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In [1] the direct limit of a sequence of semigroups is defined as follows:
Consider a sequence {D;: i=1, 2,--} of semigroups with isomorphisms ¢;; of
D; into D, i<j, such that for i <j<k, @p(x)=g; @;(x) and @, (x)=x. The
semigroup D of the set union Ul D, which, for every i, j and x such that /<7
and x= D,, identifies x with ¢ ;(x) is called the direct limit of {D;: i==1, 2,---}
with respect to the isomorphism family F={g;: i=1, 2,---, j=1, 2,---; i=<j}
and is denoted by D——;I'EI_1>(D,.; F).

Further in [1] the problem is asked to describe the isomorphism condition
for S and S’ in terms of S;, S;', @ ;, @%;, if S; and S, are positive integer semi-
groups and S:ili_m)(Si; Pji)s S':_li_rn)(S,-'; Phi)-

In this paper this concrete problem is not solved, but some conditions are
given for a more general case.

The definition of the direct limit of the sequence of semigroups given in [1]
can be generalized to the sequence of finitary relation spaces, if the word
“semigroup’ in it is substituted by the words “finitary relation space”. The
relation space is a set on which some relations are given. If all of those relations
are finitary, this reclation space is called finitary.

We may adapt this definition by such a way that .S is defined as such a set
that for any 7 an isomorphism ¢; of .S; into S exists and any element of S is an
image of some element of S; in ¢; for some 7 and @ ;p;;=g; for j=1.

Now we shall prove a lemma.

LevMA. Let M and M’ be two finitary relation spaces. Let o; for each
positive integer i be an isomorphism from M into M'. For i<j let the definition
domain of a; be included in the definition domain of o;. Let a(x)=a;(x) for any
x from the intersection of definition domains of «; and ;. Let any element of
M be in the definition domain of some «,. Then there exists an isomorphism of
M into M'.

Proor. Let us define the mapping « so that a(x)=a;(x) for such an 7 that
x is in the definition domain of «;. The element a(x) is determined uniquely,
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because a;(x)=ct;(x) for x from the intersection of definition domains of «; and
a;. Let some elements x,,--+,x, be in an n-ary relation on the relation space
M. Let x; (1=:1,---,n) be in the definition domain of o, Let N=max {k(7):
i=1,---,n}. Then x; is in the definition domain of a, for i=1,-.-,# and the
elements a (%)), -+, ay(x,) are in the corresponding relation, because a is an
isomorphism. But a(x;)=ay(x;) for i=1,---, n and so a(x,),- -, a(x,) are in
the corresponding relation. This can be made for any n-tuple which is in
some relation on M and so we have proved that « is an isomorphism.

The assumption that M is a finitary relation space was made, because in
the contrary case IV should not always have to exist.

All groups, semigroups, lattices, rings, ficlds, graphs etc. are finitary
relation spaces.

Now we shall prove a theorem.

TreoREM 1. Let {S;: i=1, 2,.--}, {S}: i=1, 2,--:} be two infinite
sequences of finitary relation spaces, let Szli_n} (S; 5 @), S'=lim (S%; »4,),
where @ j;, @}, are corvesponding isomorphisms (see the definition of zl;) direct limit).
The relation spaces S and S’ are isomorphic to each other, if and only if there
exists an infinite sequence {T; : i=1, 2,---}, whose terms are finitary retation
spaces or empty sets, and the isomorphisms \r;, \rf, 7;; for i < j so that \r; is an iso-
morphism of T, into S;, \r} is an isomorphism of T; into S| and T;, is an isomor-
phism of T; into T'; so that the following conditions are satisfied:

(A) Tr(%) == TrjTji(x), Ty(x) =a for i<j<k,

V,75i%) = @)

Vi'Ti%) = il (%)
for any 1.
(B) To each positive integer k and to each element x< .S, there exists such a
positive integer N that for each integer n>>N we have @,..{x)=\r,(T,).
(C) To each positive integer k and to each element x' =S, there exists such a
positive integer N' that for each integer n>>N" we have ¢ (x)=r, (T,).

RemARK. The conjunction of the conditions (B) and (C) is equivalent to
the following condition:

jDI (Si—¥i(T)) = ,Dl (S = (1) =90.

Proor. Let there exist the sequence {7;:7i=1, 2,---} and the isomor-
phisms vr;, \r," and 7;; with the above described properties. TFor each ¢ consider
the isomorphism 7,=@r; of T'; into S and the isomorphism 7/=@/r;" of T;
into S’. Let yeS. We have y=g,(x) for some positive integer k and some
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x& S According to (B) there exists such a positive integer N that for n>N
we have @,(x)ev,(T,). But g(x)=9,'(y). Thus @, (y)&y(T,) and this
means that there exists 27, such that v ,(2)=¢,'(y), which implies
=V pr(y)=7n."(y). We have proved that for any y=.S there exists a posi-
tive integer N such that for #>>N the element y is in the definition domain of
7% " Analogously we can prove that for any y'< S’ there exists a positive
integer N’ such that for n>>N’ the element 3’ is in the definition domain of 7,
Now let us consider the mappings w,=7;/7;7'=@,/ V' r7'p; ! for positive integers
7; they are isomorphisms from S into S’ and they can be eventually empty, i.e.
defined for no element (if 7,=0). Let us study interrelations between w,,, w,
for m<<n. We have @,(¥)=@,0um(X), @, (X)=@,/ Ph(x) for any x for which it
is defined, therefore '

1 -1 _-1

Cl)?'}z = ¢m/\l"m,\r!p;1¢;1 = @n/¢:1m“‘!/‘m/\!r; @nm(pn .

