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This paper is the continuation of the paper® formerly written by one of
the authors (Ichijyd). In the former paper, the general projective connec-
tions on the tangent bundle over a C~-manifold were discussed. But, in that
case, it was necessary to choose canonical parameters independently. In this
paper, we first consider a vector bundle having R"*!, the real number space
of (n-+1)-dimensions, as the standard fibre and a subgroup of GL(n+1; R) as

the structural group. This vector bundle was introduced by T. Otsuki® for
studying his restricted projective connection and was named a projective
vector bundle.

Now, our intention is on the generalization of the former case to the
projective vector bundle. In §§1 and 2, we define the projective vector bundle
and the general projective connection on it, and discuss some properties of
them. Then, a projectively invariant distribution p is defined. The integra-
bility condition for p is discussed in §3.

§4 is devoted to the study of the holonomy group of the general projec-
tive connection, especially the case in which the holonomy group leaves a
certain hypercone invariant is studied. In the last section we try to extend
some known results on holonomy groups to the case in which the base mani-
fold of the projective vector bundle is assumed to have a Finsler metric. As
for the references, we wish to refer the former paper.

§1. Projective vector bundles

Let M be an n-dimensional differentiable manifold of class C°. A vector
bundle over M which has R**! as the standard fibre is constructed as follows.

1) The structural group G, is formed by all elements of the type

1) Y. Ichijyd: A note on general projective spaces of paths and tangent bundles I, Jour. of Math.,
Tokushima Univ. 1(1967) 11-16.
2) T.Otsuki: The Geometry of Connections, Kyéritsu-Shuppan (1957) (Japanese).
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0
& 0 where (g¢) € GL(n; R)V.
1

sk
Obviously G, is a subgroup of GL(n+1; R).

2) Let U and ¥ be two coordinate neighbourhoods of M such that UNV -4,
and (%, ..., ™), (&, ..., ") be the local coordinate systems valid on U and V
respectively. We define the transition functions gyv: UNV—>G, by

oE o)
| 0x’ oo
(1.1) gUV:‘% O i?
Ccologd 1)
where 6-=L Azdet(—aici.—) 0; log A=i6-d and ¢ is a nonvanishing
J 6.967 b 6x] H 7 A J
constant.

The vector bundle defined by above 1) and 2) is called a projective vector
bundle and we denote it by P(M, =, R***, G,) where P is its total space and
7. P— M is the projection of the bundle. If we write (x%, w") and (&, @)%
for the canonical coordinate systems valid on z=(U) and 7~ !(¥) respectively,
determined by the bundle structure, the »* and the @* are related by

Wl R
Y Y% S
(1.2) = % 651:’
La;: L cologd 1| lwe
that is,
(1.3) w'="0% ', @~=cw'o;log 4+ w".

We call a local coordinate system which follows the law of transformation
(1.3) the canonical coordinate system of the projective vector bundle P. In
this case the Jacobian matrix J of the coordinate transformation on P is
given by

1) Throughout the paper, the Roman indices i, J, k, [ etc. run over the range 1, ..., n and the Greek
indices 4, g, v etc. over the range 1, ..., n and co.
2) («¢, w') and (&, @) stand for (x%, ..., 2", w', ..., w*) and (&, ..., &", o', ..., @) respectively.

Sometimes we also write (x, w) (resp. (%, @)) instead of (x%, w?) (resp. (&%, #*)).
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0%
X 0 0
1.4) J= 829'5‘; % 0%’ 0"
0x70x" 0x’
cwkﬁ,@klogzi cajlogd 1

Let P, be the tangent space of P at z € P. If we assign toeach z€ P a
subspace @Y of P, formed by all vectors tangent to the fibre through z, then
we have an (n-+1)-dimensional distribution on P. We call it the vertical
distribution and denote it by @. A distribution complementary to the @V
and invariant under the mapping ¢*: P— P which maps each z=(x’, w") into
0*(z)=(x', ow") for ¢>0, will be denoted by @" and we call it the horizontal
distribution. In other words, the horizontal distribution @" is defined by
following two conditions.

1) P,=0"%H0" (direct sum) for all z € P,

2) do*d!

(x,w

=0

(x,0w)

for ¢>0.

