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1. Introduction.

A proximity space (X, 0) is totally bounded or completely bounded iff
there is exactly one uniformity which generates the proximity relation ¢ [67].
A natural question to ask is “what properties are possessed by proximity
relations which are generated by exactly n uniformities where n is finite
and more than one?” Such proximities do not exist as was proved recently
by Reed and Thron [4, Corollary 2.1.3]. In our attack on this problem we
were led to a concept which has some interest in its own right; the concept
of immediate predecessor or immediate successor in the collection of uniform-
ities on a set X.

Given two uniformities  and v on a set X, we will say that # is an
immediate predecessor of ¥~ (and ¥ is an immediate successor of %) when
Uy, Uy and =" or W =y when % is a uniformity on X and ¥ %"
cv'. We shall write  imp ¥~ when # is an immediate predecessor of v". %
and 7 are called adjacent if  imp v or v imp %. ,

In this paper, E will generically denote an equivalence relation on X and
«(E) will denote the uniformity with {E} as base. #(d) denotes the uniformity
generated in the standard manner by the pseudo-metric d.

In §2, we show that any uniformity whose topology is not discrete hag
an immediate successor. An example is given to show that not every uni-
formity has an immediate successor, and the general construction of im-
mediate successors is examined.

In §3, we show that every non-trivial uniformity has an immediate
predecessor. A necessary and sufficient condition for #(E*) imp #(E) is
given and used to construct an example to show that the construction used
in §2 is not the only way to generate immediate successors.

In §4 we discuss some questions about the relations between “imp”
defined for uniformities, proximities, and completely regular topologies.

We conclude with §5 in which some unanswered questions are listed.
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2. Immediate successors.

We first prove that for any uniformity % whose topology is not discrete,
there is a uniformity ¥~ such that # imp »~. The following lemma is useful
in proving this theorem. Notationally, if x € X, we denote by E(x) the
equivalence relation ({x}x {x})U(%{x} x%{x}) where % denotes the com-
plement operator.

Lemma 2.1 Suppose that % is a uniformity for X and x* € X. Suppose
further that v is a uniformity for X and ¥ <v CuN U%(E(x*)). Then (1)
v =YN UE(x*)) or (2) there exists a y=¢ x* such that (x*, y) € UNV whenever
U=U'cuand V=V-"'eyv and UNE(x*)Z V.

Proor: Suppose (2) does not hold. Then there exist U=U"'eax, V
=V'tey, UNE(x*)SV, but (x* y) € UNV implies that x*=y. Clearly
UNE(x*)cVNU. We show now that VNUCUNE(x*). Let (a, b) ¢ UNV.
If a=x* or b=x%*, then a=b and (a, b) ¢ UNE(x™). If a==x*=2:0b, then (a, b)
c UNE(x*). Thus VNU=UNE(x*). But <y and hence UNE{(x*)¢c v
and therefore E(x*) € v". Thus Vv #{(E(x*))C v and (1) holds.

TueoreMm 2.2 Let % be a uniformity for X and {x*} ¢ 7(%). Then %
amp UN UCE(x*)).

Proor: Clearly #caN u(E(x*)). If E(x*)eax then it follows that

Next, suppose that # c v c o\ % (E(x*)) and that v %V #(E(x*)). We
will show that #=v". It suffices to show that VoV € when V=V-"'ey.
Now there exists a U €  such that UNE{(x™)C V' and there exists a pseudo
metric d for X such that Ue#(d)<c# [2]. Hence there exists an ¢>0 such
that We={(x, y): d(x, y)<e} €U. Thus W.=W:'. By lemma 2.1, there
exists a y=x«* such that (x*, y) e W.NV. Thus 0="d(x*, y)<e; let 0=e¢
—d{x*, y). It follows then that e=0>0 and W;c W.. It suffices to show
that Wsc<VoV. Let (a,b)€e W;s. If a=x*=0b, then (a, b) € VoV. If a¢x*
Ach, then (a,b) € W.NE(x*)cVelV. If a=x*=cb, then d(y, b)<d(y, x*)
+d(x*, b)=d{y, x*)+d(a, b)<d(y, x*)+0=e. Thus (y, b)€ WeNEx*)CV.
Since (x*, y) € V and (y, b) € V, it follows that (x*, b) € Vo) and (a, b) € VoV
The case a=cx*=1> is similarly treated.

In [4], a uniformity # on X is m-bounded (m an infinite cardinal) if
every uniformly discrete subspace of (X, #) has cardinality less then m. A
subset D of X is called uniformly discrete with respect to # iff the gage of
% contains a pseudo metric d such that for some ¢>0, the d-distance between
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distinet points of D is at least e. (See def. 1.1 and theorem 1.2 of [47].)

