J. Math. Tokushima Univ.
Vol. 7. (1973), 37-48

On Exact Expressions for the Expected Values
of Certain Normal Order Statistics

By
R.M. RENNER

(Received May 15, 1973)

Abstract

The expected values of normal order statistics have hitherto been
expressed in terms of elementary functions just for samples of size
n < b, their detailed computation for samples of size n>5 having been
accomplished by methods of numerical integration.

In this paper it is shown that by reducing a particular plane
double integral to a convergent series, explicit expressions can be set
out for the expected values of the order statistics of samples of size
n <7 drawn from a unit normal parent.

1. Introduction and Summary

The moments of normal order statistics have attracted the attention
of a number of writers possibly because in addition to their theoretical
interest, the laborious nature of the computations involved in their evalua-
tion has provided a continuing challenge to many mathematicians. Ruben
[8]has set them into a generalised context by demonstrating that they are
(together with the moment generating functions of the squares of normal
order statistics) related to the surface contents of certain hyperspherical
simplices. But as he remarks on p. 213 of [ 8] these contents cannot be
expressed in terms of elementary functions for dimensions greater than
three. After noting the prior existence of expressions involving elemen-
tary circular functions for the odd moments of samples of size 2, 3 and 4,
he goes on to suggest that his results throw some light on the unavailabil-
ity of moments relating to samples of size n > 4. Curiously, he refers in his
introduction to a paper by Godwin [ 3] which, on p.p. 284, 285, sets out
exact expected values of all order statistics of samples of size n<5 to-
gether with certain higher moments (that is, excluding the first) of order
statistics of samples of size 6. There is of course no reason why the higher
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transcendental functions that Ruben had in mind should not reduce to re-
cognizable expressions for certain values of the variables involved, and
that is a point of more than routine mathematical interest in itself. For
his part, Godwin writes that it is “possible’’ that elementary functions no
longer suffice for results with a higher number of variables than those used
in his analysis, a conjecture which covers in particular, the expected values
of all normal order statistics of samples of size n>5.

Other writers have centributed to the literature on exact moments of
normal order statistics. They include Jones [77], (means for n<3, other
moments n<4), Watanabe et al [117] (means and other moments n<7),
Bose and Gupta [1] (all odd moments for n<5, all even moments n<86).
In a paragraph reviewing this literature, David [27] p. 34 observes that
“the designation of certain functions as elementary is rather arbitrary”,
and he displays an integral due to Watanabe et al [117] (which is in fact
one of four insoluble integrals set out on p.63 of [117]) namely,

Ssin*l[S/ (8 —tan?¥ )]%dw, as representative of expressions used by them

in the derivation of their ‘explicit forms’> ([117] p.75) for the moments and
procluct moments for n<7.

In general, the detailed evaluation of the moments of normal order sta-
tistics has been achieved, with various refinements, by numerical integra-
tion based on the zeros and the weight factors of the Hermite-polynomials,
and there are numerous sets of tables available that have been obtained by
these and other approximate processes. (See bibliography). The deriva-
tion of alternative integral forms, including that attributed to Watanabe
et al above, naturally adds further problems in numerical integration to
those that are already on hand. One might add that the use of the term
explicit as it appears in much of the literature is also rather arbitrary, but
we would volunteer that expressions that are cleared of insoluble integrals
are more ‘explicit’ than those that are not.

In this paper we follow in part the development due to Watanabe et al
[117}, our equations resembling theirs, apart from our use initially of those
particular values for various constants that are appropriate to the inte-
grals for the expected values of the largest items only. However where,
in their treatment of the moments relating to n =6 and n="17, they discard
the symmetry with respect to the variables of integration of plane double
integrals of the type

. wl4(xl4 1. ., 1. ., 11
(1.1) SO SO [1+§sec 01+§sec 02} 2d0,d0,

by integrating once to form
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(1.2) ("(14 3 sect0, ) Esin (L)@ +sec? 0,)3(3+ sec?0)] 2
We retain this symmetry in our expressions until we reach a convergent
series of plane double integrals, each one of which is capable of being
evaluated as the square of a known integral of a single variable. Thus we
derive a series (and its remainder after a given number of terms) with
which we can set out explicit expressions for the expected values of the
largest items of samples of size six and seven in addition to those of size
five and less. The expected values of the remaining normal order statis-
tics of these samples are then expressed as linear forms of terms that
appear in the expressions for those of the largest items.

2. Assumptions and Preliminary Results

Let (X, X,..., X,) be a random sample from a continuous distribution
having probability density function (pdf) f(x)and cumulative distribution
function (cdf) F(x), both defined on the entire axis of real numbers, and let
X< Xy < - <X, < - <X, be the order statistics of this sample.
The expected value of the p-th order statistic will be denoted by E(X,:,).
Since, for a normal parent distribution, there exist linear forms relating
all the E(X,.,) for each n, it is convenient to examine only the simplest
case, that is, the expected value or mean of the largest item given by

2.1) E(X,.,)= ngl[mx)]n—lf(x)xdx.

