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As it was shown by several authors, the tangent bundle of a Grassmann
manifold is a tensor product of two certain vector bundles. On the other
hand, Th. Hangan studied a manifold with a structure on which the tangent
bundle was isomorphic to the tensor product of two vector bundles. He
called this structure a tensor-product structure. Th. Hangan’s study was
aimed mainly at flat tensor-product structures and the natural tensor-product
structure on the Grassmann manifold.

In this paper, some of his results for flat tensor-product structure are
extended to general tensor-product structures.

In §3, the notion of grassmannian structures, which is a extension of that
of projective structures due to S. Kobayashi and T. Nagano [4] is defined.
The natural correspondence between grassmannian structures and tensor-
product structures are established. This correspondence leads us to the
unique existence of a certain grassmannian structure for a give tensor-
product structure. In this situation, we say that this grassmannian structure
is determined by the given tensor-product structure.

The notion of Cartan connection in a grassmannian structure is also
introduced. Particularly, there exists uniquely so-called normal connection
in a grassmannian structure determined by a tensor-product structure. Last-
ly, the local flatness of grassmannian structures is discussed.

The consideration is made only for the real cases, but a similar discus-
sion seems to be possible for the complex cases.

The present author wishes to express his hearty thanks to Prof. Dr.
M. Matsumoto for his kind encouragement. The author is also thankful to
Prof. Dr. Y. Ichijyo who attracted my interests in this direction.

§1. Tensor-product structures

Let 7?, V¢ be vector spaces of dimension p and ¢ respectively over R
and V' =V?QV? be the tensor product of V? and V%, We define a linear
transformation J of V?¢QV?? by
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(1.1) J (&)@ Q@v)=(u&v)R(u'&v),

where u,u’ € V? and v, v € V9. Let e',e? ..., e’ and e,.1, €53, ---, € (n=p-+gq)
be bases of V7 and V' respectively, then ¢'®e., i=1, 2, .., p,a=p+1, p+2,
..., n is a base of 7?7, With respect to this base, the linear transformation
J is written as

J(e'®ea)R(e’ Qe )= 20703 (" Re,) D' Des).

Unless otherwise mentioned, indices in this paper take the following
values.

a, b, ¢, =12, n(=p+g);

i) j) k) l) :1, 2, ’P;

a, B, 7,0,--=p+1, p+2, .., n;

Qiy Bis Ty =p+11, p+1s, -y, p+1p, p+21, p+25, .-, p+2p, -

cevy n’l) n,2; EERDY np.

Sometimes, we shall denote 4, B, C, ... instead of «;, 8;, 74, ---.

GL(pg, R) denotes the linear transformation group of 7?? as usual. Let
g€GL(pq, R), then g can be extended linearly to a linear transformation
gRgof V*@V*. Elements of GL(pg, R) which satisfy

(1.2) (gRJ=J(gRg)

form a subgroup G.(p, q) of GL(pg, R). This subgroup is isomorphic to
GL(p, RYXGL(q, R) [2].

In the following sections, M will denote a C=-manifold of dimension pq.
A tensor-product structure (¢-p structure) on M is, by definition [27], a sub-
bundle of the frame bundle of M with structure group G,(p, ¢). We shall
denote a ¢-p structure on M by P,(M), and the natural projection of P{M) by
7. A frame P contained in P(M) is a linear isomorphism of 7?7 onto the
tangent vector space T',(M)at x and can be extended to a linear isomorphism
of V4@V * onto T, (M)YRT(M), where x=n(P).

A tensor-product structure P,(M) defines a (2, 2)-tensor on M by

(1.3) YXRY)=(PRP)J(PT'XRPY),

where X, Ye T,(M) and Pe z~'(x). It follows from (1.2) that this definition
of ¢ does not depend on the choice of Pe 7 *(x). The tensor defined above is
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called the tensor determined by the tensor-product structure P(M). Sometimes,
the tensor ¢ itself is called the tensor-product structure. A manifold with a
fixed tensor-product structure is called a tensor-product manifold.

