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Irreducible representation spaces of 30(6) are constructed by the solid
harmonics for the unitary group. The matrix representation is explicitly
obtained by using of the raising-lowering operators of the special function.

§1. Introduction

A few years ago, the author defined two kinds of special functions and
investigated some properties of them [1]. These functions were introduced as
a necesary consequence from a series of studies concerning solid harmonics for
the unitary group, which had been developed by Ikeda partially in collabora-
tion with the author [2], [3]. It was an aim to provide mathematical tools for
applications of the group theory to physics of many-particle systems. The
present paper is also devoted to this purpose.

In the present study an essential role is played by the twelve recurrence
operators of P3§(x), the above mentioned special function. It is well-known
that the associated Legendre functions of the first kind are used for the
construction of matrix representations for 80(3), which is a Lie algebra of rank
1. The author has never seen such uses of special functions for a simple Lie
algebra of rank 2 or highers. This is the first time that the recurrence formulas
have ever employed for 80(6) of rank 3. The method in the paper may be likely
applied to higher dimensional cases.

It is a conclusion of the paper to propose the matrix elements for the irre-
ducible representation of 80(6) (see [7.1]). 'The basis of the representation space
is fixed according to the chains 80(6)D&11(3)D8u(2) and 30(6)D8o(4)=31u(2)
P31(2). In other words, the matrix representation of the restriction to one of
the subalgebras is the block diagonal. The restriction to 311(2) agrees with the
Condon and Shortley’s formula [4]. 'The matrix elements for 811(3) are identical
with that of several authors [5]. 'These facts show that the result of the paper
is considerably fit for practical uses.
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The content of the paper is as follows. §2 deals with the properties of
P35(x) which are required in the subsequent sections. They have been already
obtained in the papers [1]. New notations are also introduced for the recurrence
operators of the function. In §3 the structure of 30(6) is studied. In §4,
particular solusions of the Hermite-Laplace equation are written by making use
of P;8(x) and discussed in connection with operators of 80(6). In §5 the
operators are represented by means of the raising-lowering operators. In §6
irreducible representation spaces are constructed. The final result is given in §7.

§2. Some properties of P;5(x)
The function P %(x) is a special solution of the equation
1) (=7 y+{n (n4-2)x} %
B 2 o Bzinz _ O _1 1
{'y('er +1)— 2(1_ ) 2(1+x5}y (—1l<x<1),
and defined by

(2.2) Pgi(x) = {T(1—a)} (1—x) *(1-x)o "

X F{—vy—(a—B+n)/2, y+(—a+B+n+2)/2; 1—a; (1—x)/2} .

Here, n is a non-negative integer, and «, @ and ¢ are complex. (2.2) is
significant for each value of the parameters. For, if x, is fixed in —1<x,<
1, then P%(x,) is an entire function of the complex variables «, @ and 7.

(2.2) has the following symmetry relations.

(2.3) Pui(x) = Pofyna(¥) = 2°P57(x) .
In the case of a non-negative integer «, we have
(2. 4) P8(x) = (—2) A a, B, V)P (x),

_ M{v+H(a=B+n+2)/2} T {v+(a+ B+n+2)/2}
(2.5)  AJa,B,7)= Ty B n 2T (ot B 22}

Now, we introduce the following operators.

(2.6) Aus “(x)zmigféfg { a} 4(11+_9;)+{ giZ} i(lﬂ_‘i),

2.7) A;’bﬁi(x)=(1~x)\/m +{—V—n—1}\/m+{—giz}

@8 A =+ovi—xd e a oL

V1+x?
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Here, the upper or lower argument in braces on the right hand side is chosen in
accordance with+or—of the double sign behind each suffix of A on the left
hand side. We often omit «, 8 and ¢ so far as no confusion arises. For
example A;%(x) means Ap%2(x).

By making use of the above notation we may write twelve recurrence
formulas for P%(x) as follows.

