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§1. Introduction

Throughout this paper every semigroup we treat is commutative and
the operation is written additively. It is a fundamental fact that any
commutative semigroup is decomposed into a semilattice of archimedean
semigroups (a semigroup is called archimedean if for every two elements
%, v there exist an element z and a positive integer n such that nx = y+ z).
A commutative archimedean cancellative semigroup is an abelian group
if it has an identity element. A commutative archimedean cancellative
semigroup without identity is called an N-semigroup, which we are going
to study in this paper.

An additive semigroup of all positive integers (resp. rational numbers,
real numbers) is denoted by Z, (resp. Q., R,). A subsemigroup of Z, (resp.
Q., R,) is called a positive integer (resp. rational, real) semigroup.

Sasaki and Tamura proved in [ 117] that any power-joined (i.e. for any
elements x, y there exist positive integers m, n such that mx = n y) N-semi-
group is isomorphic onto a subdiriect sum™ of a positive rational semi-
group and an abelian group. It is natural to put the following more general
question: Is every N-semigroup isomorphic onto a subdirect sum of a
positive real semigroup and an abelian group?

Let G be an N-semigroup and let a be an element of G. We define an
equivalence relation ~ on G as follows: «x ~ y iff x+ma= y+na for some
positive integers m, n. The quotient set G,=G/~ 1is an abelian group by
addition induced from G. G, iscalled the structure group of G with respect
to a.

Now, if G is a subdirect sum of a positive real semigroup and an abelian
group, then clearly Hom (G, R.)2:¢. Conversely, if we assume that there

A subdirect sum G of semigroups 4 and B is a subsemigroup of the direct sum 4APHB
where the projections of G into 4 and B are surjective.
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exists a homomorphism ¢ on G into R, then we can define a homomorphism
SfaonG into R,®G, by f,(x)=(¢(x), {(x)) where x =G and ¢ is the canonical
surjection on G into G,. It is easy to see that £, is injective, so we see that
G is a subdirect sum of a positive real semigroup and its structure group G,.
Thus the problem is reduced to find & homomorphism on G into R, .

Hewitt and Zuckerman already proved that Hom (G, R.)2=¢ for any
N-semigroup G in their famous paper [ 47] (Theorem 8. 10), but their proof
is not purely algebraic. Tamura also proved the same fact recently when
he was engaged in studying N-congruences on N-semigroups ([137, [147],
[15)).

Is there a concrete and natural way to construct a homomorphism on
GintoR,? Sasaki and Tamura defined in [117] a function ¢ on a power-
joined N-semigroup into Q. as follows:

7 (x) :%21 I(ia, @), x<G,

where a={(x)eG,, n is the order of « and I is Tamura’s .#-function in-
troduced in [127]. The function ¢ gives us a homomorphism on G. In the
case where G is not power-joined, it is inadequate to take a finite sum of
I(ic, @) since G, is not periodic. But if there exists a limit

p(x)=lim - 31 I, @), a=C(),
for every x G, does ¢ give us a way to define a homomorphism on G into
R_? This question was our starting point.

In §2 we construct two functions ¢ and ¢ on G into R, in a very natural
way without using Tamura’s representation. The method of constructing
these is similar to the one used in the proof of the classical embedding theo-
rem of ordered semigroups into R,. Some important inequalities about
these functions are given in §§2 and 3. In §4 we introduce a concept of
almost power-joined N-semigroups which is a generalization of the concept
of power-joined N-semigroups and prove that ¢ and ¢ are homomorphisms
on G if and only if G is almost power-joined. Every N-semigroup is decom-
posed into a disjoint union of almost power-joined N-semigroups. In §6
we give an extension theorem of homomorphisms on G into R, from which
we see immediately that Hom (G, R.)=c¢ for any N-semigroup G. If we
definre a dimension of G by dimG=dimgH(G) where H(G)=Hom (G, R,)
®r.R, then we can say that an N-semigroup G is almost power-joined if and
only if dimG=1. The R-vector space H(G) has a deep relation with the
structure of G and we study this subject in §§7 and 8. In §8 we give a
concept of affine N-semigroups and prove an embedding theorem of N-
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semigroups into [TR,, which may be considered to be a generalization of
the classical embedding theorem.

I would like to express my thanks to Professor Hiroshi Okuyama for
his constant encouragement during the preparation of this paper, and to
Professor Takayuki Tamura who informed me of his results recently
obtained.

§2. Some basic functions on an N-semigroup into R..

Throughout this section G is an N-semigroup and an element a of G is
fixed which we call a base element.
We define a positive integer L(x) for x G by

L(x)=min{l|l>0, la=x+c for some c=G}.

Since G is archimedean, the integer L(x) always exists.
We begin with the following lemma.