We shall describe some properties of the (2, 2)-tensor ¢ which follow im-
mediately from the definition. First of all, let P=(X,) be a frame contained
in P,(M), then we have

(1.4) WX, @X5)= X5, DKo,

Furthermore, if ¢48 are components of ¢ with respect to local coordinate
systems, ¢ satisfies the following identities.

(1.5) ZPp2BoEr=0£07%,

(1.6) VeB=¢Be,
(L.7) 2Ppa5=p05, 2PpEi=q0%,
(1.8) 2o 055 =205t 05 8= 25t 05,5

A tangent vector X is called a temsor-product wvector (¢:-p vector) if it
satisfies

(1.9) PHXRX)=XRX.

Suppose (X,,) is a frame contained in P,(M), then (1.4) implies that each X,
is a ¢-p vector and any vector expressed by 221%u; X., is also a t-p vector.
Conversely, a t-p vector always arises in the fashion. In fact, let X=321%X,,
be a ¢-p vector, then from (1.9), it follows 2%i3Bi=28:2% gnd this shows
the result. If non-zero tangent vectors X and Y satisfy ¢(X®Y)=X&Y or
HXRY)=YRX, both X and Y are necessarily ¢-p vectors.

ProrosiTion 1. For a given t-p vector X € T.(M), the set of vectors Y
which satisfy Q(XRY)=XRY forms p-dimensional subspace II'(X) of T.,(M)
and the set of vectors Z which satisfy ¢(XRZ)=ZRX forms g-dimensional
subspace ITY(X) of T.(M).

Proor. We take a frame {X,} ¢ P{M) such that X, € T.(M). Let X
=32%u; X,, then each Y is written as 321%y; X,, and each Zas Yz X,
Then, the statement follows easily.

I°(X) and IT%(X) are called respectively p-plane of ¢ determined by X
and g-plane of ¢ determined by X. We shall describe elementary properties
of ¥ X) and IT%X). First, TN X)NIYX)={X}. For Y(50)¢€ II*(X), we
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have II*(X)=1"(Y) and for Z(#0) ¢ I(X), I{X)=1%Z). If Y}, Y, € IT*(X),
it follows ¢(ViRY:)=YiQY, and if Z,, Z, € T X), §(Z:R7Z:)=Z,R7Z,.

As it is described above, a tensor ¢ determined by a i-p structure satis-
fies the identities (1.6), (1.7) and (1.8). Moreover, the following is evident
from (1.4). \

For every point x € M, there is at least one vector field X on some
(A) ¢ local meighborhood U of x which satisfies }(X RX)=XRX and X=~0
at every pownt of U.

Conversely, we have

Turorem 1. Let ¢ be a (2, 2)-tensor field on a pg-dimensional manifold M
which satisfies (1.6), (1.7), (1.8) and the condition (A), then ¢ defines a t-p
structure P(M) on M. Also, ¢ coincides with the tensor determined by P{(M).

Proor. We shall show that, for every point x of M, there exists a field
of frames {X,,} on some local neighborhood U of x which satisfies DX, X))
:Xﬁi@)Xaj at every point of U.

Let x € M and X be a local vector field on some neighborhood U of x given
by the condition (4). A required field of frames will be constructed on U.
We may take local coordinates x%, a=p+1,p+2, .., n{=p+q),i=1,2,.,p
on U. Let X% and ¢45 components of X and ¢ with respect to the coordinates.
Let us fix a index 4, with X4 =0, then .

o

Op(Ao)y=2—5" X¢

is a linear transformation of the tangent space at each point of U. From
(1.6) and (1.8), it follows that the eigenvalues of (¢5(4,)) are 1 or 0 at every
point. The relation (1.7) implies that its trace is p at every point of U. So,
the dimension of the eigenspace corresponding to the eigenvalue 1 is not
over p. Really, it is exactly p at every point of U. Let 4, be another index
with X*15£0 and define ¢3(4,) in the same way, then (¢5(A4,)) and (PB(A4)
take eigenvectors with eigenvalue 1 in common at every point. Consequent-
ly, there are local vector fields X,.1,(=X), X,,1,, - Xy:1, on U which are
linearly independent at every point of U and satisfy ¢(X,.1,®X,.1)=X,.1,
®Xp+1i-