If the random sample (X;, X,, ..., X,) is drawn from a standard
normal parent (zero mean, unit variance) then

(22)  f(x)=(A/N2D) exp(—x%/2); F(x)=(1/20)|" exp (—w?/2)du

(2.3) f(x)=—f(x)x; F(x)=f(x)
(2.4) F(@:%ﬁz Fwydw, all x.

We will make use of the following,
(2.5) 0< Smexp (—Ax?)dx=yr/(2JA), A is a positive constant.
0

We define functions g(x) and G(x) as follows,
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(2.6) g(x)=2f(x); G(x)zgog(w) dw:2gof(w)dw.

The expression (2.1), with the interpretations placed on f(x) and F(x) as
set out in (2.2), defines the expected value of the largest item in a sample
of size n from a unit normal parent. Referring now to line (2.4), it is

clear that F(x)=_1

T—F%G(x) so that writing (2.1) in terms of g(x) and

G(x) we obtain,

E(X,,;,,):nZ*"S [14+6(x) ] g(x)x dx
2.7 — 2

n2-

Il

”Sm[l +G(x) 1 g(x) v dx + nzfngo [1+6G(x) ] g(x)xda
0 —o0
(AL 6T (16T} g

(2.8) - n21‘”n§1<gr—_11>gj[0(x>]2"1 g(x)xdx.

The essential step in the development above being the nominal transforma-
tion from x to — x in the second integral on the right of (2.7), bearing in
mind that g(x) and G(x) are even and odd functions respectively.

Equation (2.8) brings to light an aspect of the relationship between
the expected values of normal order statistics and those of the chi-distribu-
tion (one degree of freedom) or ‘folded’ normal distribution. (See Govin-
darajulu[47]). Since x>0 in each integral of (2.8), g(x)and G{x) become,
with the additional definition g(x)=G(x)=0 for x <0, the pdf and cdf re-
spectively of a random variable x having the ‘folded’ normal distribution.
Comparing the integral terms of (2.8) with equation (2.1) it is apparent
that E(x,.,) is a linear combination of the E(x,,.,,) where 2r<n.

3. Evaluation of Integrals
3.1) Let I, ,— SN[G(x}]Z’—l g{x)xdx.
0

From (2.2), (2.3) and (2.6) we have; g/(x)=— g(x)x; G'(x) = g(«); g(0)=
V2/1;6(0)=0;lim g(x)=0;lim G(x)=1. Integrating by parts on the
right of (3.1) we get,

L= ~[C@ I ()| +@r= D (60 g(x) Fd
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giving

(3.2) L,y = (@r= D) [G() 1~ g(x) 2 dx
where

(3.3) [g(x) ?=(2/m)exp(—x?)

and

-2

(6= {y2/ exp(—w?/2)du)

x(x ' r—1
:(2/72')’*1{gogoexp(—%—x%—-%v xg)dxldxz}

= (4/7)r1 {S:“S:Stcaexp( —é; R2>R dR da}“l

_ (4/7)1 {82/4[1 —exp<——%— xzseczﬁﬂ d@}'_l

and this may be expressed as the (r—1)-fold multiple integral of a product
given by

(3.4) [G(x)]2"22(4/7r)’13:/4--&:/4(1—exp<—% x2sec201>'J.-.
[1 —eXp(— ,é_ xzseczﬁ,ﬂ)]d@l. .do,_,.

There are <r; 1> possible products of ; exponential functions of the type

—exp< _é xzsec26p> from (r—1) available. Hence multiplying out the
(r—1) factors in the integrand of (3.4) and following through with the in-
tegration on each term, we would find that for r>1 there is <r6 1) or one

term of the form
(3.5) (4/77)"1g0 4---g0 ‘a6, . de, =1,

r—

there are < 1 1) equal terms of the form

wl -
(4/7r)f—1g0 4~-g0 4[~exp<——é- x’sec? Gpﬂdﬁl...dﬁ,_l
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7|4

(3.6) :(4/71')S0 L—exp(— éngs,eeze)]da,

and there are (r 9 1> equal terms of the form

(4/m)r 1 . ”/4[exp<—k:—l-x2sec20 _1 x?sec?l )]d@ do
0 0 2 »~ "9 q Lo GV

zl4

!
3.7 = (4/7:)ZS S 4exp(—%— xzseczﬁl——é— x?gec? 02>d01d62.