It is shown in corollary 2.1.2 of [4] that if # is a uniformity on X, n
an infinite cardinal, n* its successor, ${,<m<<n* and # is not n-bounded,
then there are at least 2" distinct uniformities ¥~ such that v c# and 6(»")
=0(Z).

We apply this result to show that not every uniformity has an im-
mediate successor.

Exampire 2.3 Let # be the totally bounded uniformity which generates
the discrete proximity on R, the reals. Let # <v and # 2% where v is a
uniformity for R. Then 6(#)=0(¥"), ¥ is not totally bounded and hence not
¥o-bounded. Letting n*= i =m in the above result in [4], we have at
least 2% distinct uniformities % such that » <y and 0(%»)=0(¥"). Thus
0(#")=0(%) and hence Z —»". Hence there is at least one #~ such that # <~
Cv and =% =xv. Thus  has no immediate successor.

In example 2.3, we show that & \/ #{E(x)) is not the only way to generate
immediate successors.

Along these lines, we have the following results.

Tueorem 2.4 Let % imp v where % and ¥ are uniformities for X.
There exists a pseudo metric d on X such that v =u\ %(d).

Proor: Let 2(%) and 2(¥") be the gages of # and ¥ respectively. Then
D(U)=D(¥), but 2(U)>x2(v"). Let de€ 2(v)—2(%). Then wcuN u(d)<v
and #=xu\/ «(d). It follows then that v =u\/ %(d).

Generally, #\/#(d) is not an immediate successor to #. For consider

ExamprLe 2.5 Let X=R, the reals and #={Xx X}. Let d be the metric
for X defined by d(x, y)=0if x=yand d(x, y)=1 if x>¢y. Clearly, # imp
uN #%(d) is false.

3. Immediate predecessors.

To show that every non-trivial uniformity has an immediate predecessor
we use the following construction. Notationally, if &« is a family of set Nz
=Nn{d: Ae}. Asisusualif SCXxX, S[x]={y: (v, y) € S}.

Suppose # is a uniformity for X and («x, y) is a point in X x X which is
not in N%. For each symmetric Ue# let U'=U(U[x]x ULy )\ (U[y]
x U[x]). Then routine computation shows that the collection of all such
U®s is a base for a uniformity for X which we denote by #*. Clearly #* is
a proper subsed of # and (», y) € N%*.
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We let v"=sup{¥”: v’ < and (x, y) € "\¥"}.

TueoreM 3.1 If % 1s a non-trivial uwiformity for X then « has an im-
mediate predecessor.

Proor: Since # is non-trivial there is an (x, y) € X< X which is not in
N. Letting #* and 7" be as above and noting that (x, y) € "¥" we have
wtcy cy and v >x%. We claim ¥ imp .

Suppose v <w < and # 7. We will show that # =a#. Since ¥ is
the largest subuniformity of # for which (x, y) is in every entourage, there
is a closed symmetric W in %" such that (x, y) is not in V.

Now suppose U € . Then, since W is closed relative to % it is closed
relative to . We can therefore find a symmetric U, in # such that U,c U
and [(Ug[x]x U y D\I(U[ yIx UL xNINW =0. Then (U N\W=U"\W
cU,cU. Butsince #*cy <w and (U,)* € %, (U)* W is in % and thus so
is U, completing the proof.

Suppose E is a non-trivial equivalence relation. In the next theorem we
give necessary and sufficient conditions for # (£) to have an immediate
predecessor which is generated by an equivalence relation.

TueoreM 3.2 Let E and E* be equivalence relations on X. Then % (E*)
imp U(E) iff there exist points x and y of X such that E[ x|~ E[ y] and E*
=EUAx A where A=E[ x J\VE[ v].

Proor: Suppose that #(E*) imp #(E). Then EC E*, but E2E*. Thus
E[x ]S E* x ] for all » ¢ X and there exists an x, such that E[ x, |=¢ E*[ x,_.
Let yo € E¥[xo]—E[x0] Then E[xo|5E[ yo] and E*[x |=E*[y,]. Let
F=E\UAx A where A4=FE[x,|\JE[y,]. Then ECFcE* and E=F. Thus
UES cu(FY<u(E). Since %(F)=>xu(E), it follows that #(E*)=%(F). Thus
E*=F.

Conversely, suppose that E* is related to F as in the statement of the
theorem. By theorem 3.1, there exists a uniformity ¥~ such that #(E*)c v
and 7" imp #(E). We will show that #(E*)=v" by showing that »" C % (E*).
Let V=V"'¢ev; it suffices to show that E¥XcVoVol. We first show that
(E*—E)YNV0. Suppose on the contrary that (E*—E)NV=@. Then E
=ENV=E*NV € and thus E € . It follows then that #(E)< " and hence
w(E)=v", a contradiction. Hence (E*—E)NV 0. Let (a, b) € (E*—E)NV.
Then (a, b) € E[x]x E[ y] or (a, b) € E[ y]x E[x]. Assume the former. Let
(c, d) € E*. If (c, d) € E, then (¢, d) € VS VoVol since ECV. If (¢, d) ¢ E,
then (c, d) € E[x]xE[y] or (c,d) € E[y]xE[x]. Again without loss of
generality, assume the former. Then (a,c)€E, (b,d)€cE and (a,b)€V.
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Since EC V, it follows that (¢, d) € VoVoV.

