A Characterization of G_{δ} Graphs

By

Tadashi Tanaka

(Received September 30, 1971)

§ 1. Introduction

Let f be a mapping on X into Y where X and Y are topological spaces. The graph G of f is said to be G_{δ} provided G is a G_{δ} set in $X \times Y$. F. Burton Jones and E. S. Thomas, Jr [1], [2] obtained some results on connected G_{δ} graphs which are interesting to the study of almost continuous mappings.

We first, in this paper, give a necessary and sufficient condition in order that the graph of mapping be a G_{δ} graph. Next we show by means of an example that the converse of a result in [1] is not true.

Notations. Let A be a set in X. Let denote by $A^{(1)}$ the derived set of A, that is the set of all accumulation points of A, by $A^{(2)}$ the derived set of $A^{(1)}, \dots,$ by $A^{(n)}$ the derived set of $A^{(n-1)}(n=1, 2, \dots)$. Here we note that the sequence $\{A^{(1)}, A^{(2)}, \dots\}$ is decreasing.

Let f be a mapping on X into Y and let $Z \subset X$. Then $f \mid Z$ denotes the mapping which, for $x \in Z$, assigns f(x) to x.

Most of terms can be extracted from Kuratowski's Topology [3].

$\S 2$. The characterization theorem

Theorem. Let f be a mapping on X into Y where X and Y are metrizable topological spaces. Let N denote the set of all points x of X such that f is discontinuous at x. Then the condition that there exists a positive integer n for which the graph of $f|N^{(n)}$ is a G_{δ} set in $X \times Y$ is necessary and sufficient in order that f have a G_{δ} graph.

The following lemmas are useful in proving this theorem.

LEMMA 1. If G_i (i=1, 2, ..., n) are G_δ sets in X, then the union $\bigvee_{i=1}^n G_i$ is a G_δ set in X.

It is well-known that Lemma 1 is true. On the other hand, the union of an arbitrary number of G_{δ} sets is not necessarily a G_{δ} set, but the next result is true.

Lemma 2. Let T be an arbitrary index set. If $G_t = \bigcap_{i=1}^{\infty} G_{ti}(t \in T)$ where G_{ti} are open sets in X and $G_{t1} \cap G_{s1} = \phi$ for every pair of indexes $t \neq s$ in T, then the union $\bigcup_{t \in T} G_t$ is a G_{δ} set in X.

PROOF. Without loss of generality, we may assume that the sequences $\{G_{t1}, G_{t2}, \dots\}$ are decreasing. This and the condition in the lemma imply that if $t \neq s$, then for every pair $i, j, G_{ti} \cap G_{sj} \subset G_{t1} \cap G_{s1} = \phi$ and hence $G_{ti} \cap G_{sj} = \phi$.

To prove this lemma, it is sufficient to show that $\bigcup_{t \in T} G_t = \bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{ti})$. Let $p \in \bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{ti})$. Then for each i there is an integer t(p, i) such that $p \in G_{t(p, i)i}$. By the preceding fact, t(p, i) is independent on i. Let t_p denote t(p, i). Then we have

$$p \in \bigcap_{i=1}^{\infty} G_{t_p i} \subset \bigcup_{t \in T} G_t$$
 and hence $\bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{t i}) \subset \bigcup_{t \in T} G_t$.

On the other hand, we have

$$G_t = \bigcap_{i=1}^{\infty} G_{ti} \subset \bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{ti})$$
 and hence $\bigcup_{t \in T} G_t \subset \bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{ti})$.

Thus we have $\bigcup_{t \in T} G_t = \bigcap_{i=1}^{\infty} (\bigcup_{t \in T} G_{ti})$, which completes the proof.

Lemma 3. Let f, X, Y and N be as in Theorem. Then the graph of $f|(X-\bar{N})$ is a G_{δ} set in $X\times Y$.

PROOF. Let G denote the graph of $f|(X-\bar{N})$. Since $f|(X-\bar{N})$ is continuous by the definition of N, it follows that $\bar{G} \cap \{(X-\bar{N}) \times Y\} = G$ where \bar{G} is the closure of G in $X \times Y$. Since in a metric space each closed set is a G_{δ} set, it follows that $\bar{G} = \bigcap_{i=1}^{\infty} G_i$ where G_i are open in $X \times Y$. Hence we have

$$G = (\bigcap_{i=1}^{\infty} G_i) \cap \{ (X - \bar{N}) \times Y \} = \bigcap_{i=1}^{\infty} [G_i \cap \{ (X - \bar{N}) \times Y \}].$$

Thus the graph of $f|(X-\bar{N})$ is a G_{δ} set in $X\times Y$.

