Direct Limits of Finitary Relation Spaces

By

Bohdan Zelinka

(Received May 25, 1972)

In [1] the direct limit of a sequence of semigroups is defined as follows: Consider a sequence $\{D_i: i=1, 2, \cdots\}$ of semigroups with isomorphisms φ_{ji} of D_i into D_j , $i \leq j$, such that for $i \leq j \leq k$, $\varphi_{ki}(x) = \varphi_{kj} \cdot \varphi_{ji}(x)$ and $\varphi_{ii}(x) = x$. The semigroup D of the set union $\bigcup_{i=1}^{\infty} D_i$ which, for every i, j and x such that $i \leq i$ and $x \in D_i$, identifies x with $\varphi_{ji}(x)$ is called the direct limit of $\{D_i: i=1, 2, \cdots\}$ with respect to the isomorphism family $F = \{\varphi_{ji}: i=1, 2, \cdots, j=1, 2, \cdots; i \leq j\}$ and is denoted by $D = \lim_{x \to \infty} \{D_i: i = 1, 2, \cdots, j = 1, 2, \cdots; i \leq j\}$

Further in [1] the problem is asked to describe the isomorphism condition for S and S' in terms of S_i , S_i' , φ_{ji} , φ'_{ji} , if S_i and S_i' are positive integer semigroups and $S = \lim_{i \to \infty} (S_i; \varphi_{ji})$, $S' = \lim_{i \to \infty} (S_i'; \varphi'_{ji})$.

In this paper this concrete problem is not solved, but some conditions are given for a more general case.

The definition of the direct limit of the sequence of semigroups given in [1] can be generalized to the sequence of finitary relation spaces, if the word "semigroup" in it is substituted by the words "finitary relation space". The relation space is a set on which some relations are given. If all of those relations are finitary, this relation space is called finitary.

We may adapt this definition by such a way that S is defined as such a set that for any i an isomorphism φ_i of S_i into S exists and any element of S is an image of some element of S_i in φ_i for some i and $\varphi_j\varphi_{ji}=\varphi_i$ for $j\geq i$.

Now we shall prove a lemma.

LEMMA. Let M and M' be two finitary relation spaces. Let α_i for each positive integer i be an isomorphism from M into M'. For $i \leq j$ let the definition domain of α_i be included in the definition domain of α_j . Let $\alpha_i(x) = \alpha_j(x)$ for any x from the intersection of definition domains of α_i and α_j . Let any element of M be in the definition domain of some α_i . Then there exists an isomorphism of M into M'.

PROOF. Let us define the mapping α so that $\alpha(x) = \alpha_i(x)$ for such an *i* that x is in the definition domain of α_i . The element $\alpha(x)$ is determined uniquely,

because $\alpha_i(x) = \alpha_j(x)$ for x from the intersection of definition domains of α_i and α_j . Let some elements x_1, \dots, x_n be in an n-ary relation on the relation space M. Let x_i ($i=1,\dots,n$) be in the definition domain of $\alpha_{k(i)}$. Let $N=\max\{k(i): i=1,\dots,n\}$. Then x_i is in the definition domain of α_N for $i=1,\dots,n$ and the elements $\alpha_N(x_1),\dots,\alpha_N(x_n)$ are in the corresponding relation, because α_N is an isomorphism. But $\alpha(x_i)=\alpha_N(x_i)$ for $i=1,\dots,n$ and so $\alpha(x_1),\dots,\alpha(x_n)$ are in the corresponding relation. This can be made for any n-tuple which is in some relation on M and so we have proved that α is an isomorphism.

The assumption that M is a finitary relation space was made, because in the contrary case N should not always have to exist.

All groups, semigroups, lattices, rings, fields, graphs etc. are finitary relation spaces.

Now we shall prove a theorem.