(2. 9) AR@PHE)=2"{y+(a—B+n)/2} {v—(a—B—n—2)2} P33P (),
(2.10) ArG(X)Pri(x)=—2P % P Yx),
(2.11)  ASS(x)P (%)= {v—(a+B—n—2)2} {v+(a+B+n)[2} Piz P (x) ,
(2.12)  AZG(x)PRf(x)=—P33"P (x)
(2.13)  ARZ(x)Puf(x)={v+(a—B+n)[2}Piix(x)
(2. 14) A(x)Pri(x)=—2{y—(a+B—n-—2)/2} Pyl s(x),
(2.15)  AR()P(x)=—{v—(a—B—n—2)[2} P {i{x(x),
(2.16)  ANZ(x)PR8(x)=2{y+(a+B-n)[2} Pr (),
(2.17)  AR@)PHx)={v—(a—B—n—2)2} {v—(a+B—n—2)[2} Pr5:fu(x),
(2.18)  AzS(x)Pri(x)=—2P31f(x)
(2.19)  AnX(x)Pi(x)=—2P33 (%)
(2.20)  AZ(x)P(x)= {v+(a—B+n)2} {v+(a+B+n)2} P53 {x(x) .
Finally we give an orthogonality relation: When « is fixed in the region

Re <1 or a positive integer and (3 an arbitrary complex, assume vy to take such

values that one and only one of v+ (+a-+B+n)/2 and —y+(+atB—n—2)/2
is a non-negative integer. Here, +or—of the double sign in front of o corresponds
to Re a<1 or a=1, 2, --- respectively, and also-}-or—in front of 3 corresponds to
Re B<1 or Re 8> —1. Then the system of functions {P5(x)} satisfies the follow-
ing formula.

gl 0 (Y=*7)
(2. 21) PE(x)PLB(x)(14-x)"dx = | 2-w+e+ /
. iy i B0 =),

where A, (a, B, v) is given by (2.5).

§3. The structure of 30(6)

We consider the three dimensional unitary space. Let 2* (=1, 2, 3) be
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complex coordinate and &* be its conjugate. We introduce fifteen differential
operators

, 5 . ., 0 ) 9
Xt = o+ 2 v__’ o V«__’
oo T e T T o
G- ) 0
Ny = —5" -~ +3*~  (NY+N,= Ny+N,;=0).
oz"* 0g"

Here, the differentiation is defined by 0/0z"=(0/0x"*—1i0/0y*)/2 and d/0z"
=(0/0x"+10/0y")/2, if we put zF=x"1|iy* (x¥, y*: real, ¢: imaginary unit).
Commutation relations among (3.1) are as follows.

[X%, X&] = 8., X0—38,,X5 [XV, N = 6,,Nt—08,,N%,
(3. 2) [XY%, N2 = 8, No—8,N3, [N%, NJ]= [N}, NiJ=0,

[NY, NJ] = 8upXo—8ueX o+ 8,. X 5—8,,X 5.

As is readily shown, the totality of (3.1) over the complex number field
forms the complexification of the Lie algebra of the six dimensional rotation
group. We refer to it as 8o(6)*. Its maximal commutative subalgebra is
spanned by X% (=1, 2,3). The first commutator in (3.2) is that of 1(3).
X4 (p=*v) and >3_.a,X 5 subject to >_,a,==0 are linear harls of 8u(3).
X% (u, v=1, 2), N} and Nj form 8o(4)**. We therefore provide the followings
as a canonical basis of 80(6).

M= (X1 X3))2, N=(XI+XD2, M,=X} M —X
(3.3) Y = (Xi+X3§—2X3)/3, N.=Ni, N_=N

3 1 3 2 AT3 1 AT3 2
<X 1y 3y XZ) 3y le 3y NZ, ZVS .

[T I TS

’

’

Commutators of (3.3) are easily obtained from (3.2). They are given in an
appendix.

[3.1] If the operators L} and L are defined by
(3.4) L= 3 Xixi2—( 3 XE) 4,

2
3.5) = 3 X%X;/Z-(ﬁ}Xﬁ) 4,
V= w=1
then L is permutable with each element of 80(6), and L3 is commutable with M, N,
M, and N..
The commutability is easily proved for X% by making use of the first
relation in (3.2). On the other hand, for N% and N% we should not only use

* By Cartan’s notation, it is D; or 4;. The latter is 3u(4).
#k __N1and —N? are respectively equal to N_ and N.. introduced by Ikeda (II in [2]).
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the commutators but also the definition (3.1).