LemMmA 1. Let x, beG and n be a positive integer. If x=na-+b, then
n<L(x).

Proor. Let [=L(x) and la=x+c for ceG. Assume n>1[, then we
have x=x+b,, where by=(n—10)a+b+c. So for any y=G we have y+«x
=y+x+b,. Hence y= y+b, since G is cancellative. This means b, is an
identity element (contradiction).

We define a non-negative integer N{x) for x €G by

N(x)=max{n|n>0, x=na+b for some b=G},

where x =na+b implies x =06 if n=0.
We see N(x)<L(x) from Lemma 1. Moreover we have

ProrosiTiON 1. For any x, y=G and for any positive integer n, we have

(1) N(na)=n-—1, L(na)=n+1,

(2) N(x+na)=N(x)+n, L(x+na)=L(x)+n,

(3) N(x)+N(y)<N(x+ ) <min{N(x)+ L(y), L(x)+N(5)}
<max{N(x)+L(y), L(x)+N(y)}<L(x+ y)<L(x)+ L( ).

Proor. (1) and (2) are immediate from the definitions. The inequal-
ities N(x)+N(y) <N(x+ y) and L(x + y) < L(x)+ L(y) are also immediately
obtained from the definitions. Now we shall prove the inequality N(x + )
<N(x)+L(y). Let N(x+y)=m and L(y)=I. Then x+ y=ma+b and
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la= y+cforsomed, ceG. Hence x+la=ma+b+c. Then N(x +la)=N(x)
+1>=m, thus we obtain N(x)+L(y)>N(x+ y). Itis similarly proved that
L(x)+N(y)<L(x+ y).

It is natural to consider that N(nx)/n and L(nx)/n approximate to
the values expressing the ‘“size”” of x as n—co. The proof of the existence
of the limits in the next theorem is due to Samuel [107].

Tueorem 1. There exist the limits ¢(x)=lim N(nx)/n and ¢(x)
=lim L(nx)/n for all x =G and we have !

N(x)<e(x)<¢(x)< L(x).

Proor. Put a=lim N(nx)/n (resp. R =lim L(nx)/n). Then for any
e>0 there exists a p"ositive integer n, such that N(ngx)>n,(a—e) (resp.
L(ngx)<ny(Bg+e)). For a given integer n we write n=n,q+r (resp.
n=n,q—r)with 0<r<n,. Then N(nx)>N(n,qx)>qgN(n,x)(resp. L(nx)

<gL{n,x)), hence ]LZ?Q 2%(@— €) <resp. Ii(zi)é 77‘;—(] (B +s)>. Then for

n large enough MZ—x) > — 2z~:<resp. L(—Zﬂg B+ 28). Thus we see that

a=lim N<Zx> <resp. B=lim @) It is clear that ¢(x)<¢(x). Now we

n—o n—roo0

shall prove that N(x)<¢(x). We have x = N(x)a+b for some b=G. Since
G is archimedean, there is a positive integer [, such that /,b6=a+ ¢ for some
ceG. Then for any positive integer n, nlyx =nl,N(x)a+ na+ nc, hence
N(nlyx)>nl,N(x)+n. Then we have

o(x) =lHm Yo%) » vy 1 LS neay,
noe Tl Lo
The last inequality is similarly proved.

Thus we get two functions ¢ and ¢ on G into R,. From Propositon 1
and the definitions we have

ProrositioN 2. For any x, yeG and for any positive integer n we
have

(1) ¢(na)y=¢(na)=n,

(2) ¢(x+na)y=¢(x)+n, ¢(x+na)=¢(x)+n,

(3) ¢(nx)=ne(x), ¢(nx)=nd(x),

(4) o(x)+e(P<e(x+y) <min{p(x)+¢(y), ¢(x)+e(y)}

<max{e(x)+¢(y), (@) +e(N}<d(x+ y)<d(x)+d(y).

The method of constructing the functions ¢ and ¢ originally appear-

ed in the classical embedding theorem of ordered semigroups into R, (see
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Holder [ 6], Alimof [17], Hion [ 5], Fuchs [ 3] and Kist & Leestma [ 7).
We shall refer to this peint in §8 again and try to generalize the classical
result.

As to the relation with Tamura’s #-function 7, we see the following:
I{a, B)=N(x+ y)—N(x)—N(y),
¢ (x)~ N(x)=lim -1 $ Iiat, o),
n—o i=1

where a=¢(x), #={(y) and { is the canonical surjection on G into the
structure group G,,.

§3. The change of base elements.

The functions N, L, ¢ and ¢ which are defined in §2 are of course depend
on a base element «. Hereafter, we write them N,, L, ¢, and ¢, in order
to make a base element clear on which they depend. Inthissection we study

the relation between ¢, (resp. ¢,) and ¢, (resp. ¢,) for two elements « and
bof G.

