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Let R be a commutative Noetherian local ring with maximal ideal m and
residue field & and let K be the Koszul complex associated with R. The
relationship between the homology algebra H(K) and the homological in-
variants of R such as the Betti numbers B,=dim; TorZ(%, £) and the Betti
series Z(R)=Y,B,Z? of R has been investigated. Especially, for the local
ring of embedding dimension n<C2, the Betti series of R is completely deter-
mined by the multiplicative property of the homology algebra H(K) [5,7].
In the case when n=3 Wiebe [9] proved the rationality of #(R) under the
assumption that R is a Gorenstein ring and is not complete intersection by
calculating the syzygy modules of £.

In this paper, mostly we assume that » =3 and we calculate the Betti
numbers by using the spectral sequence associated with the Koszul complex
introduced by T.H. Gulliksen and G. Levin [3]. Then, as an application of
this, we give the recurrence relation between the Betti numbers and give the
explicit form of Betti series under the additional assumption that H,(K)*=0
and H\(K)H,(K)=H3;(K). This gives an alternating proof of a theorem due
to Wiebe above in some extended form. As a second application, we will
calculate the fourth deflection ¢, which is also an invariant of R by means of
H(K) in a similar restricted case.

The author wishes to express his hearty thanks to professor M. Sakuma
for his kind encouragement and for his helpful suggestions.

Unless otherwise specified, we shall use the similar notations and the
similar terminology which appeared in [ 6].

1. Let (R, m) be a local ring of embedding dimension n with residue
field .. First we recall some properties of the exact couples defined by means
of the Koszul complex K of R[3].

Let D=3 D,, and E=}E,, be two graded R-modules where E,,
brq brq
=Torf(k, H,(K)) for p =0, ¢—=0 and is zero for p<0 or ¢<0 and where
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Tor®(k, B,(K))  if p=0, ¢=>0,

0 if ¢<0,
DP» -
" B if p<0 and p+q=—1,
Do,y if p<0 and p+qg++—1.

Then the exact couple €={D, E; f, g, h} is defined by a pair of bigraded
modules D, E together with three homomorphisms f, g, » such that

where f, g and h are defined as follows. Let

Tor®(k, B(K)) —i— Tor®(k, Z(K))

N

Tor®(k, H(K))

be an exact triangle induced by the exact sequence 0 > B(K)— Z(K)—> H(K)
— 0 and let 0 be the isomorphism D, ,— Tor, (%, Z,.1(K)) which is induced
by the exact sequence 0—Z,.(K)—>K,.1—>B,(K)—0 for p>1, g=0. Then
fiDy,>Dyi1,,-1 18 defined by f=0""-i if p=0, g=>1 and identity if p <O.
And g: D, ,—E, 1,1 is defined by g=j-0 if p=1, ¢=0 and zero if p<1.
Finally, h: E, ,—~ D, 1, is defined as identity for p=0, ¢=0 and zero for p=
0, ¢=¢0.

We can easily see that this couple € is exact and f is of bidegree (1, —1),
g bidegree (—1, 1) and 4 bidegree (—1, 0). In the following, we often write
D} [(resp. E} ;) in place of D, ,(resp. E, ;).

The exactness of € shows that the composite map gh: E} ,—E}_, ,.1 has
square zero, hence is a differential on E'. Form the homology module H(E")
for this differential and put E*=H(E') and D*=fD'. Then, we construct
the derived couple

Dz f2 D2

N

EZ

where f, is the map induced by f and g and h, are defined by g,(fd)=gd
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+ ghE" for d € D' and hy(e+ ghE*)=he for e € E' such that ghe=0. Then the
diagram chase proves the derived couple €2 is also exact.

Iterating this process (r—1)-times, we get the r-th derived exact couple
C"of €:

D7 fr D’

cr: hr\ /gr

ET

where f, is of bidegree (1, —1), g, bidegree (—r, r) and h, bidegree (—1, 0).
For details on this subject, see Ch. XI in [4].

The following properties concerning the exact couples are substaintially
contained in [ 3] and we will use these properties in the later argument.