Theorem 1. Let $\{S_i: i=1, 2, \cdots\}$, $\{S_i': i=1, 2, \cdots\}$ be two infinite sequences of finitary relation spaces, let $S=\lim\limits_{\longrightarrow} (S_i: \varphi_{ji})$, $S'=\lim\limits_{\longrightarrow} (S_i': \varphi_{ji}')$, where φ_{ji} , φ_{ji}' are corresponding isomorphisms (see the definition of the direct limit). The relation spaces S and S' are isomorphic to each other, if and only if there exists an infinite sequence $\{T_i: i=1, 2, \cdots\}$, whose terms are finitary retation spaces or empty sets, and the isomorphisms $\psi_i, \psi_i', \tau_{ji}$ for $i \leq j$ so that ψ_i is an isomorphism of T_i into S_i , ψ_i' is an isomorphism of T_i into T_j so that the following conditions are satisfied:

(A)
$$\tau_{ki}(x) = \tau_{kj} \cdot \tau_{ji}(x), \quad \tau_{ii}(x) = x \quad \text{for} \quad i \leq j \leq k,$$
$$\psi_j \tau_{ji}(x) = \varphi_{ji} \psi_i(x)$$
$$\psi_j ' \tau_{ji}(x) = \varphi'_{ji} \psi_i '(x)$$

for any i.

- (B) To each positive integer k and to each element $x \in S_k$ there exists such a positive integer N that for each integer n > N we have $\varphi_{rk}(x) \in \psi_r(T_n)$.
- (C) To each positive integer k and to each element $x' \in S_k'$ there exists such a positive integer N' that for each integer n > N' we have $\varphi'_{nk}(x) \in \psi_n'(T_n)$.

REMARK. The conjunction of the conditions (B) and (C) is equivalent to the following condition:

$$\bigcap_{i=1}^{\infty} \left(S_i - \psi_i(T_i) \right) = \bigcap_{i=1}^{\infty} \left(S_i' - \psi_i'(T_i) \right) = \emptyset.$$

PROOF. Let there exist the sequence $\{T_i: i=1, 2, \cdots\}$ and the isomorphisms ψ_i , ψ_i and τ_{ji} with the above described properties. For each i consider the isomorphism $\eta_i = \varphi_i \psi_i$ of T_i into S and the isomorphism $\eta_i' = \varphi_i' \psi_i'$ of T_i into S'. Let $y \in S$. We have $y = \varphi_k(x)$ for some positive integer k and some

 $x \in S_k$. According to (B) there exists such a positive integer N that for n > N we have $\varphi_{nk}(x) \in \psi_n(T_n)$. But $\varphi_{nk}(x) = \varphi_n^{-1}(y)$. Thus $\varphi_n^{-1}(y) \in \psi_n(T_n)$ and this means that there exists $z \in T_n$ such that $\psi_n(z) = \varphi_n^{-1}(y)$, which implies $z = \psi_n^{-1} \varphi_n^{-1}(y) = \eta_n^{-1}(y)$. We have proved that for any $y \in S$ there exists a positive integer N such that for n > N the element y is in the definition domain of η_n^{-1} . Analogously we can prove that for any $y' \in S'$ there exists a positive integer N' such that for n > N' the element y' is in the definition domain of $\eta_n'^{-1}$. Now let us consider the mappings $\omega_i = \eta_i' \eta_i^{-1} = \varphi_i' \psi_i' \psi_i^{-1} \varphi_i^{-1}$ for positive integers i; they are isomorphisms from S into S' and they can be eventually empty, i.e. defined for no element (if $T_i = \emptyset$). Let us study interrelations between ω_m , ω_n for m < n. We have $\varphi_m(x) = \varphi_n \varphi_{nm}(x)$, $\varphi_m'(x) = \varphi_n' \varphi_{nm}'(x)$ for any x for which it is defined, therefore

$$\omega_m = \varphi_m' \psi_m' \psi_m^{-1} \varphi_m^{-1} = \varphi_n' \varphi_{nm}' \psi_m' \psi_m^{-1} \varphi_{nm}^{-1} \varphi_n^{-1}.$$