Prorosition 3. For any a, b, x €G we have
Ny(2)=Ny(@)N,(x), Ly(x)<Ly(@)L,(x).

The proof is easily obtained from the definitions of the functions N
and L.

ProrositioN 4. For any a, b, x =G we have

00 (2) < ¢y(x) <min{g,(a)¢.(x), $y(a)g.(x)}

<max{g, (@), (%), P(@)@ ()} <P, (%) <P, (a)p(x).

Proor. For any positive integer n, nx =N, (nx)a+c, for some ¢, =G.
Hence no,(x)>N,(nx)¢,(a) and n¢,(x)=N,(nx)p,(a). Since N, (nx)/n
—¢,(%) as n—oo, we have (1) ¢,(0)p.(x) <¢,(x) and (2) ¢,(a)g,(¥) <P, (x).
From the equation L, (nx)a=nx-+d, with d,eG, similarly we obtain (3)
0y ()< Py (@)p (%) and (4) ¢,(x)<@,(a)p,(x). Substituting b for x in (2)
and (4), we have ¢,(a)p,(b)<1 and ¢,(a)¢,(b)>1. But interchanging a
and b in these inequalities, we see more precisely that ¢,(a)¢,(b)=¢,(a)p,(b)
=1. Therefore from (1) and (3) it follows that ¢,(x)<¢,(b)¢,(x) and
0. (D), (x) <P, (x). Interchanging a and b in these inequalities, we obtain
(5) 0,(x)<¢y(@)¢.(x) and (6) ¢ ()¢, (x)<¢,(x). From (1), (2), (3), (4),
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(5) and (6) we complete the proof. \
The inequality in Proposition 4 will play an important role in this
paper as well as the inequality (4) in Proposition 2 in §2.

CoroLrLArY 1. For any a, b= G we have
(L) @ (b)hp(a)=¢,(b)p,(a)=1,
(2) 9,(0)pp(@) <1< (b)), (a).

CorOLLARY 2. For any a, x €G and for any positive integer n we have

(ﬂna(x) zqﬁq%ﬂ, ¢na<x> :%x).

Proor. By (1) of Corollary 1 we see

_ 1 1 gx)
ona) =G ) T @

The rest is similarly obtained.

§4. Almost pewer-joined N-semigroups.

In this section we give some necessary and sufficient conditions under
which ¢, and ¢, are homomorphisms on G and introduce a concept of
almost power-joined N-semigroups.

THEOREM 2. Let G be an N-semigroup and a=G. Then the following
conditions are equivalent:

(L) ¢(x)=9¢,(x) forall x=6C,

(2) ¢, 18 @ homomorphism on G into R,,

(3) ¢, 18 a homomorphism on G into R..

Proor. (1)—(2) and (3): If(1)is valid, both sides of the inequality
in Proposition 2 coincide, so (2) and (3) result from this.

(2) or (8)— (1): For any x=G, na=x+c for some ceG and some
positive integer n. Hence ¢, (x+c)=¢,(x+c)=n. If (2) is valid, ¢,(x
+¢)=¢,(x)+¢,(c). On the other hand we have ¢ ,(x)+¢,(c)<¢,(x)+¢,(c)
<¢,(x+c). From these we obtain ¢,(x)=¢,(x). We can induce (1) from
(3) similarly.

CoroLLARY. If ¢, (or ¢,) is & homomorphism on G for some a =G, then
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@, and ¢, are also homomorphism on G for all b= G and we have
Py =0 =ps(@)@,
Proor. From Proposition 4 we have

(@)@, <@y < @p(a)d,.

If ¢, is a homomorphism, then ¢,=¢, by Theorem 2. Then both sides of
the inequality above coincide, so ¢, =¢,(a)p,. Hence ¢, is also a homomor-
phism and ¢, =¢,.

Let G be an N-semigroup and let e, x, yG. We say that x and y are
almost power-joined if for any positive real number ¢ there exist elements
¢, d=G and positive integers m, n such that

mx+c=ny+d, L,c)<ne L,(d)<me.

This definition does not depend on the base element a. In fact, for any
element b &G we see by Proposition 3 that

Ly(c)<Ly(a)L,(c)<nLy(a)
and
L, (d)<Ly(a)L,(d)<mL(a)e.

An N-semigroup whose every two elements are almost power-joined is
called almost power-joined.

Lemma 2. Let G be an N-semigroup and let a, x, y=G. Then the
following conditions are equivalent:

(1) x and y are almost power-joined,

(2) for any positive real number ¢ there exist c€G and positive
integers m, n such that

mx=ny+c, L,(c)<me,

3) ¢,(x)=¢,(x).

