On the Connected Refinements of Topologies of Locally Connected Continua

By

Tadashi Tanaka

(Received September 30, 1969)

1. Introduction.

Let I be the closed unit interval and τ_0 the usual topology on I. In [1], S. K. Hildebrand has shown the following theorem: If τ is a finer connected topology for I than τ_0 , then any connected subset of I under τ_0 will be a connected subset of I under τ . The purpose of this paper is to generalize this theorem.

2. Definitions.

If σ is a topology on a set X, the resulting space will be denoted by (X, σ) and the family of all connected subsets of (X, σ) by $C(X, \sigma)$. If (X, σ) is connected, then σ is called a connected topology on X. Let A be a subset of X. Then "A is σ -P" means that A has the property P in (X, σ) and $Cl_{\sigma}A$ denotes the closure of A in (X, σ) . The topology $\{U \cup (V \cap A) \mid U, V \in \sigma\}$ on X is said to be the simple extension of σ by A [2]. Other undefined terms can be extracted from Whyburn's Analytic Topology [3].

3. Main results.

THEOREM. Let (X, σ_0) be a locally connected, connected and compact T_2 -space satisfying the second axiom of countability.

Then in order that for any finer connected topology σ on X than σ_0 we have $C(X, \sigma) = C(X, \sigma_0)$, the following conditions are necessary and sufficient:

- (1) (X, σ_0) does not contain any simple closed curve.
- (2) Any simple arc in (X, σ_0) contains at most a finite number of branch points of (X, σ_0) .

The proof of the theorem consists of the following four lemmas.

LEMMA 1. If S is any simple closed curve in (X, σ_0) , then S contains an uncountable number of non-cut points of (X, σ_0) .

PROOF. Let [ab] be a simple subarc from a to b of S. Then no points of (X, σ_0) separate (X, σ_0) between a and b, for S is a simple closed curve. Thus Lemma 1 is an immediate consequence of [3, (4.3), p. 51].

Lemma 2. If (X, σ_0) contains a simple closed curve, then there exists a finer connected topology σ on X than σ_0 such that $C(X, \sigma) \neq C(X, \sigma_0)$.

PROOF. Let S be a simple closed curve of (X, σ_0) . Then by Lemma 1 S contains a non-cut point p of (X, σ_0) . Let $\lceil apb \rceil$ be a simple subarc from a to b of S in which p is an interior point. Let σ be the simple extension of σ_0 by $(X-\lceil pb \rceil) \cup p$, where $\lceil pb \rceil$ is the σ_0 -simple subarc of $\lceil apb \rceil$. Then σ satisfies the conditions of Lemma 2.

First, it is obvious from the definition of the simple extensions of σ_0 that σ is finer than σ_0 .

Next, we shall show that (X, σ) is connected. Any open subset of $(X-p, \sigma)$ can be written in a form $U \cup \llbracket V \cap \{(X-\llbracket pb \rrbracket) \cup p\} \rrbracket - p$, where U and V are open in (X, σ_0) , and hence in a form $(U-p) \cup \{(V-p) \cap (X-\llbracket pb \rrbracket)\}$. Therefore any open subset of $(X-p, \sigma)$ is open in $(X-p, \sigma_0)$. On the other hand, $(X-p, \sigma_0)$ is connected since p is a non-cut point of (X, σ_0) . Hence $(X-p, \sigma)$ is connected. Since any σ -neighbourhood of p can be written in a form $U \cup \llbracket V \cap \{(X-\llbracket pb \rrbracket) \cup p\} \rrbracket$, where U and V are σ_0 -open and either U or V contains p, any σ -neighbourhood of p intersects with $\llbracket ap \rrbracket - p$. Hence p belongs to $Cl_{\sigma}(X-p)$. Thus it follows from the above two facts that (X, σ) is connected.

Last, the σ_0 -simple arc $\lceil apb \rceil$ is not σ -connected because $\lceil apb \rceil = \lceil apb \rceil \cup (\lceil pb \rceil - p)$, $\lceil ap \rceil = \lceil apb \rceil \cap \{(X - \lceil pb \rceil) \cup p\}$ and $\lceil pb \rceil - p = \lceil apb \rceil \cap (X - \lceil ap \rceil)$ hold. Therefore we have $C(X, \sigma) \neq C(X, \sigma_0)$.

Thus Lemma 2 is proved.

Lemma 3. Assume that (X, σ_0) does not contain any simple closed curve and that some simple subarc of (X, σ_0) contains an infinite number of branch points of (X, σ_0) .

Then there exists a finer connected topology σ on X than σ_0 such that $C(X, \sigma) \neq C(X, \sigma_0)$.