Further $\varphi_{nm}\psi_m = \psi_n \tau_{nm}$, according to (A), and thus $\psi_m^{-1}\varphi_{nm}^{-1} = \tau_{nm}^{-1}\varphi_n^{-1}$. According to (A) also $\varphi'_{nm}\psi_{m'}=\psi_{n'}\tau_{nm}$. Thus we have $\omega_{m}(y)=\varphi_{n'}\psi_{n'}\tau_{nm}\tau_{nm}^{-1}\psi_{n}^{-1}\varphi_{n}^{-1}(y)$ $=\varphi_n'\psi_n'\psi_n^{-1}\varphi_n^{-1}(y)=\omega_n(y)$ for all y for which $\omega_m(y)$ is defined; therefore ω_n is an extension of ω_m for n > m. To each $y \in S$ there exists a positive integer Nsuch that for n>N the mapping η_n^{-1} is defined in y; therefore also $\omega_n = \eta_n' \eta_n^{-1}$ is defined in y, because $\eta_n^{-1}(y) \in T_n$ and η_n' is the mapping of T_n into S'. Therefore let us define the mapping ω of S into S' so that $\omega(y) = \omega_n(y)$ for such a positive integer n that ω_n is defined in y; according to the above proved $\omega(y)$ is determined uniquely. The mapping ω is an extension of ω_n for any positive integer n. According to Lemma ω is an isomorphism of S into S'. Now we shall prove that ω is even an isomorphism of S onto S'. We have $\omega_n^{-1} = \eta_n \eta_n'^{-1}$ for any n. The mapping ω_n^{-1} is defined in all elements of S' in which η'_n^{-1} is defined. We have proved that for each $y' \in S'$ there exists a positive integer N such that for n>N the element y' is in the definition domain of $\eta_n^{\prime-1}$. We define the mapping ω' of S' into S so that $\omega'(y') = \omega_n^{-1}(y')$ for such a positive integer n that ω_n^{-1} is defined in y'; the mapping ω' is determined uniquely. Now let $y=\omega'(y'), y\in S, y'\in S'$. Therefore there exists a positive integer m such that $y = \omega_m^{-1}(y')$; thus $y' = \omega_m(y)$ and $y' = \omega(y)$. So $\omega' = \omega^{-1}$; as ω' is defined in all elements of S', ω must be an isomorphism onto S'. Therefore S and S' are isomorphic.

Now suppose that S and S' are isomorphic. Let η be an isomorphism of S onto S'. Put $T_n = \eta \varphi_n(S_n) \cap \varphi_n'(S_{n'})$ for each positive integer n. Further put $\psi_n = \varphi_n^{-1} \eta^{-1}$, $\psi_n' = \varphi_n'^{-1}$ for every positive integer n, $\tau_{nm}(x) = x$ for $x \in T_m$, m and n positive integers, m < n. The condition (A) is fulfilled, because $\psi_j \tau_{ji}(x) = \varphi_j^{-1} \eta^{-1}(x)$ for $x \in T_i$, $\varphi_{ji} \psi_i(x) = \varphi_{ji} \varphi_i^{-1} \eta^{-1}(x) = \varphi_j^{-1} \eta^{-1}(x)$ for $x \in T_i$, therefore $\psi_j \tau_{ji} = \varphi_{ji} \psi_i$; further $\psi_j \tau_{ji}(x) = \varphi_j^{-1}(x)$ for $x \in T_i$, $\varphi_{ji} \psi_i'(x) = \varphi_{ji} \varphi_i'^{-1}(x) = \varphi_j'^{-1}(x)$