(Py) The map gh: E} ,—~E} , ,.11s H(K)-linear [ 3, Theorem 4.4.27]
(P2)  For a fixed integer r, E5'}=E% , of p=<r and gq<r.
In fact, since E""'=H(E"), we have

E;:qu:Ker (Ez,q _>EZ—7—1,4+7)/Im (Ez+r+1,q—r “*Ez,q)

On one hand, the modules E}_,_; ,., and E},,,1,_, are zero if p=<r and ¢<r,
so that our assertion follows.

P3) EZ}'=0 if g0 and E}}}=K,Qrk where n is the embedding
dimension of R [ 3, Theorem 4.4.17].

Py E,=014f 1) ¢>n or ii) r>n, g0 or iil) n=r =p and r>¢>0.

For, if ¢>n then we have E} ,=0 since the module K, is zero. Now the
first part of our assertion follows from the fact that the module E7 , is the
factor module of a submodule of E},. The second and the last part follow
easily by using the properties (P,) and (P5).

Ps) D3 ,=04f ¢<0o0rr+g>n.

In fact, since D}, is a submodule of D} , we get D; ,=0 if ¢<0. On
the other hand, we have D} ,=f""'D}_,.1 ,,,_1, S0 that D; ,=0 if g+r>n.

(Ps) If n=2,then E%,_1=0 for each p.

For, in the following exact sequence

N £ A
D}y, B i 15Dy,

it holds D3,, _1=Dj}_y ,-1=0 by (Ps). Hence E% , ;=0 for each p.
(P7) If n =38 and if E% =0 for some p, then E27} 1 =0.
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For, consider the following exact diagram:

n—1 &p1 n—1 hn—1 Ep—_1 n—1
"'—>Dp+2n~1,~n+2‘—>Ep+n 1—‘>Dp+n 1,1 Ep,n

Ifn—-l

n—1
pt+n—2,2

Since D%;l ,,=0 by (Ps), the exactness from the bottom to the right hand
side implies that D771 ; ;=0 by virtue of our assumption. Now the exactness
of the left hand side shows that E%:.,=0 since D}7},_1,-»-2 18 zero by the
same property (Ps).

In the following, we restrict our consideration when the embedding
dimension n is 8 and calculate the Betti numbers B, (=dim, TorZ(%, k)) by
using the spectral sequences.

TuroreMm 1. Let R be a local ring of embedding dimension 3. Then, we
have

By, s=dim, E}. ; 3s+dim; E3., ,—dim; E3. 3,

+d1mk KeI'(E},-FS,I’“)E},JrLz) forpgo

Proor. Since E;,.s,=Ker(E;it,—E;:L ., 1) for r>1, the following
three sequences are exact:

O—>E;2>+5,o_—>E11>+5,o'—>1m(E};+5,0 ——>E}.31)—>0,
0“—>Eg+5,o——>E§+5,o—“)Im(E12>+5,o——“>E§+2,2) —>0,
0—>E} 50— E}50—>ImE} 5 0—>E} 1,3 —>0.
Hence, we have |
(*)  Byes=dim, E},50=dim,; E} 5 ,+dim, ImE}. 50— >E}31)

+dimy, Im(E2, 5 0—> E%. 55)+dim, Im(E3 50— E} . 1,9).

Clearly, Ep+5 0—0 by (Pg) NOW, since E§+3)1:Ker(E}H_g,1—>E11)_‘_1’2>/Im(E§;+5,0
—E}. 5 1), we obtain the following exact sequence

0—>Im(E} s 0—>E}.351)—>Ker (Elisi—>E501,2)

”HE;_Fg,]__ﬁO,
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so that the second term of the right hand side of (*) equals to dim; Ker(E}, 5,
—E}.1,)—dim, EZ ;.

Further, using the properties (P,) and (Ps), we can deduce that 0=E3,, ,
=E2.5./Im(E?,5,—>E%,,,). Therefore we have Im (B3 5,0>E%,502)=FE%. 5.
Also, by the similar argument, we have Im (E3,5 (—E3,; ;)=E3,1; by virtue
of £}, 3=0. This completes the proof.

