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§ 1. Introduction

Let Mand N be Riemannian manifolds of dimensions » and #,
respectively. Recently, two of the authors introduced the concept
of a quasiconformal mapping f: M — N and applied it to obtain
distance and (intermediate) volume decreasing properties of har-
monic mappings between Riemannian manifolds of different di-
mensions [1]. In this paper the concept of a mapping f: M— N of
bounded dilatation is introduced which is more general and natural
than that of a K-quasiconformal mapping when » and » are great-
er than 2. Anexample of such a mapping which is not K-quasi-
conformal is given which is even harmonic. The main results in
[1], viz., generalizations of the Schwarz-Ahlfors lemma as well
as Liouville’s theorem and the little Picard theorem are valid for
this class of mappings. This is due to the fact that | £,[|* / [A*f.ll
is bounded if /is K-quasiconformal or if f is of bounded dilatation.

Let f: M — N be a harmonic mapping of bounded dilatation
of Riemannian manifolds. If the ratio function |f, [|* of distances
attains its maximum at x e M, then under suitable conditions on
the bounds of the sectional curvatures at x and f(x), f is distance
decreasing.

If M is a complete connected Riemannian manifold of constant
negative curvature —A4, in particular, if M is the unit open m-ball
with the hyperbolic metric of constant curvature —A4, the condition
on | f,|| may be dropped. Indeed, let N be a Riemannian mani-
fold with sectional curvatures bounded above by a negative con-
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stant depending on A. Then, if f: M — N is a harmonic mapping
of bounded dilatation, it is distance decreasing .

The technique employed to prove this statement also yields
the following fact.

Let M be a complete connected locally flat Riemannian mani-
fold and let N be an n-dimensional Riemannian manifold with ne-
gative sectional curvature bounded away from zero. Then, if f:
M — Nis a harmonic mapping of bounded dilatation, it is a con-
Stant mapping.

§ 2. Mappings of bounded dilatation

Let V be an Euclidean vector space of dimension m and let V'~
be its dual space. Let {e, -+  e_| be an orthonormal basis of V
with dual basis {w, - ,w,{-A quadratic function on V'is an ele-
ment of (V' ® V)", so since (V @ V)" is canonically isomorphic
to V*® V" a quadratic functionon V may be written as
f=2l0, ® w;. If f is positive semidefinite an orthonormal
basis {e;} can be chosen so that f,=0 for i=jand f,=y?>0 for
i=1 ,--- ,k<m, where k=rank f.

Let W be an Euclidean vector space of dimension z with inner
product %, and let i V — W be a linear mapping of rank k<
min (m, n). We choose an orthonormal basis {e,} of V' so that

F*//L:Z' ')/iza)i Ruw..

The vectors 5 =(1/7y,) Fe, i1=1,..-, k, therefore form part of an
orthonormal basis of W. (If all of the y, vanish, F=0.) Let X=
>"x‘e, be a vector of unit length and assume F+0, then FX=
> vin, ,where x'=y"/y.. Consequently, if Fis of rank % it maps
a unit (k-1)-dimensional sphere of V to a (k-1)-dimensional ellips-
oid of W with semiaxes of lengths y =7,>--= 7,>0, where y/=
A, i=1,---, k are the eigenvalues of ‘FF: V — V.

1

DEFINITION 1. The ratio
[=L— s=1,., k-1

s+1

will be called the s-th dilatation of F.

The mapping F. V — W induces a mapping
NF: N Vs AN* W, p<wmin(m, n) given by
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A K gil/\"'/\ei,,>:Feil/\'“/\Fei,,a

where 1 <7, <i,<--<i,<m. A'F may beregarded as an element
of A"V QAW A norm | | can be defined on this space in
terms of inner products on ¥V and W so that
I AN FIP= 32 Awr A,
n< <y,
If l<p=<qg<s<kand [, <K, the following fact is easily estab-
lished.

LEMMA 2. 1.
LR < KR

(5) (@)

In the sequel, it is assumed that M and N are Riemannian
manifolds of dimensions » and #», respectively. Let f: M— N
be a C mapping and (f,), : T.( M) — T,,(N) be the induced map-

ping of tangent spaces at x.

DEFINITIoN 2. If either (£ ),=0 at each point xe M or if any one
of the dilatations /;(x), i=1, ---, k—1 is bounded on M, then f is
said to be of bounded dilatation. )

For a nonconstant mapping of bounded dilatation, /,(x) is al-
ways bounded. In this case, K will denote the 1. u. b. of /,(x)and f
will be said to be of bounded dilatation of order K.

REMARK. Since /; (x)</;(x) for i<j<k a K-quasiconformal
mapping in the sense of [1]and[3]is a mapping of bounded dilata-
tion. If m=#n=2 the two notions are identical. However, for
m and » greater than 2 a mapping of bounded dilatation is not
necessarily quasiconformal as the following example shows.

Let U be the open submanifold of E3given by {(x, 3 2)e E*;
x4 v2>1/(a+1)?, a+—1}, andlet f: U— E’ be defined by

1

f:: <—é<xz—y2), 3xy, mZ)
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Then, the eigenvalues of %f. are A,=9(x"+ ¥, A=x+y?and A=
1/(a+1%. Consequently, /(% 5 2)=3 and [,(x 3 2)=
3(a+1)/(x*+y)*. Observe that / is also harmonic.

In the sequel, a mapping of bounded dilatation will be assumed
to have the same rank % at each point of M.