Similarly, it turns out that there are local vector fields Xy (=X), Xpiay
.-y Xy, on U which are linearly independent at every point of U and satisfy
¢(Xp+11®Xal):Xal®Xp+1l-

Now, put
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D - gﬂA B A
Xaﬁ(AO)"_‘Z XA X Xﬁ‘l’l@

then, they depend formally on the index A4, with X%=£0, but at least for

a=p+1 or i=1, they do not depend on it. Let X, (4o)=2X2(4) 60 It
follows ¢ (X, (A40)RXs(A40)=Xp,(A4)RXo,(Ao). From this and (1.8), it is

obtained

(1.10) SR XA (A XE (Ag)=X§,(A0) XD (Ay).

If i=1 and a=p+1, the relation (1.10) implies 28 X§ X2, , = X4, X2 (4,),
so X2 (4,) do not depend on the index 4,. Hence, we can write X,, instead
of X, {(Ao).

Now, local vector fields X, satisfy the identity ¢(X, &Xs)=Xp X,
The linear independence of X, at every point of U follows by induction from
the independence of X,.., ..., X;.1,, and that of X,., ..., X,. We have
shown the assertion at the first part of the proof.

If 7 be a local neighborhood with UN ¥V =0 and if {Y.} such a field of
frames on ¥ as {X,,}, then it holds Y., =3 g% gi X5, on UNV. Thus we have
a ¢—p strueture on M.

It is evident that the tensor determined by the z-p structure coincides
with ¢.

§2. Connections on a tensor-product manifold

Let P{M) be a ¢-p structure and ¢ the tensor determined by P(M). We
shall give a condition for connections F and 7’ on M to satisfy the relation
ro=r'¢. For a flat t-p structure and symmetric connections, Th. Hangan
obtained the condition. In this section, we shall consider in a more general
setting. As to connections, it is not necessary that they are symmetric.

Let T4. be a (1,2)-tensor expressed in terms of local coordinate sys-
tems, T4, is called semi-symmetric, when

2.1 2¢§§<T§c Itp=0, Zﬂl’f}g( —Itp)=0

hold, where ¢4E are components of ¢. As F—r’ is a (1, 2)-tensor for con-
nections ¥ and F’, it has a meaning to suppose that 7 —F’ is semi-symmetric.

Turorem 2. Let F and V' be connections on a differentiable manifold M
with a tensor-product structure . If Vo=V'¢p and V—V' is semi-symmetric,
then there exists a covariant vector field @4 which satisfies
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(2.2) I'ge—I'5c=2¢320p+ 225 0o,

where I'5t, I'sc and Q42 are components of V', V and ¢ with respect to local
coordinate systems. Conversely, if (2.2) holds for some covariant vector @y,
then Vo=r'¢p and V¥ —V' is symmetric.

Proor. Let U be a neighborhood on which there is a local section sy=

<2XA 0 ) Put

BaxA

gfﬁczzYﬁ1<réléi—rBléi>Xnggl)
where (Y%)) is the inverse matrix of (X4'). Then, it follows from F¢=r'¢

(2.8) Yo 0G0ty 0510 —Tst 050k —P [052:051=0.

v B2j, 7581, 7581, 7 B2,
The semi-symmetry of //—F means
2.4) U, = IU 8y SV = SV,
By means of (2.4), we obtain from (2.3)
Vi, =03 ¥ s, T05.Y,,

1 5
where ¥y, =~ S¥ %,
Bk p+g /BICSL

Consequently we have
I —1T3c=30420,+ 243 0p,

where @D:—-l%—q 2THA=T$50.