Proor. (1)—(3): Since x and y are almost power-joined, for any
positive integer [ there exist ¢,, d, G and positive integers m,, n, such that

mx+e=ny+d, Ly(cl> <n/l, Ly(dl) <m,/L.

Then by Proposition 1,
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N,(Im;x)+L,(le)) =N, (Imyx+1lc)>1n,.
Since L,(lc)<n,, we see N,(Im;x)>n,(l—1). Hence

Ny(lmx) L>_z
Im, [—1"m,

On the other hand we see

L,(Imyx)<L,(In;y+1d)<In;+IL,(d)<In,+m,.

Then
3(lm,x) 1
Zml l ml
SlnceN(lmlx) @, (x), = L Umlx) = ¢ (%), ——>1, %,_)0 as [—co and since
m;

¢ (2) < ¢y(x), we have

0,(%) =g, (x)=lim L

(83)—(2): For any positive integer m we have mx =N, (mx)y+c, and
L, (mx)y=mx+d, for somec,, d,, G, hencec,,+ d,, = (Ly(mx)— N, (mx))y.
Then we have

L, (mx) B N, (mx) )

m

LG, <m(

By the assumption we see

Ly(TZZx> N Ny(TZ‘Lx> Hﬁ/)y(x)_@y(x):() as m— oo,

Therefore for any positive real number ¢ there exists a positive integer m

such that L (c,) < ——~—, hence
e <7

Ly(en) <L (p)L,(c,)<me.

Thus for any >0 we have positive integers m, n=N,(mx) and c=c, 6
such that mx=n y+c and L,(c) <me.
2)—(1): Clear.

From Theorem 2, Lemma 2 above and what we mentioned in Introduc-
tion, we obtain the following theorem.

TaeorEM 3. An N-semigroup G is almost power-joined if and only if
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@ (or ¢) 18 & homomorphism on G for all (equivalently for some) acG.
Therefore an almost power-joined N-semigroup s isomorphic onto o sub-
direct sum of a positive real semigroup ard an abelian group.

CororLARrY (Sasakiand Tamura). Let G be a power-joined N-semigroup.
Then ¢, (G)=¢,(G)Q, for all aeG, therefore G is isomorphic onto a sub-
direct sum of a positive rational semigroup and an abelian group.

Proor. For any x <G there exist positive integers m,n such that
mx = na, S0 We obtain

REIES %E(L-

ReEmMArRk. An N-semigroup G is almost power-joined iff there exist an
element ¢« =G and a positive number L satisfying the following propeérty.
For every x, yeG there exist positive integers m, n and ¢ € G such that

mx=ny+c, L, (c)<mL.

TuEOREM 4.  Let a be an element of an N-semigroup G and let f be a homo-
morphism on G into R,. Then we have

S@)o < f<fla)d,.
Proor. For a positive integer n and x =G we have
nx=N,/(nx)a+c,, L,(nx)a=nx+d,, c,, d,6.
Since f is a homomorphism, we have

nf(x)=N,(nx)f(a), L,(nx)f(a)=nf(x).
Then

flay Nl < i) < fay Loln),

This gives
f(@@(2) < f(2)<f(a)P.(x).

The following immediate consequence of Theorem 4 is a generalization
of Theorem 3 in [ 117].

CoroLLARY. In the same sttuation as in Theorem 4, suppose that G is
almost power-joined. Then we have
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f=1@ep,=f(a)},.
Thevrefore we have an isomorphism
Hom(G, R,)SR..

The converse of the corollary above is also true. The proof will be given
in §6.

ExamprLE 1. A subset of R, in the form {x R, |x>r} is called a seg-
ment. A positive real semigroup containing a segment is an almost power-
joined N-semigroup.

ExampLE 2. Let C, be a multiplicative semigroup of complex numbers
whose absolute values are greater than 1. Then C; is an almost power-
joinad N-semigroup and we have

¢a(x):¢a(x):10g\a[(|x|) for a, xECI'

Moreover there is an isomorphism
R
C,=R.® VA

where % is a quotient group of the additive group R modulo Z.

§5. The decomposition of an N-semigroup into a disjoint
union of almost power-joined N-semigroups.

Let G be an N-semigroup. For », yeG we write x ~ yif x and y are
almost power-joined. It is easily checked up that this relation ~ is an
equivalence relation on G. The equivalence class of x is denoted by G(x)
and we call it the almost power-joined component containing x.

Lemma 8. Assume x =G(a), then for any y=G we have
P2+ 1) =0,(2)+0,(y), Do(x+ y)=0(%)+Da(y).
Proor. By (4) in Proposition 2 we have

0a(2) +0u(3) S 0u(x+ ¥) < Gu(5) + 20 3).