§4. Particular solutions of Af=0
Let us consider the Hermite-Laplace equation
4. 1) ‘ Af=0, A= 0°/02'03'}0°/02°02°40"/02°0%°.
In order to solve (4.1), we use the generalized polar coordinates
p=R'THFE+E, x = (' —22)/(2'F 4%,
4.2) x, = (3228 — 22 /(2'8 2’2+ %) ,
@u = (1/20) log (2*/2") (r=1,2,3),

or

(4. 3)

{ & =V p(I+a )T )4 e
2= Vp(l—x)(1+x,)/4 €%, 2=\ p(1—wx,)/2 ei% .

If we employ the method of separation of variables, we have a particular
solution of (4.1) [1], [2],

(4_. 4_) fm1m2m3 — P Zszml(xl)P'ﬁz’zll+1(x2)3i<m1¢1+m2¢2+m3¢3) R

where /,, [, and m, (p=1, 2, 3) are constants for the separation.
Now, we investigate some properties of (4.4).

[4. 1] fy7#™ ds a homogeneous function of degree I,— 3 _ym,[2 in 2* and of
degree I,+> Vi ymy|2 in 2",

Proof. 'The operators P=>"%_,2*8/0z* and Q=>"5._,2"0/0z" are written in
terms of (4.2) as

9 123 _ 013
aEE,LQ“é—E

[\)|>_a

Pu

Then we have
Pfrrems = (L= 2 haamu2)f yrems,  Qframems = (LA-3h-ymy [2)f piymama

Thus the proof is completed.
If a solution of (4.1) is a homogeneous polynomial of degree p in & and of
degree ¢ in 3*, we call it a solid harmonic of type (p, q)*.

* By the terminology in the papers [2], [3], it is called “‘a solid harmonic for U(3) of type
(p, g).” Here, U(3) is the three dimensional unitary group.
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[4.2] If f is a solid harmonic of type (p, q), then X4 f, N f and N%f are solid
harmonics of type (p, q), (p—1, g+1) and (p+1, q—1) respectively.

Proof. From the definition (3.2) we easily obtain the following commutators

[A, X% =[A, N4 =[A N4 =0, [P X%=[0, X4=0,
[P, NY] = —N¥ [0, N4 = N% [P, N4 =N [Q, Ni=—Nt.

Thus the lemma is proved.

[4.3] frmems is a simultaneous eigen function of L, LY, M, N and Y
with respective eigenvalues L(l,42), (I, +1), (—m,+m,)/2, (—m,—m,)[2 and
(—m,—m,+2m,)/3.

It may be proved by writing the operators in terms of (4.2). In fact we are

led to the followings (c.f. (2.1)).

M = (—0/0p,+0/0p,)|2i, N = (—0/0p,—0[0p,)/21,

Y = (—0/0p,—0/0p,+20/0p,)/31,

1 @ 2

L= —(—a) 0 —(1—3xy 0 1 T 2 p2
2= ) ) T o—ay o T

o1 e 1 &
"0x, 2(1—x)09% 2(1+x,)09?"

82
2= —(1—x3) 2. 1+
! ( xl)ax%

§5. Representations by means of the raising-lowering operators

We first take up X; as an example. It is written in terms of (4.2) as

follows*.
o[ 0 R0
X = { axzﬂ/ 2(1+x) (=%,
1) i, (IFx)(14x,) 0
- (N/ 9(1+x1)(1+x)a¢1 S e

If it is operated on (4.4), then we have

=) o . JATe—x)
f“{( 2 x)axz (2(x1+) (1=x)gy,

| 2(1+1x1)gcf tx) mafC (1§é1)(1x3x2)}

msz,201+1 {(m 1@ A1 @+ (1, —1)¢,}
X Pypm(x )Py (x,)e’ ¥

1 fmymomz
Xsfrrem =

* Expressions for the other operators are given in an appendix.
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Now, we intend to show that the right hand side is reducible to a linear
combination of (4.4). This is fulfilled, if the factor concerned with x, and x, is
a linear combination of Pz +!(x,)Py~124"+1(y,), varying /{.