LEMMA2. 2. A Cmapping f . M — N is of bounded dilatation of

ovder K if and only if
| /P <kK | APFL

PROOF. The necessity follows from Lemma 2. 1. For the suffi-
ciency suppose that /,=(A,/A,)* is unbounded. Then,

A

AR,
_ A Aa Ay M Ayt
_(A +1+A2+ +/\2)/( 2+termsg/12)

22y By =gt (5 = (5)

so | £,1°/ | A*f, ] is unbounded.

§ 3. Harmonic mappings of bounded dilatation

The principal results in [ 1] may now be extended to mappings
of bounded dilatation. Only statements of theorems are given.
Details will be presented elsewhere.

THEOREM 3.1. Let M and N be Riemannian manifolds of di-
mensions m and n, respectively and let f . M — N be a harmonic map-
ping withrank £=2. If | £, |’ attains a maximum at a point xe M,and
if (a) the sectional curvatures of M at x ave bounded below by a non-
positive constant—A or M is an Einstein manifold with the scalar cur-
vature R at x satisfying R=-m(m—-1)A, and (b) the sectional curva-

tures of N at f(x)are bounded above by a nonpositive constant —bB, then

BI £ V' Pk x) A,
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COROLLARY 3. 1. Let f: M — N be a mapping of bounded dilata-
tion. If M is locally flat and the sectional curvatures of N are bounded
above by a negative constant — B then either | f,| does not attain its
maximum or f is a constant.

The following result generalizes Theorem 5.3 in [1].

COROLLARY 3.2. Let f: M— N be a harmonic mapping with
rank f=2. Suppose that the function | f,|* attains its maximum at xe M.
If (a) the sectional curvatures of M at x are bounded below by a non-
positive constant—A ov if M is an Einstein manifold with scalar cur-
vature R at x satisfving R=—m(m—1)A, and ( b) the sectional curva-
tures of N at f(x) are bounded above by a negative constant—B, then

’ 1/p —_—
(3.1) u /\pf*llz”’gk@) @-2—1 AU, 1<p<k
In particular, we get

COROLLARY 3.3. Under the assumptions of Corollary 3.2, if B=
(m—1) Kl x)A/2 and M is connected the mapping f is distance decreas-
ing.  If m=nand B=n(n-1)1(x)A/2, then fis volume decreasing.

COROLLARY 3.4. Let M and N be Riemannian manifolds of
nonpositive constant curvature and f. M— N a harmonic mapping
with vank f= 2. Then, if M is locally flat so is N (cf. Theorem 3.6).

If M is the unit open m-ball with the hyperbolic metric of con-
stant curvature —A, the requirement that | f,|| attain its maximum
on M may be omitted and we obtain

THEOREM 3. 2. Let B” be the m-dimensional unit open ball with
the metric ds*=4)dx?/ A(1-r2, A>0,and let N be an n-dimensional
Riemannian manifold with sectional curvatures bounded above by a
negative constant—B.  Then, if f: B"— N is a harmonic mapping of
bounded dilatation of order K, the inequality (3.1) s satisfied, if
L(x) is replaced by K.

Let E"denote Euclidean m-space with the standard flat metric.
Then the same method of proof as that of Theorem 3. 2 yields
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THEOREM 3.3. Let N be an n-dimensional Riemannian mani-
fold with negative sectional curvature bounded away from zero,and

let fiE " N be a harmonic mapping of bounded dilatation. Then,
f is a constant mapping.

If :S— Mis a Riemannian covering we have easily

LeMMA 3.1. Let f: M— N be a C™mapping and f=f - r. Then,
| ATl = 1Al s %S,

If M is a complete connected Riemannian manifold of con
stant curvature ¢, then its simply connected covering is

S™if ¢>0, E™ if ¢=0and B" if ¢<0,

where S™ is the m-sphere of constant curvature ¢(>0) and B” is
the unit open m-ball with the metric ds'=— 43 dx¥ ¢(1— % of con-

stant curvature ¢(<0).Hence, by Proposition 4.1 of [1], Theorems
3.2 and 3.1, and Lemma 3. 1 above we get

THEOREM 3. 4. Let M be a complete connected Riemannian mani-
fold of positive constant curvatuve and let N be a manifold with non

nositive sectional curvature. Then, if . M — N is a harmonic mapping,
it 1s a constant mapping.

This fact is well-known (see [1]).

THEOREM 3. 5. Let M be a complete connected Riemannian mani-
Jfold of constant negative curvature—A and let N be a Riemannian mani-
fold with sectional curvatures bounded above by a negative constant
—B.Then, if f: M — N is a harmonic mapping of bounded dilatation of
order K the inequality(3. 1)is satisfied, if 1,(x) is replaced by K.

Thus, if B=(m—1)k’K*A/2, the mapping fis distance decreas-

In the equidimensional case, if B=n(n —1)K'A/2, f is vol-
ume decreasing.

ing.

THEOREM 3.6. Let M be a complete connected locally flat

Riemannian manifold and let N be a Riemannian manifold with neg-



ative sectional curvature bounded away from zevo. Then, if f:M—N
is a harmonic mapping of bounded dilatation, it is a constant mapping.

Theorem 3. 6 generalizes Liouville’s theorem and the little
Picard theorem. For, in the first case, a bounded domain in C is
contained in a disc which has constant negative curvature with
respect to the Poincaré metric, and in the latter case, C -{2 points}
carries an hermitian metric of constant negative curvature.
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