PROOF. Let [ab] be a σ_0 -simple arc from a to b which contains an infinite number of branch points of (X, σ_0) . Without loss of generality, we may assume that there exists a point p and a sequence $\{b_n\}$ of branch points of (X, σ_0) such that every point of $\{b_n\}$ is in the σ_0 -simple subarc [ap] of [ab] and p is a σ_0 -limit point of $\{b_n\}$. Let σ be the simple extension of σ_0 by $(X-[ap])\cup p$. Then σ satisfies the conditions in Lemma 3.

First, it is obvious from the definition of the simple extensions of σ_0 that

 σ is finer than σ_0 .

Second, to show that (X, σ) is connected, for each n let C_n be a σ_0 -component of $X-\lceil ap\rceil$ such that b_n is a σ_0 -boundary point of C_n . Then every σ_0 -neighbourhood of p contains both a point of each σ_0 -component of X-p and all but a finite number of the sets C_n of $\{C_n\}$. The set $(X-\lceil ap\rceil)\cup p$ contains both all C_n of $\{C_n\}$ and all σ_0 -components not containing $\lceil ap\rceil-p$ of X-p. Therefore if V is any σ_0 -neighbourhood of p, then the set $V\cap\{(X-\lceil ap\rceil)\cup p\}$ intersects with each σ_0 -component of X-p. Moreover, as in the proof of Lemma 2, any σ -neighbourhood of p can be written in a form $U\cup \lceil V\cap\{(X-\lceil ap\rceil)\cup p\}\rceil$ where either U or V is a σ_0 -open set containing p. Hence p belongs to the σ -closure of every σ_0 -component of X-p. On the other hand, it is shown that every σ_0 -component of X-p is σ -connected, which is shown in the same way as in Lemma 2 that X-p is σ -connected. Thus (X,σ) is connected.

Last, the σ_0 -simple arc [ap] is not σ -connected because $[ap] = ([ap] - p) \cup p$, $[ap] - p = [ap] \cap (X - p)$ and $p = [ap] \cap \{(X - [ap]) \cup p\}$ hold. Therefore we have $C(X, \sigma) \neq C(X, \sigma_0)$.

Thus Lemma 3 is proved.

Lemma 4. Assume that (X, σ_0) does not contain any simple closed curve and that any simple arc in (X, σ_0) contains at most a finite number of branch points of (X, σ_0) .

Then for any finer connected topology σ on X than σ_0 we have $C(X, \sigma) = C(X, \sigma_0)$.

Proof. The lemma is proved through the following three steps.

First, if [ab] is any σ_0 -simple arc whose interior contains no branch points of (X, σ_0) , then [ab] is σ -connected. To prove this, suppose, on the contrary, that [ab] is not σ -connected. Let $[ab] = A \cup B$ be a σ -separation of [ab]. Now either $a \in A$ or $a \in B$ and either $b \in A$ or $b \in B$. Assume $a \in A$ and $b \in B$. The proof is similar if any of the other three possible cases is considered. The σ_0 -boundary of every σ_0 -component of X-[ab] consists of exactly one of a and b, since (X, σ_0) contains no simple closed curve and the interior of [ab] contains no branch points of (X, σ_0) . Now let A^* be the sum of A together with all the σ_0 -components of X-[ab] whose boundary is a and a the sum of a together with all the a-components of a-components of a-connected and a-connected and a-connected and a-connected. Hence [ab] is a-connected.

Second, if [ab] is any σ_0 -simple arc whose interior contains a finite number of branch points of (X, σ_0) , then [ab] is σ -connected. To show this, denote the branch points belonging to the interior of [ab] by $b_1, b_2, ..., b_n$ in

the order from a to b. Then each of the σ_0 -simple subarcs $[ab_1]$, $[b_1b_2]$, ..., $[b_nb]$ of [ab] contains no branch points of (X, σ_0) in its interior. Therefore, by the result of the preceding paragraph, each of $[ab_1]$, $[b_1b_2]$, ..., $[b_nb]$ is σ -connected. Thus [ab] is σ -connected since [ab] can be written in a form $[ab_1] \cup [b_1b_2] \cup ... \cup [b_nb]$.

Last, let C be any σ_0 -connected subset of (X, σ_0) . Then, by [3, (11.21), p. 82], C is σ_0 -arcwise connected and hence every two points x and y of C can be joined in C by a σ_0 -simple arc [x y]. By the results of preceding paragraphs [x y] is σ -connected. Therefore C is σ -connected. Thus $C(X, \sigma) = C(X, \sigma_0)$.

Lemmas 2 and 3 show that the conditions of the theorem are necessary and Lemma 4 shows that the same are sufficient. Thus Theorem is proved.

Faculty of Engineering Tokushima University

References

- [1] S. K. Hildebrand, A connected topology for the unit interval, Fund. Math., 61 (1967), 133-140.
- [2] N. Levine, Simple extension of topologies, Amer. Math. Monthly 71 (1964), 22-25.
- [3] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., 28, Providence, 1942.