For the purpose we consider

AG () AT AT D= () — AGp (a6, ) AT = Gh D ()

From (2.6) and (2.7) it is calculated as follows.

T 0 T m,
{(l—xl)\/1+xla—xl—l—ll\/l+xl—\/1 ;}

i1 o _om
~la xl)\/l—}—x o~ DV, /1+x1}

(jo—50 m, [1+x, 1—x,
- i\/l_xzégz— 2 1~xzm14/1+x2}
S O ﬁ: 5
= (211+1){\/(1+x1)(1_xg)6— ﬂ/%ﬂ e

Y (1+x1)<1+x2)}
(1+x1) 1+x2) 4(1*‘”2) )

Thus we obtain

(5.1) V 2 Q2LA-1)X} frymems
= (A% (3,) At () — AT () AT (1)} i 090 fmams
The first and second terms on the right hand side agree with Jrtgsmpms~t and

Jrtlsrz ™! respectively within the constant factors.
For the other operators, we can samely obtain the followings.

(5.2) V2 2L+1D)X = {—AS(x) Als(3,) - AS7(x,) A" (,) €450 |
(5.3) V' ZQ2LAD)XE= {—A§2x) AT (%) + A (a) ATeH (w,) el 99 |
5-4) V2 QLA1)XE= {Ar%x)Afe (%) — Ard(x,) Al (x,)} 40 |
(5.5) V2 Q2LA1)N} = {— A (%) Afy(x,)+ AL (x) Adet (x, )}ezw#m
(5. 6) V' 2 2L+1)N2 = {ASZ(x) Aty (%) — AdT(w,) ATs (,) im0
(5.7) V2 QLN = {AF%x)Ade (%) — Ad () AfH ()} i et |
(5.8) V' 2 (21, +1)NE = {—A; (%) ATe(%0,) - Ag (2, ) ATe" (x,) i<
(S' 9) M+ _ —Ago‘(xl)e““’ T, Mo = Aoo+(x1)e’(¢1 2,
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(5.10) N, = Ag(x)e @, N_= — A (x)e .

Here, (5.2)~(5.10) are to be operated on f7;72=.
We therefore arive at the lemma:

[5.1] The totality of fyym™ with a fixed I, forms a linear representation
space of 30(6).

§6. Irreducible representations

The representation of 80(6) stated in [5.1] is probably reducible. Since
its martix elements are known through (5.1)~(5.10) and (2.9)~(2.20), we
could seek out irreducible subspaces. But this process is too complicated. On
the other hand, we have already known the theory concerning solid harmonics
and representations of the unitary groups [2]. In this section, we employ a
number of facts from the theory:

If p and q are fixed non-negative integers, all the solid harmonics of type (p, q)
form an trreducible representation space of 3u(3). Let us denote it by V(p, ¢).

A basis of V(p, q) is assigned by a triplet of non-negative integers (v, s, t)
subject to

(6 1) 720’ 19 g, S:O, 1; Dy t:O, 1’ ”'721 (ZZ:Pﬁ—V*S)

Let us refer to it as vy,".

Vit is characterized by a simultaneous eigenvector of L, M, N and Y, whose

eigenvalues are I(14-1), I—t, I—r and (p+2q—3r—3s)[3 respectively.
Let us consider f7/#*° 2I, being a non-negative integer. From (4.4) it is

6.2 00 = PP Y (e
By making use of (2.2), (2.3) and (4.3), we are led to
221800 = 2 (1 o1

= {Vp(1+x)(1+x,)[4e 1} = ().

This is a solid harmonic of type (21, 0).

[6.1] For a fixed non-negative integer 21,, all the functions obtained by
succesive operations of (3.3) on (6.2) form an irreducible representation space of
80(6). It agrees with

(6. 3) V2L, 0YBV(2l,-1, 1)P---DV(0, 24) .
Proof. Let us take up N 3= —2°0/05'+2'3/02°, one of (3.3). Then we have
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(N3)" f7202:00 = (N3*(F)e = (—1)"(2L)(2L—1)-++(2L,—n+1)
X (2P (n=0, 1, -, 2L).

