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§1. Introduction

Let f be a mapping on X into Y where X and Y are topological spaces.
The graph G of f is said to be G, provided G is a G; set in Xx Y. F. Burton
Jones and E. 8. Thomas, Jr [17], [2] obtained some results on connected G;
graphs which are interesting to the study of almost continuous mappings.

We first, in this paper, give a necessary and sufficient condition in order
that the graph of mapping be a G; graph. Next we show by means of an
example that the converse of a result in [ 17] is not true.

Notations. Let 4 be a set in X. Let denote by 4® the derived set of
4, that is the set of all accumulation points of 4, by 4® the derived set of
AD, ... by A™ the derived set of 4"V (n=1,2,...). Here we note that the
sequence {4, 4@, ...} is decreasing.

Let f be a mapping on X into Y and let ZCX. Then f|Z denotes the
mapping which, for x € Z, assigns f(x) to «.

Most of terms can be extracted from Kuratowski’s Topology [3].

§2. The characterization theorem

Turorem. Let f be a mapping on X into Y where X and Y are metrizable
topological spaces. Let N denote the set of all points x of X such that f s
discontinuous at x. Then the condition that there exists a positive integer n
Jor which the graph of fIN™ is a Gs set in X x Y is mecessary and sufficient
wn order that f have a Gs graph.

The following'lemmas are useful in proving this theorem.

Lemma 1. If G; (i=1,2, ..., n) are G;s sets in X, then the union \”jG,- 18 @
i=1
Gs set in X.
It is well-known that Lemma 1 is true. On the other hand, the union of

an arbitrary number of G; sets is not necessarily a G; set, but the next
result is true.
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Lemma 2. Let T be an arbitrary index set. If G;= /.O\Gﬁ(z € T) where
i=1

G:; are open sets in X and GoN\G=¢ for every pair of indexes t=s in T,
then the union \ /G, is a G;s set in X.
te€T

Proor. Without loss of generality, we may assume that the sequences
1Gy, Gy, ---} are decreasing. This and the condition in the lemma imply
that if ¢=~s, then for every pair i, j, G;N\G,; CGi NG, =¢ and hence G;NG;
=¢.

To prove this lemma, it is sufficient to show that \/th [\(U(m) Let

i=1 t€T

pe€ /\(\/Gtz) Then for each i there is an integer ¢(p, i) such that p ¢ Gy, i

i=1 teT

By the preceding fact, ¢(p, i) is independent on i. Let 7, denote ¢(p, i). Then
we have

pE€N\G ;i C\JGy and hence [\ (\/G:;) C\JG,.
i=1 teT i=1 teT t€T
On the other hand, we have

G,= [\Gt, C /\ (\JG:;) and hence \/C, C /\ (\JGy).

i=1 t€T i=1 t€T

Thus we have \]G,f/\(\/G”), which completes the proof.
i=1 t€
Lemma 3. Let f, X, Y and N be as tn Theorem. Then the graph of
fI(X—N) isa G; set in X x Y.

Proor. Let G denote the graph of f|(X—N). Since f|{(X—N) is con-
tinuous by the definition of N, it follows that GN{(X—N) x Y} =G where G
is the closure of G in X' x Y. Since in a metric space each closed set is a G;

set, it follows that G= ﬁGi where G; are open in X x Y. Hence we have
i=1

G= ([\Gi)mf(X—N)in_[\[G/\L(X N)=< Y}

Thus the graph of f|(X—N) is a G; set in Xx Y.

Proor of TueoreM. To prove the sufficiency, suppose that there exists
a positive integer n such that the graph of f|N®™ is a G; set in Xx Y.

First, since by Lemma 3, the graph f|(X—N) is a G; set in Xx Y, then
by Lemma 1 it is sufficient to show that the graph of f|N is a Gs setin Xx Y.
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Now N is the union of the derived set N and the set N, of all isolated
points of N. Since each point of N, is isolated, so is each point of the graph
of f|N:. Therefore there exists a family F of open sets in Xx Y such that
every element of F contains just one point of the graph of #|N; and any two
elements of F are mutually separated. Moreover, each point of the graph of
fINyis a Gs; set in Xx Y. Therefore, by Lemma 2 the graph of f|N; is a G;
set in Xx Y. Hence by Lemma 1, it is sufficient to show that the graph of
FfIN® isa G; set in Xx V.

Next, since NV is closed, N is the union of N® and the set IV, of all
isolated points of N. Then, by the same method as in the case of f|N; we
can prove that the graph of f|V, is a G; set in Xx Y. Hence by Lemma 1,
it is sufficient to show that the graph of f|N® is a G; set in Xx Y.

After the n-th step of the above argument, it is sufficient to show that
a graph of f|N™ is a G; set in Xx Y. This is the hypothesis. Thus the
sufficiency is proved.