P
If two linear connections gratify the relation (3.3) for some covariant

vector @p, we say that they are ¢-related. Next, we introduce linear con-
nections which may be fundamental for -p structures.

Turorem 3. Let ¢ be ¢ t-p structure on a differentiable manifold M.
Then there exists a connection V satisfying the following conditions

(@) F¢=0;
(b)  The torsion tensor of V is semi-symmetric.

If V' be another connection satisfying above conditions, V and V' are -
related.

Proor. We shall give a required connection in an explicit form with
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respect to local coordinate systems. Take an arbitrary connection "4, on M.
We define a connection by

(25) Pho=—t(Z63RT bt Z02T 5D+ Nic,

where

@0 Ne=—2TBgpp— P2 or TR
T
+x2BE (P opt v+ L oppuse
g B R gy YRR VE).

A direct calculation shows the connection defined by (2.5) satisfies the con-
ditions {a) and {(b). The last statement of the theorem is immediate from the
theorem 2.

It should be noticed that 274, coincides with X774,

For a given ¢-p structure, linear connections satisfying the condition
(@) and (b) in the theorem have the same torsion tensor. So, this tensor is
called the torsion of the t-p structure.

Tueorem 4. Let M be a differentiable manifold with a t-p structure ¢
and 7 be a linear connection on M. Then, the covariant differential V¢ of ¢
vanishes tvf and only if the parallel displacement of any p-plane of ¢ and any
g-plane of ¢ along any curve gives a p-plane of ¢ and a g-plane of ¢ respec-
tively.

Proor. If F¢=0, then for any family X{¢) and any family Y{z) parallel
along any curve C{(¢), ¢{X{t)RY(t)) is parallel along C{(¢). The converse is
also true.

Let X{¢) and Y{¢) be parallel along a curve C{(z){0<t< 1), then
XORY(t) is parallel along C{(¢:). Now, if F¢=0, both ¢{X{t)&Y(¢)) and
X(@©)RY(¢) are parallel along C(z). When X(0) and Y(0) belong to some p-
plane IT? of ¢, H{X{0XRY(0)) coincides with X{0)RY{0), so ¢(X(H)RY(t))
=X{)®Y (). This implies that II? is parallelly displaced along C(¢). Simi-
larly, it is seen that any g-plane of ¢ is parallelly displaced.
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Conversely, let C(z)(0=<¢t=<1) be any curve in M and {X5(0)} be some
frame at C(0). Then the family of frames {X i)} (0=¢=1) parallel along
C(t) satisfies

(Xe (DQXp ()= Xp(DRXa (1), 0=t=L.

This implies 7¢=0 in terms of the first statement of the proof.

§8. Grassmannian structures

Let p and ¢ be positive integers and put n=p+gq. G, ,(R) denotes the
Grassmann manifold over R, consisting of all p-dimensional linear subspaces
of R”. Let GL(n, R) be the general linear group, then G, (R)=GL(n, R)/H,
where

:{pf( & 'gi)eczxn, R)}.

Let G*(pg, R) be a set of 2-frames ji(f) at O in R??, where f is a dif-
feomorphism from a neighborhood of O in R?? onto a neighborhocd of O in
R?1, Then G*(pq, R) is a Lie group and it holds

G¥(pg, R)= (S, S§ir,); (S5 € GL(pg, R), Shiy,= SSig}.

A mapping @ of H to G*(pq, R) is defined by

@< %j : z:% >:<g*fgg> —2(g*tg*igrgs+g* g gher
where (g77) is the inverse matrix of (gi). If H be the image O(H), then we

have by a calculation

ProrosiTion 2. @ ts a homomorphism of H into G* { pg, R) and the kernel
K of © 1s the center of H, 1.e,

1 0
K=<al| - ;CK(:/:O)ER}.
0 1

From the above proposition, it follows H/K2 H, so we shall sometimes
identify A with H/K.