We close this section with an example which shows that the construction
used in theerem 2.2 is not the only way of generating immediate successors.
This example is a direct application of theorem 3.2.

ExampLE 3.8 Again let X=[0, 1] and let E be the equivalence relation
generated by the partition {0,1/3),[1/3,2/3], (2/8,1]} and let E* be
generated by {[0, 2/37, (2/3,17]}. Then #(E*) imp #(E) by theorem 3.2.
Clearly there is no x € X for which #{(E)=%(E*)\ #(E(x)). '

4. Adjacent uniformities, topologies, and proximities.

In this section we study the relationships between immediate sucessors
in the lattice of uniformities and immediate sucessors in the corresponding
lattices of proximities and completely regular topologies. We begin with an
example to show that # imp 7" need not imply that 7 (%) imp 7 (¥°) in the
lattice of completely regular topologies.

Exampre 4.1 Let X=[1,2]and let 7={0|1 ¢ Oor 1 € O and %0 is finite}.
Then (X, 7) is compact Hausdroff and hence completely regular. Suppose *
is a completely regular topology for X such that 7 < 7% 2% Then there
exists a completely regular topology 77* for X for which 7 c 7*cg¥ g%
2=7* To see this, let 0* ¢ 7¥— 7. Then 1 ¢ 0% and %0* is not finite. Letting
7 (0%, #0%) be the topology whose elements are @, X, 0%, #0*, we have 7.7
VT (0%, #0%) < 7% since 0 € 7% and ¥0% € 7 7*. Also, 77V 7 (0%, 40%).
Let ¥0*=A4\UB where ANB=0 and 4 and B are both infinite and let *
=7 VIT(0"JA, B). Since 7 and (07U 4, B) are completely regular, it fol-
lows that 7% is completely regular. 7 cZ* and Ix9* since O*\UA4 € 7*
—7. Now A4 and B are in 7 and hence 0\ U A4 and B are in 7\ 7(0*, ¥0%)
cg* Thus s*c g% Finally, we show that 0% ¢ 7* and thus g*x7"
Suppose 0f € 7%, Now 1 ¢ 0*; by definition of 7%, there exists a U ¢ s and
Ve 7(0%UA, B) such that 1 ¢ UNV <0* and hence #0* ¢ U % V. Since #U
is finite and ¢V is B or @ and ¥0*= A\UB, we have a contradiction. Hence

Now, since .7 is completely regular there is a uniformity # for X such
that 7(#)=2. Since J is not discrete, by theorem 2.2, # imp #\/ #(E(1)).
But by the above argument, there is a completely regular topology 9* for
which 7 (w)cg*cg(@ N #(E(1))), the inclusions being proper. Hence 7 (%)
imp (%N #(E(1))) is false.

As a corollary to Theorem 3.1 we can show that every non-trivial com-
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pletely regular topology has an immediate predecessor in the lattice of com-
pletely regular topologies. A uniformity # is fine if it is the largest uni-
formity whose topology is 7 (#).

THEOREM 4.2 Suppose 7 is a non-trivial completely regular topology for
X. Then there is a completely regular topology 7* such that T* imp T in the
lattice of completely regular topologies on X.

Proor: Let # be the fine uniformity for . Then # is non-trivial. Let
7" be as in theorem 3.1, and let 9*=9(¥"). Then v*< .9 and J*7 since
x and y are separated in  but not in 7*. We claim % imp 7.

Suppose 7*c .7 7 and ' is completely regular. Let » be any uni-
formity which generates 7 °. Then, since s*c.g , 7(»"V#)=9% Clearly
vy o cu. Hence ¥v'Nw is % or v/ is v". In the former case 7%
=% and in the latter case ¥ =2. Hence 7* imp 7.

It is not our purpose here to study the relation ¢ imp » where ¢ and 7
are proximity relations on X, but merely to relate what we know about the
relation  imp ¥ to the study of proximity classes.

%(0) denotes the totally bounded uniformity whese proximity is 4, while
0 (%) denotes the proximity of the uniformity # defined by A0(#)B iff
ULAINB=x0 for all Ue%.

Tueorem 4.3 Suppose % and v are unt formities for X and % imp v .
Then 6(#) imp 6(¥) iff 0(«)=>0(¥").