2. As an application of the preceding result, we give the recurrence
relation which holds between the Betti numbers B, under the additional as-
sumption on the multiplication of the homology algebra H(K).

Lemma 1. If H{(K)?=0, then
dim, Ker (E} 1 > E} ».)=¢1B, for p=>0.

Proor. Since the homology algebra H(K) is a k-vector space, E}, is
isomorphic to the k-module TorX(k, k)QH:(K). By the property (P,), the map
gihi: Ej 1 —>E; 5, is H(K)-linear, hence the image of E}, in E} ,, is the
submodule of Tor, ,(k, H(K))QH;(K) which is zero by our hypothesis.
Therefore, we have

dim/g Ker (Ezl)’l-—) Ejl,_z,z) :dimk E},J:Bp-dimk H1<K>.
Whence, the lemma follows since ¢; =dim, H,(K).

Remark. It can be shown that the lemma above holds for an arbitrary
embedding dimension n.

Lemma 2. Suppose H\(K)*=0 and Hy(K)=H,(K)H,(K). Then E2,=
tmplies E% ;=0 where p is any integer.

Proor. By the definition, E};=Ker(E};—>E} »4)/Im(E}.,,—>E};).
Obviously, we have Ker(E};—E} »)=E}; Now, we see that the map
gihi: E} 50— E} 1 is an epimorphism. In fact, by considering the complex

1 &1 1 &1l 1
"'_9Ep+2,0'——’Ep,l“"—>Ep—2,2—’“'a

we obtain from E} ;=0 that Im(E}., ,— E})=Ker(E},—>E} ,,). Whence,
from lemma I, we have dim, Im (E}i2,0—>E} 1)=e B, which implies that the
above map gihi: E}., — E}; is an epimorphism.

It then follows, by linearity, that the image of E}. 5. 1in E} 5 is isomor-
phic to the £-module Tor, (%, £)QH,(K) H:(K). Therefore,
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dimy E% 3=dim; E} s —dim, Im(E},2 2> £} 3)
= B,-dim; H;(K)— B ,-dim; H.(K) Hy(K)
which is 0 by our assumption.
CoroLLARY. Under the same hypothesis as in lemma 2, we have
E%,=0 and E};= for each p.

Proor. From (P,), we have E%,=0 for i=0,1,2. Hence it follows that
E2,=0 for i=0,1,2 by lemma 2. Applying the property (P;) to the fact
E%,=0 (i=0,1, 2), we obtain E%,=0 for j=3,4,5. Thus, we can proceed

i J
this argument indefinitely.

Lemma 3. Under the same hypothesis as in lemma 2, we have
dim, E%+z,z =gy Byio— (dim, H.(K) H»(K))-B, Sor P =0.

Proor. The argument similar to the proof of lemma 1 shows that
Im(E}, 41— E}.2)=0 since H,(K)*=0. Hence we have

dimk E12)+2’2:dimk Ker (E})+2,2—>E11)‘3>.

On one hand, by the same argument as in the proof of lemma 2, we have
that Im (E} 52— E}5) = Tor,(k, EYRQH,(K)H;(K). Therefore, we obtain

dimk E[2)+2,2:dimk Ezlﬂ,g’z—dimk Im (E11)+2’2—>E})’3)
:Bp+2'dimkHz(K)—Bp‘dimkﬂl(K)Hz(K).

Now the formula follows from the fact ¢, =dim(Hx(K)/H:(K)?).

By making use of these lemmas, we can give the alternating proof of a
theorem due to Wiebe [ 9, Satz 9] in some extended form.

TuroreMm 2. Let R be a local ring of embedding dimension 3. Suppose
that H,(K)*=0 and Hy(K)=H,(K)H,(K) where K is the Koszul complex of R.
Then the Betti series of R has the following form
A+2)°

#(R) = : )
1—67%—e, 2% —(e5— (21>)Z4——(€4—8182>Z5

Proor. We can easily see that the modules E3,;; and E%,;; which
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appeared in theorem 1 are zero by using the corollary of lemma 2. Therefore
we obtain the following recurrence relation of Betti numbers using above
lemmas:

Bp+5:€1 Bp+3 +€2 Bp+2_(dimk }11<K)H2(K)>'Bp <P;§0>‘

Now the Betti series #(R) follows from this by using the relation,
dim, Hy(K) Hy(K)=e¢,e,—e¢4 [ 6, Lemma 4, or Theorem 3 bellow ].