0 0
A formal pattern is evident and although for E{X,.,) and E(X,.,) we have
2r<7orr=1, 2, 3 so that there are no terms beyond (3.7), we substitute
the general term of the progression for [G(x)J?”~2 that is suggested by
the results (3.5), (3.6) and (3.7) into (3.2), with an additional definition

namely, that (3.5) is 1 for r=1. Accordingly,

(3.8) I, ,=(2r— 1)(%)3‘:{;: <r;1><—?4>fg’;’4‘.‘

x4
0

Each of the integrals on the right of (3.8) is uniformly convergent.
We can therefore interchange the order of integration, performing the
integration first with respect to x in each, and employing (2.5). The

resulting factor {n/2 is taken outside the sum so that (3.8) reduces to

(3'9) 1‘2741: 27': 1_’Z_:1<r—-.1>< —4 >jg”/4.“g”/4 1 d01d6]TV )
N = AN T 0 0 \/1+§se0201+~~+w2~se(:20]-

We wish to evaluate the two integrals for which j=1 and 2, butin the
general case, the Jacobian of the transformation sinf,=(y3/2)sin u,, p=1
to j, is a diagonal form which reduces to the product (y3/2 )/sec,...sect;

X cosu;...cosu;; also, <—%—+coszﬁp>:(3/2) cos?u, all p; the lower limits of

integration all transform to zero; the upper limits to sin-1(1/y3) which we
will denote by «. Hence for j=1,

. wl 7l
(3.92) SM W (et (" gy, —amsin (L)
0 x/l%-Tseczﬁ1 0 ¢_2_+cos201 0 V3 /-

And for j=2 we recognize the integral (1.1)
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wldfald______ d6,d0,
So So \/1+—%—se0201+%seczﬁz

Sﬂmgnu cost,cosf,db, db,
o Jo 1 ) 1 9 )_ 1
\/<’2 +Cos 61><T+COS a, s

:S“g“ 7 du,du,
0Jo V1 —(sec?u,sec?u,)/9

1

:S:gz l_;O(_?)(%)isecz"ulsec%uzdulduz
1
_ 20 ) = N (* o T
(3.9b) _§O< : ><T> Bosec udu|

The use of the binomial series for [1—(seczulseczuz)/Qj_%follows since,
given sec?0 =1and sec?a=38/2, we have 0 <1/9 <(sec?u,sec?u,)/9<1/4<1
at every point of the region over which the double integral is taken. This
is a sufficient condition for the uniform convergence of this series in the
region and also for the validity of its integration term by term. The
nature of the convergence of the expression (3.9b) is discussed later. We
note that (3.9b) provides an alternative means to (1.2) for the evaluation
of (1.1)
Employing the standard recurrence relation

1 m—2 m—2
m_l(sec utanu)+ 1

Ssecmudu: gsec”‘“zudu,

and substituting m =2, seca=y8/2 and tana=1/y2,

(3.9¢) Sjsecz"u du:a:Sin”(\/]éT) for i=0
and
a __ 1 1 /3Nt .
(3.9d) gosec udu= @i 72 < o > s; for i>0
where
2
(3.9¢) si=1+—§;—_—3°—g)—-si_1; sy=1.
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Each s; is a distinct series of i positive terms, and since (2:—2)/(2i—38)
<4,/3 for i>3, then from (3.9¢) we have for any positive integer m,
Sgam <14+(8/9)+--(8/9)7 1 +(8/9)"s;, where s;=83/27. But lim (8/9)7s,
=0 so that hm Saam <[ 1—(8/9)]1=9, therefore s, is bounded Slmllarly,
1 <(2L—2)/(2z—3)<(2N 2)/(2N—-3) for all i >N. Again by (3.9e) it fol-

lows that,
1+_2__++< 2 >£72+< 2_>1'_15 <8;
3 3 3 1 [

ON_2 2 ON_2 2\m! /2N—-2 2\~
<I+oy—g g +< ON—3% '3‘) +< 2N—_3“?> SN

where s; =1, i=m+N, N>38, and sy<9. In thelimit m—co, i—co, and the
last term on the right tends to zero since (4N—4)/(6 N —9)<8/9 for N> 3,
so that

2 7t 4. 2N—-2 2 !
5] <lims,< 1= 50" 22 |

{00

3<lims; <3+ 50 for all N>3.

joroo 2N-5"

It follows that the limiting value for s; is 3. This result is confirmed by
assuming that the limit exists and is equal to s, then taking the limiti—co
on both sides of equation (3.9e) to obtain s=1+(2/3)s, the solution of which
is clearly s=3. In fact, the largest value of s; is slightly less than 3.7 oc-
curring for i=6. From the computational viewpoint, the recurrence rela-
tion (3.9e) for s; is simple to program and has the advantage that trunca-
tion errors do not accumulate.