It is a harmonic in V(2/,—n, n), which is irreducible with respect to X% (, v
—1, 2, 3). Therefore, from [4.2] the totality of the functions stated in the
lemma is nothing but (6.3).

In the next place, let us consider N}=—z'0/02*4-2°0/0%'. Starting from
(%)%%2, which is in V(0, 21,), we are led to

(N3 (%) = (—1)"(21)(21,—1)--+(2L,—n+-1)
X (2Y(&)" (n=20,1, -, 2L).

This is a non-vanishing harmonic in V(n, 2I,—n). Thus the irreducibility is
also proved.
We may adopt o33 as a basis of (6.3), where p and ¢ are varied under the

condition p+g=2[,=constant.

[6.2] If frymeme is a solid harmonic in (6.3), then it is proportional to vy,
where

[ L= (p+9)2, L=1=(pF+r—9)2,

6.4
(6.4) lml = —p+4-s+t, m,=r—1t, m;=qg—7—5"

Proof. From [4.1] and [4.3] f732™ is an eigenfunction of P, O, Li, M, N

and Y. Therefore it is nothing but #7%‘, unless it is vanishing. By comparing

the corresponding eigenvalues, we have

ZZ_(m1+m2~*—m3)/2:P’ ZZ+ (m1+m2+m3)/2:q )
L1 = l(1+1), (—mA-m)2=I—t, (—m—m,)2=Il—7,
(—m,—m,+2m,)[|3=(p+2q—3r—3s)/3 (2l=p-+r—s).
If we solve these equations in 1, /,, m,, m, and m,, we are led to (6.4). Here, it
should be remarked that two cases of /,=1Iand /,= —[—-1 give the same harmonic
(c.f. (2.3)). We have taken up the former case.
By making use of (2.2)~(2.5), it is easily shown that 77 is not vanish-
ing for all values of p, g, 7, s, £ subject to (6.1). Thus the proof is completed.

§7. Matrix elements

Let us normalize the basis according to the orthogonality relation (2.18).
We arive at the final result:

[7.1] If the basis of (6.3) is defined by
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(7 1) u;zo — {2 27, ~m +m tm, 3(21 +1)(2] +2)}1/2 ;n}mzms ,
0(mz, m,, Z)Al(mg, 2141, 1) v

where

l,= (P+9)/2’ L=1= (P—f_r—"s)/z ’
(7.2) my = —p+ts+t, m,=r—t, my—=qg—r—s
(7203 1) 5 q, S:——O, 1) "';P, t:O: 1) AR 21))

then the operators of 30(6) are represented as follows.

(7. 3) X = {21—=)(p—s)(s+1)(p+g—s+1)/RDQ2IH1)}  ups
H{EFDE+1)(g—r)(p+7r+2)/(24-1)( 21+2)}1/2u;;1s e+l

(7. 4) Xy = {tr(q—r+1)(p+r+1)/21(21+1)} Fup o071
+{@2I—t+1)(p—s+1)s(p+q—s+2)/(2+ 1)1+ 2)} ups ¢

(7. 5) Xgup® = {((p—)(s+1)(p+g—s+ DDA 1)} g
—A{@ =t 1)+ 1) (g—7)(p+r+2)RIH )2 2)} Fupst e

(7. 6) Xupit = —{Q2lI—tyr(q—r+1)(p-+r-+1)/2DQ2IH- D)} ur 1o
+{+1)(p—s+1)s(p+g—s+2) )21+ 1) 21+ 2)} s 71 041

(7. 7) Niupyt = {Q2I—t)(p—s)(p+r+1)(g—r+ 1)/ QD21+ D} w5 40
H{EH+ D+ 1)s(p4-g—s+2) )21+ 1)(214-2)} Vur 1710

(7. 8) Niupi' = {er(s+1)(p+q—s+1)/(2D21+ D} sty
+H{QRI—=t+1)(p—s+1)(g—r)(p+r+2)/(2141)(214-2)} a5 5 oy

(7. 9) Ny = {t(p—)g—r-+1)(p+r+ 12D D} u2ih
— {2t 1)+ Ds(pt-g—s+2)) I 1)(2H-2)} g L izde

(7.10) Nzt = — {(21—tyr(s+1)(p+q— s+ 1)/ 21+ 1)} ur 73 s L e
D (p—sH)g—(p+r+2) L 1))y Pupdihy,

(7.11) Mgyt — {QRI—t+ D)} 2urs =Y Mougst = {(t4+1)(2— 1)} g+,
(7.12) Nagst = (r(p—s+ DIagidsts, Nyt = {r+1)(p—)} P15ty
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The commutators of (3.