Remark. When the embedding dimension n is 2, we can easily deduce
the following formula by the similar argument as in the theorem 1:

Bi,_,_g:dimk E§,2+dimk Ker (E};+1,1_)E};_1,2)*—dimk EIZJ+1,1 for _pz().
Now if H,(K)*=0, we can prove that
dimk E§J2=dimk Eé’ZZEZBp.

On one hand, from the remark of lemma 1 and the property (Ps), we see that
the dimension of Ker (E}11—E3 1 5) is equal to ¢, B, .1 and that the module
E3%.:, is zero.

Therefore, in this case, we have the next recurrence relation of Betti
numbers :

Bp+3'—“€13p+1+82Bp (Pz())s

so that we get

1+ 2)?
—8122—8223

B(R)= i

(see [7], [5] and [[97)).

8. As the second application of theorem 1, we can compute the fourth
deflection ¢4 in some restricted case.

Tueorem 3. Let R be a local ring of embedding dimension n < 3. Suppose
H3(K)=H(K) Hy(K), then we have

E4—81 Ez—dimk H1<K> Hz(K)"l‘dlmk Hl(K)S.

Proor. By theorem 1, we have
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Bs=dim; E? ;+dim, E},—dim; E%;+dim, Ker (E} ;> E7 ).

First we show that the modules E%, and E? ; are zero. For, in the complex

2 &l 2
0 E3q EG s oy

the map gqhe: E31— Ef s is zero [3, proof of theorem 4.4.37, and also the
module E%,=Ker(E%,—E};) is zero by (Py). This proves that £%,=0.

To see E3;=0, it is enough to show E%;=0. Now, we consider the
module E?3;=FE!s/Im(E},—E};). Since the map gihi: EYo—E}, is an
epimorphism in virtue of E%,=0, the linearity of gih: gives the image of
El, in E!; is isomorphic to the k-module Tor: (%, EYQH (K)H;(K). So we
have that E2;2~Tor, (k, k)Q(H;(K)/H\(K) H,(K)) which is zero by our as-

sumption.

Next we compute the dimension of the module Ker (E},—E}.). By the
similar argument as above, we see that Im(E% ;— E} ;) = Tor: (%, BQH(K)2.
From this, we deduce that

dim, Ker (E} ;— E! ;)=dim, E} ; —dim;, Im(E} ; - ET 2)
= B;e;— By-dim, H,(K)2.
Finally, we compute the dimension of the module E,. In the complex
> Bl —>E} s —> Ej 35—>0,

the image of EL, in E} s is isomorphic to the k-module H:(K)H:(K), since
the map gihi: E} ,— E}; is an epimorphism. Therefore, we get

dim, Ker (E} ,—> E} 5)= By-dim, Ho(K)—dim, H(K) Hx(K).
Now, from the fact E3,=0, we have Im(E} ,—E} )=Ker (E% ,— E} 5) whose
dimension is equal to B,-dim, Hy(K)—dim, H,(K)* since Im (£}~ Ef,2)
~ H,(K)*. Hence, by linearity, we have
dim,, Im(E}ll —>E%52>:Bg°dlmk [{1(K)2‘—dlmk Hl(K>3
Therefore, we obtain
dim, E%,g =dim, Ker (E%’g *—>E(1)‘3) —dim, Im (Ezli,l —>E%,2>

:Bz o593 —dimk Hl(K> Hz(K)’i’diTﬂk [{1(K>3.
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Putting all the information together, we get the expression of Bs:
B5:B2 Ezfdimk Hl(K)Hg(K)+dimk Hl(K)3+B3€1—Bl‘dimk Hl(K)z.

On one hand, we know that

Bs=4¢; +3<§1>+382+61 €+ 3es+ ¢y,

where 63:<§1>—dimk H,(K)? [ 5, Theorem 2 and 6, Theorem 1], so that our

assertion follows.
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