Since x ~a, we have ¢,(x)=¢,(x), so both sides of the inequality above
coincide and we get the first equality. The second one is similarly obtained.
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Lemma 3 tells us the following.

CoroLLARY. If two of x, y and x+ y are contained in G(a), then the
other is also contained in G(a).

THEOREM 5. Let G be an N-semigroup and let a=G, then G(a) is an
almost power-joined N-semigroup. Therefore any N-semigroup is decom-
posed into a disjoint union of almost power-joined N-semigroups.

Proor. G(a) is a subsemigroup of G by the preceding corollary. Now
let x, yeG(a). Since G is archimedean, there are b=G and a positive
integer m such that mx= y+b. Since we see that 5= G(a) from the same
corollary, G(a) is itself archimedean, so it is an N-semigroup.

Next let x=G(e) and x=N,(x)a+c for ceG. Again we see that
c€G(a), this implies that N, ¢, (x)=N,(x), where N, ., is the function
N defined on G(a) (not on G) on the base element a. Thus N, ¢,,=N,| s,
and consequently ¢, oy =¢.|c)> Where N,| ¢,y and ¢,] ¢, are the restrie-
tions of N, and ¢, to G(a) respectively. Similarly L, ;,=L,|s. and
$acy=%.lcy- But we know that ¢,=¢, on G(a) by Lemma 2, hence
Pa cay=%a ca)r Therefore G(a) is almost power-joined and the the proof
is completed.

CoroLLARY. With the same motations as in the proof of Theorem 5,
we have

Na, G(a) = Na I G(a)s La,G(a) = La | G(a)»

Pa,6(a)=%a | Gla) ™ ¢a, G(a) ™ ¢)a | G(a)*

THEOREM 6. Let a, beG. Then we have

(D %|G(a):(0b(a)¢a,c(a)a 9/Jb|G(a>:¢b(a)¢’a,c(a),
(2) 1fbeG(a), then ¢,=ro,, ¢,=rp,, wherer=¢,(a)=0,(a).

Proor. From Proposition 4 we have

05(@)@a(%) <@y (%) SMin{g;,(a)¢,(2), ¢(@)@, (%)}

If xeG(a), then ¢,(x)=¢,(x). Hence both sides of the inequality above
coincide, so ¢,(a)¢,(x)=¢,(x) and the half of (1) is proved. Next, if
beG(a), then ¢,(a)=¢,(a). Then similarly we see ¢,(a)¢,(x)=¢,(x) for
x<G. Thus the half of (2) is proved. The rest of the theorem is similarly
proved.
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CoROLLARY. Leta, beG. Then ¢, and ¢, are homomorphisms on G{a)
and p,/¢, is a constant ¢,(a)/P,{a) on G{a). -

By Corollary of Theorem 4 we have

Treorem 7. Let f be a homomorphism on G into R.. Then f=f(a)p,
=f(a)p, on G(a) for all aG.

Remark. If an N-semigroup G is not almost power-joined, G has an
infinite number of almost power-joined components. In fact, assume that
x, y€G and x ~ y, then it is proved that » +m y~ x -+ n y for every positive
integers m, n (m=¢n).

§6. Existence of homomorphisms on N-semigroups into R,.

As we mentioned in Introduction, Hom(G, R,) is always non-empty
for any N-semigroup G and from this it follows that any N-semigroup is
isomorphic onto a subdirect sum of a positive real semigroup and an abelian
group. The most efficient tool to prove this may be Ross’ extention
theorem of semicharacters givenin [9]. The direct application of Ross’
theorem yields us the following theorem. Here we give an outline of a
direct proof of the theorem modifying the proof of Ross a little.

Let H be a subsemigroup of an N-semigroup G and let f be a homomor-
phism on H into R,. For a pair (H, f) we consider the following
condition (#):

#  f(x)>f(y) for all x, ye H such that y|x™ in G.

Tueorem 8. Let H, be a subsemigroup of an N-semigroup G and let f,
be a homomorphism on H,into R,. Then f, is extensible to a homomorphism
on G if and only 1f the pavr (H,, f,) satisfies the condition (%).

Proor. The necessity of the condition is clear. Now we shall prove
the sufficiency. Using Zorn’s lemma we see that there exist a maximal
subsemigroup H and a homomorphism f on A into R. such that /|, =,
and {f, f) satisfies (#). We define a subsemigroup i of G by

H={xeG|((x)+H)n H4},

where (x) denotes a subsemigroup of G generated by x. Next we define a
homomorphism f on H into R, by

) For two elements x, yeG we write y|x if x=y+z for some z=G. Notice that x4x.
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f(x)z—f(””:)_f(h) with &, nx +he H.

It may be routine to check it up that f is well-defined, |, =f and (4, f) satis-
fies (#), so we conclude that A= H by the maximality of . Now we define
a function f on G into R, by

Feor=inf{FE 1D 050, 66, nat ).