PROOF of THEOREM. To prove the sufficiency, suppose that there exists a positive integer n such that the graph of $f|N^{(n)}$ is a G_{δ} set in $X \times Y$.

First, since by Lemma 3, the graph $f|(X-\bar{N})$ is a G_{δ} set in $X\times Y$, then by Lemma 1 it is sufficient to show that the graph of $f|\bar{N}$ is a G_{δ} set in $X\times Y$.

Now \bar{N} is the union of the derived set $N^{(1)}$ and the set N_1 of all isolated points of N. Since each point of N_1 is isolated, so is each point of the graph of $f|N_1$. Therefore there exists a family \mathbf{F} of open sets in $X \times Y$ such that every element of \mathbf{F} contains just one point of the graph of $f|N_1$ and any two elements of \mathbf{F} are mutually separated. Moreover, each point of the graph of $f|N_1$ is a G_δ set in $X \times Y$. Therefore, by Lemma 2 the graph of $f|N_1$ is a G_δ set in $X \times Y$. Hence by Lemma 1, it is sufficient to show that the graph of $f|N^{(1)}$ is a G_δ set in $X \times Y$.

Next, since $N^{(1)}$ is closed, $N^{(1)}$ is the union of $N^{(2)}$ and the set N_2 of all isolated points of $N^{(1)}$. Then, by the same method as in the case of $f|N_1$ we can prove that the graph of $f|N_2$ is a G_δ set in $X\times Y$. Hence by Lemma 1, it is sufficient to show that the graph of $f|N^{(2)}$ is a G_δ set in $X\times Y$.

After the *n*-th step of the above argument, it is sufficient to show that a graph of $f|N^{(n)}$ is a G_{δ} set in $X \times Y$. This is the hypothesis. Thus the sufficiency is proved.

To prove the necessity, suppose that the graph of f is an intersection $\bigcap_{i=1}^{\infty} G_i$ of open sets G_i in $X \times Y$. Let n be a positive integer. Since $N^{(n)}$ is closed in X, it follows that $N^{(n)} = \bigcap_{i=1}^{\infty} H_i$ where H_i are open sets in X. Then we have

the graph of
$$f|N^{(n)} = \bigcap_{i=1}^{\infty} \{G_i \cap (H_i \times Y)\}$$
, and hence

the graph of $f|N^{(n)}$ is a G_{δ} set in $X\times Y$. Thus Theorem is completel proved.

COROLLARY. Let f, X, Y and N be as in Theorem. Then if there exists a positive integer n such that $N^{(n)} = \phi$, then f has a G_{δ} graph.

PROOF. We may assume that n is the smallest integer such that $N^{(n)} = \phi$. Then every point of $N^{(n-1)}$ is isolated, and hence the graph of $f|N^{(n-1)}$ is a G_{δ} set in $X \times Y$. Therefore, by Theorem f has a G_{δ} graph.

§3. The example

In this section, let f be a function on I into I where I is the unit interval and let G be the graph of f. F. B. Jones and E. S. Thomas, Jr. have proved the following fact:

If G is a connected G_{δ} graph, then G is nowhere dense in I^2 .

In the following, we give an example to show that a connected and now-here dense graph G is not necessarily a G_{δ} set in I^2 .

Lemma 4. Let $S=M_1 \cup M_2$ be a decomposition of a complete metric space S into M_1 and M_2 such that both M_1 and M_2 are dense in S and M_1 is countable. Then any G_{δ} set containing M_1 contains uncountable points of M_2 .

PROOF. The countable set M_1 is not a G_δ set. For suppose, on the contrary, that M_1 is a G_δ set. Then the complement M_2 of M_1 is a F_σ set. Hence let $M_2 = \bigvee_{i=1}^\infty F_i$ where F_i are closed sets. Let \mathbf{F} be the family consisting of all F_i and all points of M_1 . Then \mathbf{F} is a countable family of closed sets, and the union of elements of \mathbf{F} is S. Since by the hyopthesis, S is a complete metric space, then by Baire theorem, some element of \mathbf{F} contains an open set in S. This contradicts to the hypothesis that M_1 and M_2 are dense in S. Therefore, M_1 is not a G_δ set.