DerFiniTION.  Let M be a pg-dimensional manifold and P*M) be the 2-
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Jrame bundle over M [4]. A grassmannian structure (gr-structure) is a sub-
bundle of P*(M) with structure group H.

Let P, (M) be a grassmannian structure on M, then 7i(p,(M)) gives a
t-p structure on M, where 7} is the natural projection of P*M) onto P(M).
This z-p structure is called the underlying ¢-p structure of P(M).

Conversely, for a given ¢-p structure we can construct a grassmannian
structure in a natural manner. Let P,(M) be the given t-p structure and
V be an arbitrary but fixed symmetric linear connection on M. We may take
local coordinate systems {(xf); U} on M satisfying that there is a local
section of P{(M)

SU= (xgi> ZX%Q

on each local neighborhood U. Now, we difine a local section of P*M) on
each U by

~ . . ; 3
(3.1) Sy={(xg’, X3, —2I'§}, Xﬁ;X?,Z).

For another local neighborhcod ¥ with UNV=£@, as sy and sy are local
sections of P{M), it holds on UNV

Sy=35v 8§, g:<ggg*i>EGt<P: q>

From this, it follows with ease
sv=%vg,  §=(ghg*, 0l

on UNV. Thus we get a gr-structure on M. This gr-structure does not
depend on the choise of local coordinate systems and that of local sections.
The underlying ¢-p structure of the gr-structure is also P{M). We call this
gr-structure the gr-structure determined by P{M) and V, while we say that
V belongs to the gr-structure.

It has been shown that a linear symmetric connection determines a gr-
structure together with a ¢-p structure, but it is possible that many linear
symmetric connections determine the same gr-structure together with the
t-p structure and these symmetric connections are characterized as follows.

TueorReM 5. Two linear symmetric connections V and V' belong to the
same grassmannian structure P,(M) if and only if they are ¢-related, where
¢ is the underlying t-p structure of P(M).

Proor. Suppose that 7 and 7’ belong to the same gr-structure. Let
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Gir, and I'g5E be components of 7 and /'’ with respect to local coordinate
systems. Let sy be a local section of the ¢-p structure over a local coordinate
neighborhood U. Corresponding to ¥ and F’, 5y and 3/, are local sections of
the gr-structure given by (3.1) respectively. Then we have

(3.2) 3i(x)=3u{x)S(x), S(x) € H, x € U.

It turns out from the definition of 3y and 5/ that S has a form
(0507, —(05: S;+07; Sh).

Hence, (3.2) implies

a; a; o, at; V1, ; o, b4 B1; k
T;;j;k—fﬁ;ykAZXa;ilYﬁjh YV;H SJ,;+2X7;],1 Y Y1 Sk,
where sy={xy', X3) and (Y3 is the inverse matrix of (X3). On putting
Sh=20,,X5. We find

o a, a, o
(3.3) I 5% —Fﬁ;vk—zﬂgbﬁ;f,;d),,pLZgbﬂ,;;; @,

iTx
Conversely, from the relation (3.3), (3.2) follows easily.

The next theorem asserts that the set of gr-structures consists of gr-
structures determined by ¢-p structures and linear symmetric connections.

THEOREM 6. Let M be a paracompact manifold carrying a¢ grassmanaian
structure P,(M). Then P,(M) is a gr-structure determined by the underlying
t-p structure of P, (M) and a certain linear symmetric connection.

Proor. Let {(x5%), U} be local coordinate systems of M. We may as-
sume there exists a local section sy over each ccordinate neighborhood U
and there exists the partition of unity {fy} subordinate to {U}. Let sy
=@y, X%, X§iy,), we define a linear symmetric connection 7y on U by

a; — a; B17 Y1k
FUB;Vk—_EX,Blj Yﬁ;jlyry;c 13

11k
where (Y7//) is the inverse matrix of (X%). Then F=JXfyFy is a linear sym-
metric connection on M. Moreover, it belongs to P,(M) from the theorem 5.