We can prove that (1) fly=f, (2) f(x+ y)>f(x), (8) f(mx)=mf(x) and
(4) f(x)+f(y)=f(x+ y), for any x, yeG.

Now assume that H>G. Let x €G— H and let mx + h be any element of
(x)+H. If n(mx+h)+z€H for n>0 and z€G, then amx + 2= H since
H=H. Hence by the definition of f we see that f(mx+h)>mf(x)+F(h).
Combining this with (4) above, f is a homomorphism on ((x)+ H) U H, this
contradicts to the maximality of H, so we must have H=G.

CoroLLARY 1. The homomorphism ¢,|cy=0,lcwy oM the subsemi-
group G(a) satisfies the condition (%). Therefore Hom(G, R,)x¢ and G is
1somorphic onto a subdirect sum of a positive real N-semigroup and an abel-
1an group.

The following is the converse of Corollary of Theorem 4 in §4.

CorROLLARY 2. If G is not almost power-joined, there exist two homomor-
phisms f and gon G into R, such that the function f/g isnot constant on G.

Proor. Let x G —G(a), then ¢,(x)>¢,(x). By Lemma 3, ¢, and ¢,
are homomorphisms on G'=(G(a)+(x))UG(a). Extend ¢,|. and ¢,|.
to homomorphisms f and g on G respectively. Then f(a)/g(a)=1 and

J(x)/ g(x)=¢l.

§7. The R-vector space associated with an N-semigroup.

Let G be an N-semigroup. We introduce the following notations:
R: the field of real numbers,
R,: the additive semigroup of all non-negative real numbers,
H,(G)=Hom(G, R,),
H,(6)=Hom(G, R,),
H(G): the R-vector subspace of Hom(G, R) generated by H,(G).
H(G) is called the R-vector space associated with G. A base of H(G) con-
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tained in H,(G) is called a base of H.(G). The dimension of H(G) over R
is called the dimension of G, i.e. dim G=dimzH(G).

ProrositioN 5. If fe H\(G) and [0, then f € H (G), that 1s,

Hy(6)—10}=H.(G).

Proor. Assume f(x,)=0 for some x,€G. For any x =G there exists
a positive integer n such that x|nx,. Therefore 0=f(nx,)> f(x), hence

f(x)=0.

We can express the results of Corollary of Theorem 4 and Corollaries of
Theorem 8 that dim G>1 for any N-semigroup G and dim G=1 +f and only
if G 18 almost power-joined.

TueoreMm 9. Let G, and G, be N-semigroups, then
Hy(G1®6,) 5 H(G)DH(G)).
Therefore, dimG,®G,=dim G, +dimG,.

Proor. Let G=G,®G, and feH{(G). Fix x°=(x{, x})=G and set
p 1 . 1
fﬂxla n):Tf§x9+nxl, x9), fz(xza n):—n—f(x(l),xg—I— nxy)

for n>0 and x={x,, x,)€G. Then fi(x;, n)(i=1,2) are monotone de-
creasing on n and

Fils, m) 4 fola m)=f()+ 2 f(x0).

Hence
Filw) +fae)=f(x), where fi(x)=limf,(x; n) (i=1,2).
It is easy to see that f,€ H,(G,). "
Conversely, it is clear that f, and f, are linearly independent in H(G)
for each f,eH,(G;). Thus we obtain H,(G)=H(G,)DH(G,).

CoroLLARY. LetG=G,DG,D - DG, where G, is an almost power-joined
N-semigroup for each i. Then

Hy(G)SR,®BR, D DR,.
d

Therefore, dim G=d.



Homomorphisms on N-semigroups into R, and the Structure of N-semigroups 15

The application of Petrich’s theorem proved in [87] would give us an-
other proof of Theorem 9.
The following will be used in the next section.

Lemma 4. Let x,yeG. Ifx~ v, then there exist f, g H . (G) and posi-
tive integers m, n such that mf(x)=nf(y) and g(x)>cg(y). If x~y, then
either f(x)=f(y) for all f& H.(G) or f{x)=cf(y) for all fe H (G).

Proor. Assume x~ y. Then inthe same way as in the proof of Corol-
lary 2 of Theorem 8, there exist g,, g, H.(G) such that g,(x)=g,(x)=1
and g:(y)< gx(y). Hence either g(x)cg,(y) or &2(x)>xg,(y). Nextlet
m, n be positive integers such that g,(y)<m/n< g,(y). Then there are
positive real numbers r,, r, such that

m

r1g1<y>+rzg2<}f>:" ri+ry=1.

n ’

Put f=ri g1 +ry8,, then nf(y)=m and mf(x)=m@r+r,)=m. Thus we
obtain the proof of the half.