for $x \in T_i$, therefore $\psi_j'\tau_{ji} = \varphi_{ji}'\psi_i'$. We shall verify the condition (B). Let $x \in S_k$ and consider the element $\varphi_k(x) \in S$. As η is an isomorphism of S onto S', there exists an element $z = \eta \varphi_k(x) \in S'$. This element is equal to $\varphi_m'(y)$ for some m and some $y \in S_m'$. Let $N = \max(k, m)$. For n > N we have $z = \eta \varphi_n \varphi_{nk}(x) = \varphi_n' \varphi_{nm}'(y)$, therefore $z \in \eta \varphi_n(S_n) \cap \varphi_n'(S_n') = T_n$. Then $x = \varphi_n^{-1} \eta^{-1}(z)$ and $\varphi_{nk}(x) = \varphi_{nk} \varphi_n^{-1} \eta^{-1}(z) = \varphi_n^{-1} \eta^{-1}(z) = \psi_n(z) \in \psi_n(T_n)$. Analogously we verify the condition (C). The proof is ready.

Now if we put $\xi_i = \psi_i' \psi_i^{-1}$, the mapping ξ_i is an isomorphism from S_i into S_i' . Further $\xi_j \varphi_{ji}(x) = \psi_j' \psi_j^{-1} \varphi_{ji}(x) = \psi_j' \tau_{ji} \psi_i'^{-1}(x) = \varphi_{ji}' \psi_i' \psi_i^{-1}(x) = \varphi_{ji}' \xi_i(x)$ for any x for which both $\xi_j \varphi_{ji}$ and $\varphi_{ji}' \xi_i$ are defined; this follows from the conditions (A). From the conditions (B) and (C) we can obtain the result that for any positive integer k and $x \in S_k$ there exists a positive integer N such that for N > N the element $\varphi_{nk}(x)$ is in the definition domain of ξ_n and for any positive integer k and $k' \in S_k'$ there exists a positive integer N' such that for n > N' the element $\varphi_{nk}(x')$ is in the set of values of ξ_n .

On the other hand, if such mappings ξ_i are defined, we may obtain the sets T_i and the mappings ψ_i , ψ_i' , τ_{ji} . For each i we define T_i as the subset of S_i consisting of all elements x for which $\xi_i(x)$ is defined. Then $\psi_i(x) = x$, $\psi_i'(x) = \xi_i(x)$, $\tau_{ji}(x) = \varphi_{ji}(x)$ for $x \in T_i$, j > i. We can easily verify all the conditions for these sets and mappings.

Therefore we can express a theorem which is a simplification of Theorem 1; we do not need the sets T_i in it.

Theorem 2. Let $\{S_i : i=1, 2, \cdots\}$, $\{S_i' : i=1, 2, \cdots\}$ be two infinite sequences of finitary relation spaces, let $S = \lim_{\longrightarrow} (S_i; \varphi_{ji})$, $S' = \lim_{\longrightarrow} (S_i'; \varphi'_{ji})$, where φ_{ji} , φ'_{ji} are corresponding isomorphisms. The relation spaces \overrightarrow{S} and S' are isomorphic to each other, if and only if there exists a family $\Xi = \{\xi_i : i=1, 2, \cdots\}$ of isomorphisms such that ξ_i is an isomorphism from S_i into S_i' (some of these isomorphisms may be empty) so that the following conditions are satisfied:

(A)
$$\xi_{j}\varphi_{ji}(x) = \varphi'_{ji}(x)\xi_{i}(x)$$

for any x for which both $\xi_j \varphi_{ji}$ and $\varphi'_{ji} \xi_i$ are defined.

- (B) To each positive integer k and to each element $x \in S_k$ there exists such a positive integer N that for each integer n > N the element $\varphi_{nk}(x)$ is contained in the definition domain of ξ_n .
- (C) To each positive integer k and to each element $x' \in S_k'$ there exists such a positive integer N' that for each integer n > N' the element $\varphi'_{nk}(x')$ is contained in the set of values of ξ_n .

Katedra Matematiky Vysoké Školy Strojní a Textilní, Studentská 5, Liberec I, Czechoslovakia.

Reference

[1] M. Sasaki, T. Tamura: Positive rational semigroups and commutative power joined cancellative semigroups without idempotent, Czech. Math. J. 21 (1972), 567–576.