We shall introduce a gr-structure which seems to correspond naturally
to a given t-p structure ¢. Let 7 be one of connections given by the theorem
3 for the z-p structure ¢. We do not know whether / is symmetric or not.
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So we take the symmetric connection 7 given by F=r 1 T, where T is the

2
torsion tensor of ¢. In this situation, we say simply that 7 belongs to the gr-
structure determined by 7 and ¢. If P’ is the same connection as F, V and
V' are symmetric connections and ¢-related. Hence, they determine the same
gr-structure together with the z-p structure ¢. Summing up, we have

Tueorem 7. Let ¢ be a t-p structure on M. Then there exists uniquely
the gr-structure with underlying t-p structure ¢, to which any connection
given by the theorem 3 for ¢ belongs.

The above gr-structure is called the gr-structure determined by ¢.

§4. Cartan connections on a grassmannian structure

As a gr-structure has the structure group H/K, it is better to consider
the Grassmann manifold GL(n, R)/H projectively. So, PL{n—1, R) is taken
instead of GL(n, R). Moreover, PL{n—1, R) may be identified with SL*(n, R)
/{x=1I}, where SL*(n, R)=4{A € GL(n,R); detA==+1}. This identification
leads us to

Prorosition 3. There are left invariant 1-forms v, a, b=1,2, ..., n on
PL(n—1, R) which span the space of left invariant 1-forms on PL(n—1, R)
and satisfy

(4.1) Fowli=
(4.2) doi=—2o* \oj
Although left invariant 1-forms ¢, a, b=1, 2, ..., n are not linearly in-

dependent at each point of PL(n—1, R), we treat them as if they were a base
of the space of left invariant 1-forms and the equation (4.2) were that of
Maurer-Cartan, under consideration of the relation (4.1).

The Lie algebra pl{(n—1, R) of PL{(n—1, R) is regarded as gl{n, R)
/4al; a € R}y. Let E? be the matrix whose (a, b)-element equals to 1 and all
other elements vanish. Then E?%, a,b=1, 2, ..., n form a base of gl(n, R). If

E¢ is the class containing Ef modulo {al; « € R}, E¢ a,b=1,2, ..., n span
pl(n, R) and have a relation YE?=0. They will behave as if they formed a
base in this case too.

Suppose that a gr-structure P, (M) is given, we introduee the notion of
Cartan connection in P, (M). It is a 1-form » on P,(M) with values in
pl(n—1, R) satisfying the following conditions
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J(l) o(4¥)=A4  for every A ¢ §(Lie algebra of A)
(4.3) (2) Riw=ad(S Yo  for every Sc f,

3) wX)=x0 for every nonzero vector X,

where A4* is the fundamental vector field corresponding to 4. This 1-form
o is called a grassmannian connection (gr-conmection) in P,(M). With re-

ference to E¢, o is represented as
- b
w=20iE?,

where ¢ are real-valued 1-forms on P,(M). From the linear dependence of
Et, v¢ are not uniquely determined. Indeed, it holds

SiE =3¢ E?,

if and only if wi=&¢ (a==b) and w?—a%=0w}—a). However, it turns out that
any gr-connection v determines uniquely real-valued 1-forms w¢ such that

w=3wiEb Swi=0.
Now, we have from (4.3)
Prorosition 4. Let o be a gr-connection in P, (M) and pui
w=SwiE) Swi=0.
Then it follows
doi=—Ywi A\wi+ 24,

where 2¢ are 2-forms generated by w?.