If x~y, then x, yeG(a) for some e=G. Let fe H,(G). Theorem 7

shows that f=rg, on G(a) for some reR,. This proves the latter half of
the lemma.

Cororrary. If f(x)=f(y) for all f€ H.(G), then x ~ y.

§8. Affine N-semigroups.
We define an order > on an N-semigroup G as follows:
x>y Iff ny|nx for some positive integer n.

An N-semigroup which is linearly ordered by this order is called linear.
ProrosiTioN 6. A linear N-semigroup is almost power-joined.

Proor. Let G be a linear N-semigroup and assume that there are two
elements », yeG such that x~ y. By Lemma 4 there exist fe H,(G) and
positive integers m, n such that f(mx)=f(n y). This implies mx=n1y
because G is linear, hence x ~ y (contradiction).

An N-semigroup is called affine if all its almost power-joined compo-
nents are linear.

ProrosiTioN 7. Let G be an affine N-semigroup and let x, ye6. If
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f(x)=f(y) forall fe H (G), then x = y.

Proor. From Corollary of Lemma 4 we see x~ y. Since G is affine,
one of the statements x>y, x=1y, x<{y holds. But f(x)=f(y) for
feH.(G), then we must have x = y.

A linear N-semigroup was introduced by Austin in [27] (he calliit a
linear semigroup). Tamura’s irreducible N-semigroup is also the same
concept (147, [157). They proved that a linear N-semigroup is embedded
in R, which is a variation of the classical embedding theorem by Holder
and others. We give here more generally an embedding theorem of affine
N-semigroups.

To begin with we need the following.

ProrosiTION 8. Let G be an almost power-joined positive real semigroup
and let a, x=G. Then

v ()=¢(x)=x/a.

Proor. Clearly f,: x - x/a is a homomorphism on G into R,. Since
G is almost power-joined, ¢,=¢,=rf, for some reR,. Butr=rf,(a)=¢,(a)
=1, hence ¢, =¢,=f,.

Traeorem 10. An N-semigroup s affine if and only if it 1s embedded
in [IR,. An N-semigroup with dimension d is affine vf and only ivf it s
embedded 1m R.PR. @ - OR.. An almost power-joined N-semigroup s

d
linear 1.f and only 1.f it is embedded in R..

Proor. Let G be an N-semigroup and let (f,) be a base of H, (G).
Define a homomorphism #: GHHR by 7(x)= (fa\x))eHR If G is affine,

7{(x)=7(y) implies x = yfrom Propos1t10n 7, hence  is mJectlve Thus the
only part of the theorem is proved.
Now assume Gc[IR. and let a=G. It is sufficient to prove that G(a)

is linear. Let pQO:G(a§4>R+ be one of the projections. Since G(a) is almost
power-joined, p,=r,pa, R, forall . Therefore if p, (x)= p,(y) for
x, yEG(a), then p,(x)=p,(y) for all &, so x =y, this implies that p,, is
injective. Then we may assume that G{a)cR,. Let x, yeG{e) and x> y
(where > denotes the ordinal order in R.). Since x~ y, for any positive
number ¢ we have m,x=n,y+c,, L,(c.)<m. for some ¢, G{a) and some
positive integers m,, n,. From Proposition 8 and the proof of Lemma 2
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we see

X . n
Z =g (x)=lim =&,
Y @,y(x) lm e

Then n,>m, for sufficiently small . Hence
mex=mgy+z,

where z=(n.—m,)y+c. This implies that x>y and hence G(a) is linear.

CororLrary. Let G be a positive real N-semigroup. Thenthe following
conditions are equivalent

(1) G 1s almost power-joined,

(2) G s linear,

(3) forany x, yeG such that x> vy, there extists a positive integer n

such that n(x— y)eG.

Moreover, 1.f these conditions are satisfied, the order > on G coincides

with the order induced from the ordinal order of R.

Let (f,) and (f;) be two bases of H,(G) and let y (resp. 7'): G—TIR,
be a homomorphism defined by 7(x)=(f.(x)) (resp. 7'(x)=(f%(x))). Then
there exists an isomorphism 4 : 7(G)=7/(G) such that the following diagram
commutes:

G — 7(G)
(D.l) N lz h
7(G).

Thus 7(G) is uniquely determined up to an isomorphism and we call it the
affine part of G and it is denoted by 4(G). A(G) has the following
universal property.