[M’ M]=M,
M, M_]=-—M

[M, Xi] = 3X3,
[M, X3] = $X5,
[M, X3] = —1X3,

[M, N_]=0, [Y,N]=—3N,,
[M,, M_] = 2M, [N,, N_] = 2N,
[M+) X% - _Xga [M—H Xg] - %7

[M_, X5] = —X;,

[N+> %] :Ng,
[M+’ Ng = Ni

[N—7 X? - _Ngy
[M_, Ni] = —Nj,
[N—H %] = Xg,
[N%, N3] =M,

other commutators being zero.

Appendix

3) are as follows.

[Y, M.]=0,
[Y’ M—] == O’

[Y, X3] = — X5,
[V, Xi] = X3,
[V, X3] = —X3§,
[Y, X3] = X35,

[Y, N+] = %N+,

[X3, X5]= M.,

[N+) Xi‘zl] = “—N?)
[N%) X%] :N_,
[N_, X3] = N3,

[N}, X3] = —N_,
[N, Ni] = —Xj,
[N‘y N?] - "—X%)

[N> M+]:O,

[N, M_] =0,

[N, X3] = —3X3,
[N, X7] = X3,
[N, X§] = —3X5,
[N, X3] = X5,

[N, N.,] =N,
[N,N_] = —N_,
[N) N% = _%N%)

_%Y’
Vi) = M-2N+3Y,

[M->X§] - g’
[Xg) %] :M—)

[M+> N%] == _N'a%’
(N3, X§] = —N,,
[M_, N3] = Nj,
[Ng, X?] = N+7

[ %’ —g] = AM—)
[N_, N3] = X},

4 N%and NY are expressed in terms of (4.2) as follows.

27
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3 Py (142, )(1 2 8 1+ 1
Ki=e { “/ = 4/( zﬁ)ix)x) *) ow,

1 1—x, (I+a)(1tax) 0
Wit o VRIS )

1 1—x3) 0 1—x)(1—ux,
#)ax ( gcl)_;(_x)X)(l‘l‘ )ZT

(Wt i) Ve

X2 — oit,0 {

3 Py (1— x)(l 0 1—a,)(1
R A (2(1—1(—90) (15,

1 1 m 9
( 2(1— x)(xl+x)a¢+ i aq))}’

NI = ¢t { (1_5(3i2|—1pc)x)(1 )ax «/(14—00)(1 x)ai
1 1—x, K g1+x)(1+x) 0
+i< 2(1+,)(1 1) O, \/ 8(1—w,) aqo)}’

N — e—i(¢1+w3>{VW)(l_ )ax V(1+x J(1— x) 8

-i—L( 1—x, 0 (H—A)(l—f—x) 8>}’

21 tw)(1f2)0p, N 8(1=x) g
, T a)(1—x,) A=)
Ny = et 3{\/( Z(ﬁl(x)x (I )ax N/( ) x)ax
( o J(i—x)1+w) a)}
21— x)(l—l—x)8¢ S(1—x) 0gp,)f

PN SRy [ Sy gy (1— x)l a3 0
Ny =% 3{ \/ 2lgwy) (T2 )ax+\/ o,

i (N/za x)(1—+x)6¢ N/(lg(ﬁ)(;tx)ai)},

o — 5 0 1/ /1—x, @ 14, 0
My = o7 “’23{3.:\/1—x%éx1——22< 14, 0, T 1+x 0, >}

. — 1 1 0 1- 0
Ny= ﬁ’(""“”z’{i“*x?aiﬁzz-( 1+§§ o, 1+f1 o0, )}
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