Proor: o0(@«) imp 0(¥") implies that 0 (#)=c0(¥") by definition. Con-
versely, # imp v~ implies that # ¥  which implies that 0(#) <o(¥»"). If
0(#) imp 0(v") is false, then there exists a proximity relation ¢* for which
o) < 0*<0(¥) and 6(%)=x0*0(¥"). Then it follows from theorem 21.23
of [6] that 6(@\/ #(06*))=0*. Since 0* <d(¥"), we have #(0*)cw(6(v"))cv .
Then #\/ #(0*)<C v since # <y and #(0*)<v". Therefore wcu\ w(6*)<v”
and all inclusions are proper since ¢(%)=z0*=c0(¥"), a contradiction.

The following theorem is a reasonable partial converse to theorem 4.3.

TueoreMm 4.4  Suppose that 0 and » are proximity relations on X. If 3§
imp 7y, then %(0) imp «%(7).

Proor: This theorem is a direct result of the fact that the functorial
isomorphism from the category of totally bounded uniform spaces to the
category of proximity spaces is an order isomorphism.
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The following theorems give us additional insight into the relationship
between the “imp” relationship and proximity classes.

Lemma 4.5 If « imp v, 0(%)0(v") and % is totally bounded (precompact)
then v is totally bounded.

Proor. Suppose ¥ is not totally bounded. Then #(0(¥"))< ¥ and the
inclusion is proper. Since # ¥, §(#)<0(¥") and therefore # cu(0(v)) v
because # is totally bounded. But # imp ¥ and #(0(¥))=x7"; thus #
=2(0(7")) and hence 0(%)=0(w(5(¥")))=0(+"), a contradiction. '

As an immediate corollary we have

CoroLLARY 4.6 If % imp v and (X, %) is compact, then ¥ is totally
bounded.

Although the collection of uniformities generating a given proximity
relation usually does not have a largest member, such a supremum does
exist in some of the more interesting cases, e.g. pseudometric proximities,
completely bounded proximities, etc. We examine this possibility in the
next theorems.

Tueorem 4.7 If % s the largest uniformity which generates 0(%) and v
18 the smallest uniformaity which generates 0(v°) then % imp v iff () wcv
and (ii) 0(#) imp 6(¥").

Proor: Suppose # imp ¥". Then # ¥ and 6(%):6(¥"). Hence by 4.3,
o) imp 0(»").

On the other hand suppose # ¥ and 0(%) imp 6(¥"). Since 0(¥)=x0(¥"),
#=>xv7. Let wcw <v. Then 6{w)=<<0(w")=0(»") and §(w)=056(w") or 6(¥")
=0(w"). It 0(@)=0(w) then w C« and hence w =%. Similarly if 6(»")
=0(w") then ¥’ < and hence ' =v". Thus # =% or ¥ =% and ¥ imp v

CoroLLARY 4.8 If % is pseudometrizable (or (X, %) is fine, or 0(%) is
completely bounded) and ¥ is totally bounded then « imp v iff ) #<v and
(ii) 0(@) tmp o(¥").

We close this section with a theorem involving topological considera-
tions. If # is a uniformity and E an equivalence relation, then #\/ #(E) may
or may not be adjacent to . This next theorem considers this question in a
special case.

Tueorem 4.9  Suppose that 7 (%) is connected and that 7(v") is compact
on the set X and suppose that % imp v". Then v =uN U(E) for some equiva-
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lence relation E iff 7 (") is disconnected.

Proor: Suppose that v =\ #(E) for some equivalence relation E.
Since %", it follows that E==Xx X. But E is open and closed in (X x X,
T(U(E)) x 7(#(E))) and hence open and closed in (X xX, 7(#") x 7 (#)).
Thus (X x X, 9(v) x 7(¥")) is disconnected and hence so is (X, 7(¥")).

Conversely, let (X, 7(#")) be disconnected. Then there exists 0=¢ 4= X,
A being both open and clesed relative to J(v7). Let E=AXx A UVFAXFA.
Then E is a 7 (¥") x 7 (¥")-neighborhood of 4 and hence £ € ¥~ since (X, 7(¥"))
is compact. Thus #V#(Eycy. But E¢u; for if Eca, then (X, 7(%))
would be disconnected since A=E[ A] and ¢A=E[%¥A]. Now w<cuN %(E)
cv and since # =« NV %(E), it follows that #\/ #(E)=v".

5. Some questions.

The reader may wish to try his hand at some of the following:

(1) If # imp ¥, need v'=«\V%{E) for some equivalence relation E?
(See theorem 4.9).

(2) Can # imp 7 and 6{%)=0(7") hold simultaneously?

(3) Study the relation ¢ imp » for proximity relations on a set X.

The Ohio State University,
Oakland University
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