ProrosiTioN 9. Let G and G’ be N-semigroups and let g: G—G' bea
homomorphism. Let 7: G— A(G) be the surjection defined by a base (f,) of
H (G). If G’ isaffine, there exists a unique homomorphism g: A(G)—G’
such that the following diagram commutes:

(D.2) \ |8

Proor. We define a homomorphism g: 4(G)—G’ by g(n(x))= g(x) for
x€6G. We must prove that gis well-defined. Assume that (x)=7(y) for
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x, yeG, that is, f(x)=f(y) for every fe H.(G). Then f'(g(x))=f"(g(y))
for every e H,(G’). Since G’ is affine, we have g(x)= g(y) by Proposition
7, this proves that gis well-defined. It is clear that gis a homomorphism
and uniquely determined.

Let G and G’ be N-semigroups and let g: G—G’ be a homomorphism. Let
7: G—A(G) and 7’: G'— A(G") be the surjections. Then by the proposition
above there exists a unique homomorphism g:4(G)— A(G’) such that the
following diagram commutes:

¢ 5 ¢
(D.3) vl )
AG) -5 A(G).

Thus the map 4:G—— A(G) is a covariant functor on the category of
N-semigroups to the category of affine N-semigroups.

On the other hand g induces an R-homomorphism g*: H(G")—H(G)
which is defined by g*(f)(x)=f"(g(x)) for x=G and fe H(G’). Thus
the map H:Gl—— H(G) is a contravariant functor on the category of
N-semigroups to the category of R-vector spaces.

ProrosiTioNn 10. In the same situation as above, the homomorphisms
p¥: H(A(G)—H(G) and '*:H(A(G"))—H(G") are isomorphisms and the
Sollowing diagram commutes:

H(A(G") 55 H(A(G))
(D.4) 7% | 7%
HG) 5 H).

Therefore we have an isomorphism of the functors: Ho A~ H.

Proor. From Proposition 9 we see that for any f= H,(G) there is a
unique f € H,(A(G)) such that f=7-f=%*(f), this implies that 7* is one-to-
one. The commutativity of the diagram (D.4) follows from the com-
mutative diagram (D.3).

The following is simple but important.

ProrosiTioN 11.  Let g: GG’ be a surjective homomorphism of N-sema-
groups. Then g*: H(G")—H(G) is injective. Therefore dim G>dim G’.

COROLLARY 1. On the same assumption as above, 1f G s almost power-
jgoined, G’ 1s also almost power-joined.
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CoroLLARY 2. Let g: G—G’ be a homomorphism of N-semigroups and
let x, yeG. If x~ 1y, then g(x)~ g(y).

Let g: G—G’ be a homomorphism of N-semigroups. We say g is degen-
erate if there exist », y=G such that x~ yand g(x)~ g{y). Otherwise we
say g is non-degenerate.

Prorosition 12. Let g: GG’ and g’': G'—>G" be homomorphisms of N-
semigroups. Assume that g is surjective. Then g’ g is non-degenerate if
and only of gand g’ are non-degenerate.

Tueorem 11. Let g: GG’ be a surjective homomorphism of N-semi-
groups. Then the following conditions are equivalent:

(1) g 1is non-degenerate,

(2) g: A(G)— A(G") 18 an isomorphism,

(3) g*: H(G")—H(G) is an isomorphism.

Proor. (8)—(1): Assume that g is degenerate, i.e. there exist
%, y€G such that x~ y and g(x)~ g(y). Then from Lemma 4 we can
find f,= H,(G) and positive integers m, n such that mf(x)=nf,(y). Since
g* is an isomorphism, there exists fj e, (G’) such that f,=f;°g, hence
fo(mg(x)=fi(ng(y). Since mg(x)~ng(y), it follows from Lemma 4
that f'(m g(x))=f'(n g(y)) forall /e H(G’). But applying Lemma 4 again,
we see that h,(mx)2ch,(ny) for some h,=H,(G). Then h, cannot be
induced from an element of H(G’), hence g* is not surjective, this
contradicts to (3).

(1)—(2): Let 5: G—A4(G) and %': G'— A(G’) be the surjections. By
Proposition 10, »* and %* are isomorphisms, hence » and 7 are non-
degenerate as we have just proved. Since 7'og= goy and g is non-
degenerate, it follows from Proposition 12 that g is also non-degenerate.
Let x, ye4(G) and assume g(x)=g(y). Then x~y because g is
non-degenerate. Therefore f(x)=f(y) for all feH, (4(G)) by Lemma 4,
hence x = y by Proposition 7. Thus gisinjective. Moreover gissurjective
since g is so.

(2)—(3): Clear from the isomorphism Ho A~ H.

CororLLarY 1. The surjection 77: G— A(G) 18 non-degenerate.

CoroLLARY 2. Let g: G—G' be a non-degenerate homomorphism. ILf
G s affine, then g is injective.
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CoroLLARY 3. Let g: G—G' be a surjective homomorphism and assume
G 1s finite dimensional.

Then g is non-degenerate 1f and only 1f dim G

=dira G'.
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