To prove the necessity, suppose that the graph of f is an intersection

[M\Gi of open sets G; in Xx Y. Let n be a positive integer. Since N™ is
i=1

closed in X, it follows that N (’”:F\Hi where H; are open sets in X. Then we
i=1

have
the graph of f|N<”>:;°\{G,-/\(H,- % Y)}, and hence
i=1

the graph of f|N™ is a G; set in Xx Y. Thus Theorem is completey proved.

CoroLLARY. Let f, X, Y and N be as tn Theorem. Then if there exists
a positive integer n such that N =g¢, then f has a G5 graph.

Proor. We may assume that n is the smallest integer such that N®
=¢. Then every point of NP is isolated, and hence the graph of f| NP
is a G; set in Xx Y. Therefore, by Theorem f has a G; graph.

§8. The example

In this section, let f be a function on I into I where I is the unit interval
and let G be the graph of f. F.B. Jones and E. S. Thomas, Jr. have proved
the following fact:

If G is a connected G; graph, then G 1s nowhere dense in I°.

In the following, we give an example to show that a connected and now-
here dense graph G is not necessarily a G; set in I°,
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Lemma 4. Let S=M,\JUM, be a decomposition of a complete metric space
S wnto My and M, such that both M, and M, are dense in S and M, is countable.
Then any G; set containing M, contains uncountable points of M.,.

Proor. The countable set M; is not a G5 set. For suppose, on the con-
trary, that M, is a G; set. Then the complement M, of M, is a F, set. Hence

let MzzQFi where F; are closed sets. Let F be the family consisting of all
i=1

F; and all points of M;. Then F is a countable family of closed sets, and the
union of elements of F is S. Since by the hyopthesis, S is a complete metric
space, then by Baire theorem, some element of F contains an open set in S.
This contradicts to the hypothesis that M; and M, are dense in S. Therefore,
M is not a G; set.

Next let D be any G; set containing M, and let Dz/“\D,- where D, are
i=1

open sets. Suppose that D contains at most countable points {a, as, ...} of
M,. Then it follows that

Mlzf\(Di—ai), and hence M, is a G; set, contradicting to the preceding
i=1

result. Thus Lemma 4 is proved.

Lemma 5. Let A be a totally disconnected and dense in itself subset of I.
Then the graph is connected provided f satisfies the condition as follows:

If C 1s any component of I— A, then the graph of f|C is commected and
meets both I {0} and Ix {1}.

Proor. Suppose, on the contrary, that G is not connected. Let G=
G.:\UG, be a separation of G. Let I, and I, be the projections of G, and G, into
the domain I of f, respectively. Then without loss of generality, there exist
a sequence {ai, as, ---} of points in I; and a point b of I, such that {ai, a,, ...}
converges to 6. Moreover, we may assume that any point of {ai, as, ...} is
not in 4. For when a, is in A4, then a, can be replaced by the following
point. Let U, be an e-neighborhood of the point (a,, f(a,)) such that U,NG,
=¢ and e<~71L— .
of f contains at least one component C of /— A4, and the graph of f|C meets
with U,. The projection of a point belonging to both U, and the graph of f|C
is a point desired.

Now if some component D of I— A4 contains an infinite number of points
of {ai, as, ---}, then we have b ¢ D. Hence the point (b, £(b)) belongs to G;
which contains the graph of f|D, contradicting to (b, /(b)) € G,. On the other
hand, if every component of 7— 4 contains at most a finite number of points

Then by hypothesis, the projection of U, into the domain
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of {ai, a,, ---}, then to each n we assign a point P, of the intersection of
Ix {f(b)} and the graph of f on the component of 7— 4 containing a,. Then
the sequence {P;, P,, ...} is in G, and converges to (b, f(b)), contradicting to
(b, £ (b)) € G,. Thus Lemma 5 is proved.

ExamvprLe. Let K be the Cantor ternary set in I and let {(r;s;)|i=1,
2, ...} be the family of pairwise disjoint open intervals whose union is I —K.
For each n, let B, be an arc in [r,, s, | x I such that the following conditions
hold :

(1) The points (r,, 0) and (s,, 0) are the end points of B,.

(2) For each x in [r,, s, ], B,N\({x} x I) is a point.

(3) B, meets Ix{1}.

Let H=K —\:Qj[r,-, s; | and consider the set G defined as follows:
i=1

G =\/B,i(x, 1)|x € H}.
n=1

Then the set of all discontinuous points of the function defined by G is
the set K. Here we note that K is a totally disconnected and dense in itself
subset of 7, and that both A and K— H are dense in K and K— H is countable.

Hence by Lemma 5 G is a connected graph, and by the theorem, p. 142,
of [ 3] G is nowhere dense.

On the other hand, by Lemma 4 any G; set containing the graph of f|K
contains uncountable points of Hx {0}, and hence G is not a G; set in 12
Thus by Theorem in §2, G is not a G; graph.
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