We substitute results (3.9¢) and(3.9d) into the rlght hand side of (3.9b)
to complete the evaluation of the double integral. Hence

0 (e e ()T
0o Jo \/l+Tseczﬁl+T seczﬁ2 J

where

(3.9) s :f-;('?)T%(%)%l( 5.
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However, since some or all of these results are displayed in papers by Jones
(7], Godwin [ 3], Watanabe et al [11] and Bose and Gupta [17, we goon to
find E(X,.¢) and E(X,.,).

It is convenient to denote the angle [ (7/4)—sin"1(1/J3 )] by B so that
from equations (3.10), (3.11), and (3.12) we now have

(4.3) L=n"%; I,=37"%4/mf; I,=br 2(4/m)%(B+S).
(We note that from (2.1) and (3.1), E(X,.,)=21,, E(X, ) =4I, and E(X,)

=67I;. See also Govindarajulu[5]p.1302 for E(X,.,) and E(X,.,)).
To evaluate 7,, ; we substitute results (8.9a) and (8.9f) into (3.9).

(3.10) r=1; Ilz:/:l?
(3.11) r=2; 132_% [1-%@—1(%3”

(3.12) r=3: I, :%{[1 -4 sin%\%ﬂz +<%A>Z st

This section is concluded with a note related to the convergence of S

1
(seealso (3.9b)). The absolute value of the binomial coefficient <_T> <%
7 .
for all 1>1; (2i—1)"2<(2N—-1)"2 for all i>N; we have seen that s,—3.
If Ry is the remainder after (N—1) terms

1 i 2i-1 - \2
R ()R ()

all terms being positive.

Therefore
R 1 LA iently 1 That i
< EN—1) i;}\}( 5 > for N sufficiently large. at is
1 1 \2V/ 4
(3.13) Ry<tan- 1)2< 2 > <'?T>.

By making adjustments for the exact behaviour of (s;/3)? it can be shown
that this inequality is true for all N>1. Summing the first seven terms
of S we have obtained the estimate
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5$=0.03140 6940+ Ry; R,<9.1x10-8

which suggests that, for purposes of checking, a workable approximation
should be

(8.14) $=0.08140 7.

4. Conclusion

It remains now to express E(X,.,) as a linear combination of the I,,_;
where n=6,7 and r=1, 2, 3. We have

@D EX) = (bR - Fe T () ada,

We observe that when p=n (4.1) reduces to (2.1). Substituting for f(x)
and F(x) from (2.6) and following the same development as at line (2.7)
and below, (4.1) becomes

4.2) E(X,)=n2("" DU+ 6z -6

~[1=G()F[1+6() T} g(x)nda.

If n—p=g—1, then (;j):@:})):(g:ll), and since p—l=n—g it

follows from (4.2) that E(X,.,)=—E(X,,)=—FE(X,.;_,,). Further, by
substituting —G(x) for G(x) in the expression in braces on the right of
(4.2), the complete expression changes sign, suggesting that only odd
powers of G(x) are present. By comparison with equation (2.8) and
recalling definition (8.1), this implies that E(X,.,) is a linear combination
of the I,,_,. Accordingly, equation (4.2) (of which (2.8) is a special case),
definition (8.1), together with results (3.10), (3.11), (3.12), enable us to
set out the expressions for n < 7. Foregoing the elementary algebra the re-
quired means are set out below.

E(X, )= gf [1 6< >3+5( >(32+S)J 0.20154 = — E(X;.o),

B, = 613 [3 6< )B 5< >(52+5>] 0.64175 = — E(X,.,),
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(X, = ]éj’ﬂ [1+6< >3+< )(3%5)] 1.26720 = — E(X,.,),

E(X4:7): “E(X4:7>:O,

E(Xs.)= 312()£T 1— 6< >3+5< >(32+S)] 0.35270 = — E(X,.,),

E(X..) =T2$r—:1 —5( 2 Y g2+ 9) [=0.75787 =~ B(X,.0),
E(X,..)= ngﬁ 1+10< >3+5( )(3%5)] 1.35217 = — E(X,..).

The estimates to five DP included as a check with the expressions for
E(X,.,) above, are identical in each case with the corresponding figures in
tables by Teichroew [97]. They were calculated on a FACIT manual calcu-
lator by first combining the various integral multiples of (4/7)5=0.21634
6 and (4/7)%(82+ S)=0.09772 1, where S is given by (3.14), then forming

1
the product with the appropriate factor terms involving 7 2. The powers

of = required are set out in Abramowitz and Stegun [137] p.3; sin~*(/y3)

was obtained from the series for tan-1(1/42) sothat the estimate for 3 that
was used was 0.16991 8.

University of the South Pacific,
Suva, Fij1.
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