-1

Further @\, =V, T, according to (A), and thus ¥, '@ma=Tmm@s *. Accord-
ing to (A) also @), V=V ,/'Ty,.  Thus we have 0,,(y)=0,/ V., TunTom¥n ' Pu ()
=@,/ U,/ V. o (v)=w,(y) for all y tor which o,(y) is defined; therefore w,
is an extension of w,, for n>>m. To each y<.S there exists a positive integer N
such that for n>N the mapping »,' is defined in y; therefore also w,=7,'7;*
is defined in y, because 7, '(y)& T, and »,’ is the mapping of T, into S’. There-
fore let us define the mapping w of S into S’ so that w(y)=w,(y) for such a
positive integer z that w,, is defined in y; according to the above proved w(y) is
determined uniquely. The mapping o is an extension of w, for any positive
integer #n. According to Lemma o is an isomorphism of S into §’. Now we
shall prove that o is even an isomorphism of S onto S”. We have w,'=7,7,""
for any n. 'The mapping w,' is defined in all elements of S’ in which 7';?* is
defined. We have proved that for each y’ .S’ there exists a positive integer N
such that for #>>N the element )’ is in the definition domain of »,™*. We define
the mapping o’ of S” into S so that o'(y)=w,'(y’) for such a positive integer n
that ,' is defined in y’; the mapping o’ is determined uniquely. Now let
y=0'(y), y=S, y'eS8’. Therefore there exists a positive integer m such that
y=w,'(y"); thus y'=0,(y) and yY=w(y). So o’=w"'; as & is defined in all
elements of S’, » must be an isomorphism onto S’. Therefore .S and S’ are
1somorphic.

Now suppose that .S and S’ are isomorphic. Let % be an isomorphism of
Sonto S’. Put T,=n9,(S,)N @,/ (S,) for each positive integer n. Further put
V=@ " ¥,/=¢@; " for every positive integer #, T,,(x)=x for x& T,,, m and
n positive integers, m<n. The condition (A) is fulfilled, because yr,7;,(x)
=7 (%) for xT;, @ r(x)=@;;p7'n ' (x)=p7'n '(x) for x&T;, therefore
V7= s further ¥ /7 ()= @5(x) for x € T, @0/ (%)= @07 (%)= ()
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for x=T,, therefore r/7;,=¢}r,/. We shall verify the condition (B). Let
xSy, and consider the element @,(x)=S. As % is an isomorphism of S onto
S’, there exists an element z=7p,(x)=.S’. This element is equal to ¢,/(y) for
some m and some y=S,,. Let N=max (k, m). Forn>N we have 2=79,p,()
=@,/ Pim(¥), therefore zE79,(S,) N @,/ (S, )=T,. Thenx=@;'n (2)and @,(x)
=@upin ()=, 1 (2)=V.(2)eV,(T,). Analogously we verify the condi-
tion (C). 'The proof is ready.

Now if we put &=1/y7;!, the mapping &; is an isomorphism from
S; into S/. TFurther E;@;(x)=\r;/ V7 p;ix)=" ;T (x)=pjl/ ¥ (x)
=q¢’;;£,(x) for any & for which both £;p;; and ¢’; & are defined; this follows
from the conditions (A). From the conditions (B) and (C) we can obtain the
result that for any positive integer k£ and x&.S, there exists a positive integer [NV
such that for n>N the element @,(x) is in the definition domain of £, and for
any positive integer k and &’ €S there exists a positive integer N’ such that for
n>N’ the element ¢, (x') is in the set of values of &,.

On the other hand, if such mappings §; are defined, we may obtain the sets
T, and the mappings Vr;, \/, 7;;. For each i we define T as the subset of S;
consisting of all elements x for which £,(x)is defined. Then vr(x)=x, J/(x)
=E,(x), T;{(x)=p;i(x) for x=T,, j>i. We can easily verify all the conditions
for these sets and mappings.

Therefore we can express a theorem which is a simplification of Theorem 1;
we do not need the sets T in it.

TuEOREM 2. Let {S;:1=1,2,---}, {S/:i=1, 2,---} be two infinite sequences of
finitary relation spaces, let S=lim (S;; @;;), S’=lim (S;; @};), where @;;, @}; are
corresponding isomor phisms. The relation spaces S and S’ are isomorphic to each
other, if and only if there exists a family E={E;: i=1, 2, .-} of isomorphisms such
that &, is an isomorphism from S; into S; (some of these isomorphisms may be
empty) so that the following conditions are satisfied:

(A) E1p5(x) = @l(x)E(x)

for any x for which both £ ;p;; and ¢/,&; ave defined.

(B)  To each positive integer k and to each element x= Sy there exists such a posi-
tive integer N that for each integer n>N the element @, (x) is contained in the
definition domain of &,,.

(C) To each positive integer k and to each element x' = S}/ there exists such a posi-
tive integer N’ thdt for each integer n>N’ the element @, (x") is contained in the
set of values of &,.
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