§5. Normal connections on a gr-structure determined by a #— p structure

Let P,(M) be a t—p structure. In the sequel, we confine our attention
to the gr-structure P, (M) determined by P,(M). We take a local coordinate
system (x%) on a local coordinate neighborhood U. Then we can introduce
a coordinate system (x*i, x5, x5i,,) in (%) '(U) naturally, where =* is the
natural projection of P*(M) onto M. Let P be any point of 7='(U) and i is
the natural injection of P, (M) to P*(M). Here, r is the natural projection
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of P,(M) to M. Suppose sy is a local section of P,(M) over U and represented
as

Sv= (xaia X%;)

From the theorem 7, it is shown that local coordinates x*:(i(p)), x5 (i(P)),
x Gy, (i(P)) of i(P) can be represented as

@) =u",
x5 (((P)= I X 7i(i(P)) ujup, det|u}| = =det|ujl,

B GP) =~ 3L W e mat g (Vg N} a8,

where ¢%i4 is the tensor determined by P,(M) and Nj/ is the object given by
(2.6). Now we shall represent points of 7z~ *(U) by

a; 7 b4
(u Yy Upy UpB u/i’j))

although it is not a coordinate system in z~'(U) in the strict sense.
In the above situation, we define 1-forms 0%, 0%, o, B=p+1, ..., n, 4, j
=1,2, ..., pon 7' (U) by

aQ — a 1 —1a —19;
wi=2u" 1 dug + Fq—ﬁu G upXE X 12updu®

2
+ 1 : 2{ P aXﬁm X 18k 1 @QX ICXBHXEIE{U

P ptq 0z p+q 0xP
ayy —13; P o ~1% A -
+0 L/J’UcX T ptq @BlBIkX 1E +p@BIkGX 1]%
P X 1605+ L @y, X130 } 18 B gy F
ptq ep i g L5, a,uztdu

wi=—u 1“du’ ——L Sut lu] Xg,lXﬂ;“upduE
ptq

1 2{ q2 @ijl X—lail 1 aXG

— X-16XR, X~V
¢—17lp+tq 022 = F ptq 0P e

71841

O3 X j—jg 0333, X 1+ q035ic X'
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+— 1o, xigep L

Qs X~ 1%6]1} —1i'1 7 d E’
ptq ptqg FEn e

where 04, =3 X~ 1A<6XB X2— ZXDC XD)

For every local coordinate neighborhood, we can similarly construct 1-
forms which are fit together to form 1-forms on P,(M). We denote them by
wg, 0k,

In order to describe properties of these 1-forms w3, of, we introduce
some notations. Let (64, 64) be the restriction to P,(M) of the canonical
form of P*(M)[4]. Then, it satisfies

(5.1) do*=— 304 N0OE.
Next, T4. are functions on P,(M) given by
jg ZZTEFx ' af af,

where T2 is the torsion tensor of P,(M). Now it holds
(5.2) 0%i= 050l —wios— = 37w g8

. /3]' BY3 YR 2 Bﬁ *
From (5.1) and (5.2), it follows

(5.8) 0§ = — Z0ENOF — 305 Nl -+ 3 TS5 01N 08

2

Next, we have
(5.4) Joz+Zoi=0.
We define a 1-form ¢ with values in pl(n—1, R) by
0=3wlEi+IwsES+ S0¢EL
which is called a canonical form on P,(M). Then, 6 satisfies

R0=ad(A4™ V)0 for every 4 ¢ H,
(6.5)

0(ES)=ES, O0E)=E:,

where ad(47") is in fact the mapping: pl(n—1, R)/{ES} > pl(n—1, R)/{E%}
induced by ad(4™"): pl(n—1, R) >pl(n—1, R).
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From (5.3) and (5.5), we get in the same manner as [ 4. p. 222]

ProrositioN 5. There are 1-forms ok such that 0o=0+20iE; is a gr-
connection on P,(M), where 0 is the canonical form on P,(M).

We shall show there is a unique gr-connection that is one of connections
given in the proposition 5 and satisfies a certain condition. Suppose w=0
+2wiE} is a gr-connection, then as it was described in the proposition 4, the
structure equations of w are given by,

d@f‘:—Zw?/\OZ—Zﬁj-‘/\wifﬁ'% T3ie,04N05,

doi=—Zoi\ot—Zol N0+ % IK},8,01N0F,
(5.6) 1

dof=—230; Nok— oy /\(D,e‘|"2—2KB“/kB ak/\g}ga

d :—Zkawa Zwy/\wa_*_%ZKa')’kﬁjﬁv/\@?'