Next let D be any G_{δ} set containing M_1 and let $D = \bigcap_{i=1}^{\infty} D_i$ where D_i are open sets. Suppose that D contains at most countable points $\{a_1, a_2, \ldots\}$ of M_2 . Then it follows that

 $M_1 = \bigcap_{i=1}^{\infty} (D_i - a_i)$, and hence M_1 is a G_{δ} set, contradicting to the preceding result. Thus Lemma 4 is proved.

Lemma 5. Let A be a totally disconnected and dense in itself subset of I. Then the graph is connected provided f satisfies the condition as follows:

If C is any component of I-A, then the graph of $f|\bar{C}$ is connected and meets both $I \times \{0\}$ and $I \times \{1\}$.

PROOF. Suppose, on the contrary, that G is not connected. Let $G = G_1 \cup G_2$ be a separation of G. Let I_1 and I_2 be the projections of G_1 and G_2 into the domain I of f, respectively. Then without loss of generality, there exist a sequence $\{a_1, a_2, \dots\}$ of points in I_1 and a point b of I_2 such that $\{a_1, a_2, \dots\}$ converges to b. Moreover, we may assume that any point of $\{a_1, a_2, \dots\}$ is not in A. For when a_n is in A, then a_n can be replaced by the following point. Let U_n be an ε -neighborhood of the point $(a_n, f(a_n))$ such that $U_n \cap G_2 = \phi$ and $\varepsilon < \frac{1}{n}$. Then by hypothesis, the projection of U_n into the domain of f contains at least one component f of f of f and the graph of f of f is a point desired.

Now if some component D of I-A contains an infinite number of points of $\{a_1, a_2, \dots\}$, then we have $b \in \overline{D}$. Hence the point (b, f(b)) belongs to G_1 which contains the graph of $f|\overline{D}$, contradicting to $(b, f(b)) \in G_2$. On the other hand, if every component of I-A contains at most a finite number of points

of $\{a_1, a_2, \dots\}$, then to each n we assign a point P_n of the intersection of $I \times \{f(b)\}$ and the graph of f on the component of I - A containing a_n . Then the sequence $\{P_1, P_2, \dots\}$ is in G_1 and converges to (b, f(b)), contradicting to $(b, f(b)) \in G_2$. Thus Lemma 5 is proved.

EXAMPLE. Let K be the Cantor ternary set in I and let $\{(r_i, s_i) | i = 1, 2, \dots\}$ be the family of pairwise disjoint open intervals whose union is I - K. For each n, let B_n be an arc in $[r_n, s_n] \times I$ such that the following conditions hold:

- (1) The points $(r_n, 0)$ and $(s_n, 0)$ are the end points of B_n .
- (2) For each x in $[r_n, s_n]$, $B_n \cap (\{x\} \times I)$ is a point.
- (3) B_n meets $I \times \{1\}$.

Let $H=K-\bigvee_{i=1}^{\infty} [r_i, s_i]$ and consider the set G defined as follows:

$$G = \bigcup_{n=1}^{\infty} B_n \cup \{(x, 1) \mid x \in H\}.$$

Then the set of all discontinuous points of the function defined by G is the set K. Here we note that K is a totally disconnected and dense in itself subset of I, and that both H and K-H are dense in K and K-H is countable.

Hence by Lemma 5 G is a connected graph, and by the theorem, p. 142, of $\lceil 3 \rceil G$ is nowhere dense.

On the other hand, by Lemma 4 any G_{δ} set containing the graph of f|K contains uncountable points of $H \times \{0\}$, and hence G is not a G_{δ} set in I^2 . Thus by Theorem in $\S 2$, G is not a G_{δ} graph.

Faculty of Engineering Tokushima University

References

- [1] F. Burton Jones and E. S. Thomas, Jr., Connected G_{δ} graphs, Duke Math. J. 33 (1966), 341-346.
- [2] E. S. Thomas, Jr., Some characterizations of functions of Baire class 1, Proc. Amer. Math. Soc. 17 (1966), 456-461.
- [3] K. Kuratowski, Topology I, Academic Press, New York, 1966.