove |[J (I, )|y tends to zero as 7, tends to infinity.

Using the condition ( ¥ ) again, we have the following estimate for

every ¢ >0:
17 Flie) ([ ew(—iz8)g @) @2) dr L

< Cyf: exp(8'7/2) (f_iexp(—é’f) dvy) dr
=28C3'ﬁmexp(—8’r/2) dr= Ky 0.

Thus we have the desired result .

When the case n =2, we consider as follows. Since I' is a closed
convex cone, we can represent ['=(1.H. where H,= {x;<x, &> =0/{.
Then we can prove the following estimate just as in the case of n = 1.
After some affine transformation if necessary,

’]fF<§17, gn) (f€7i<§,z>g (Zl, H Zn) dZ1dZn> dgldzn ”H

el 2| r

= Cesupxlé—e,ly(ée ’g(z) €
for every small e >0 when g(z) satisfies the estimate
Sup im z1<um | g (2) e™#] < co. This concludes that v can be regarded as
an element of L,( ¢ (HE;H). On the other hand L,(¢(HE; H) is iso-
morphic to Hjg(D" X v —11I",%7") by the theorem 6.16. Thus v can be
considered to belong to NeHfie (D" X v —11"%7") = HA.ug (D" x vV —=11",
H7) since {“#(2)! constitutes a sheaf on D" This proves that v belongs
to HZ(D"x v —=1I"%7) = L,(¢ (K):H). This completes the proof.

ReEMark. Theorems 7.10 and 7.11 can be regarded as an analogue of
the Paley-Wiener theorem.
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