T%s, is called the torsion of v and Ky g, K&y, 8, Kiy,e, are called the curva-
tures of .

Now we consider the following condition

(5-7) Z‘Rﬁjazyk 0
where
(5‘9> R%j")’kSL 63K2'Yk35 6?‘[{%71051‘

We are now in position to prove the uniqueness of a gr-connection given
in the proposition 5 and satisfying the condition (5.7). Let w:0+2w§-f'f,3
and @=0+ 3@} E} be gr-connection of the kind. The condition (4.8) implies

S
NS
I
N
8

w
Lo
W

where A4i% are functions on P,(M). A computations using the structure
equations w and @ shows

— 50105+ A 0105+ AR5 07 07— AR 0§ 0+ Ry 0, — Rin,s, =0,

where Rj,,5, and Ry, 5, are functions given by (5.8) for @ and w respective-
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ly. Together with the condition (5.7), this leads us to
(n2-4)Ag’3:0.

So, A%=0, if n=>3.
In the next place, we shall show the existence of a gr-connection satisfy-

ing the conditions. Let w=0-+J30iE% be an arbitrary gr-connection and
R3%iy,s, be functions given by (5.8) corresponding to w. Put

. 1 22 2
Afglg: 4 < n n RB].SZ_I_Rajﬂl+RBl8j+T'R8lﬁj> ’

nZ—
where Rg5,= Ria,5,. Then 1-form & defined by
D=0+ Z(wi+ A0 E?
is a required gr-connection. Thus, we have

Tueorem 8. Let P,(M) be a gr-structure determined by a given t—p
structure on a pg-dimensional manifold M(p+q=3). Then, there exists a
unique gr-connection o =0+ Joi E¢ satisfying the condition (5.7), where 0 is
the canonical form on P,(M).

The connection given in the theorem 8 is called the normal connection of
P.(M).

The Grassmann manifold G, ,(R) carries the natural ¢t —p structure and
PL(n—1, R) is regarded as the gr-structure determined by the  — p structure.
This gr-structure is called the standard gr-structure. The left invariant 1-
forms given in the proposition 3 is the normal connection of the standard
gr-structure. A gr-structure P,(M) with projection x, is called flat if and
only if for every point of the base manifold M, there is a neighborhood U of
the point and a local diffeomorphism of U to G, ,(R) whose prolongation maps
n~(U) into the standard gr-structure.

If a gr-structure P,(M) is flat, it is evident that the normal connection of
P,(M) has the vanishing torsion and the vanishing curvatures. Conversely,
if a gr-structure P,(M) has the normal connection with the vanishing torsion
and the vanishing curvatures, the structure equations of the normal connec-
tion and the equations of Maurer-Cartan of PL(n—1, R) have the same forms.
Then, every point of P,(M) has a neighborhood U and a diffeomorphism of
U to PL(n—1, R) whose differential maps the left invariant 1-forms to the
normal connection. In addition, every local diffeomorphism is a plolongation
of a certain local diffeomorphism of the base manifolds. Summing up, it
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follows

TuEOREM 9. A gr-structure determined by a given t—p structure is flat

of and only if the mormal connection of the gr-structure has the vanishing
torsion and the vanishing curvatures.

(1]
[2]
(3]
[4]

(5]

Faculty of Education
Tokushima University

References

A. Fujimoto, Theory of G-structure, A report in differential geometry (in Japanese), Vol. 1, 1966.
Th. Hangan, Tensor-Product Tangent Bundles, Arch. Math., Vol. 19, (1968), 436-440.

T. Ishihara, On Almost Complex Projective Structures, J. Math. Tokushima Univ., Vol. 3
(1969), 37-56.

S. Kobayashi and T. Nagano, On projective connections, J. Math. and Mech., Vol. 13, No. 2
(1964), 215-235.

S. Sternberg, Lectures on Differential Geometry, Englewood Cliffs, 1964.