If we denote by p” and p” the projection operators of vector field on P to
@V and 0" respectively, these operators should have the following forms.
” 0 0 0t 0
Lax o)

—6 0

Since these operators must be (1, 1)-tensors, the conditions p"J=Jp" and p"J
= Jp" are necessarily satisfied, where p” and p” are the operators obtained by
the coordinate transformation from p” and p* respectively. So the law of
transformation of the components ¢} under the coordinate transformation of
M is

8252: P

Ai —_— b 7~
9 0x’ 0xt 9; Oxioxt
(1.6)
_ =1
67 g::;] —Hj’:c@}@,logd——cwlajﬁ,logd,

and the condition 2) on @" leads us to the

a7 0% (%, ow) =007 (%, w) for 6>0.
Conversely, if 6} satisfying (1.6) and (1.7) are given, we can determine

p” and p" by (1.5) and distributions #” and @ will be determined.
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Next, we consider a 1-dimensional distribution @° spanned by the vector
ﬁeld%: € 0. Then the n-dimensional distribution @’ complementary to @°

in @ ean be considered. In this case the components of the projection
operators p° and p” to @° and @* will be determined as follows.
First, p° has to have the form

(0 0 0

pOT 0 0 0‘,
-y —& 1

and p’ is determined by p”=p’-+p’ since 0" =0°@0° (direct sum) by defini-
tion. So p” has the form

07 +7 & 0 '

by (1.5).
Secondly, the projection operators must be involutive, so (p*)*=p°, and
we have

—7;=07 — 0%

This determines the forms of p° and p?,

0 0 0 o 0 0
(1.8) =0 0 0, p=0 0 0
07 =08 —C 1 &0 & 0

Again the condition that these operators are (1, 1)-tensors gives the law of
transformation of the ;.

0x%"

(1.9) Cjszfa—xj——— co;log 4.

Conversely, if ¢; satisfying (1.9) are given, we can determine, with the 6} in
(1.5), p° and p” by (1.8), so the distributions 0° and @° will be determined.

Now, let us consider two more distributions. One, @ is defined by the
direct sum & = @0"@0” and is naturally of 2rn-dimensions. The projection
operator 5 on it is given by
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0 0 0"

7

(1.10) p= 0 0

J

o

Cx0%—07 & 0

The other, @7 is defined by the direct sum @7 = @°P@" and is of (n+1)-
dimensions. The projection operator p” on it is given by

0 0 0
(1.11) H_| _pi 0 0
P i
-0t —¢; 1
We put
= 0 g 0 e O
Xi= Ot o3 ow* i ow™’
9 ., 0
(1.12) Y=yt G
0
= ek

The sets of vector fields {X;}, {Y;} and {Z} form local basis of ", #° and @°

respectively. The laws of transformation under the coordinate transforma-
tion are

_ k _
(1.13) C= 0% ¥, V=% y, 7-Z
X

Calculating the brackets between those vector fields, we obtain

[ X, X; ]=R% Y+ R}, Z,
[X;, Y= S Y+ 82,2,
Y0 Y=t =5 )
(Y, Z2]=-2% 7,

where
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00% 00% w 00% ( a@k 5’(9k o 00k >
L ! —_ — 21T i
3 < axf —0; 0w 9; w™ ) 8x —0 07,0 0w w™

jo=< 007 _p1 007 _ e 6’0”)_( 007 _g1 997 _ 4o 007’) ¢,RL,,

(L.15) | ox/ 7 ow! 7 ow” 0x? Ow ; ow™
' k
sty =00 1 00 ¢,
Sy =D 0L O g 0 g 0 e,

The following proposition is the immediate consequence of (1.14) and
(1.15).

Prorosition 1.1. 0" is integrable, 1f and only if R%;=R?,=0,

@’ 18 integrable, if and only if 6‘(, :fg%f,

@ is integrable, if and only if R?,=8% =0 and aC,-‘ :_O._C,f__,
ow’ ow'’

0% is integrable, if and only if R%; =0 and aazz =0,

@V is always integrable.

From now on, we write y* and z instead of w’ and w™ respectively. Now,
let us assume that the ¢! and 67 have the following forms.

0i=pi(x*, ¥+ Bi(x* y"z,

(1.16)
07 - ¢’j(xk> yk> + Aj(xka )fk)z>

where det (Bi)=~0, and we write (Bi)"'=(C?). We should notice that the ¢}
and ¢; must be positively homogeneous of degree 1 in the y* and the 4i, Bi
and Ci must be positively homogeneous of degree 0 in the y* from the condi-
tion (1.7) on the ¢}. The laws of transformation of these functions are obta-
ined by substituting the 6% and 67 in (1.6) by (1.16).

i l ax m . 1 ax —
if 7 ot 2l YT oo x '+ ¢ y™0 log 4-Bi B =0,
1

!

i +cy’”6 log 4-4-0% — g,=c010,log 4—c /9,0, log 4,

0x
(1.17)
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!

; 0%
[L A;a—xk—-Akch,lﬁllogd.

Prorosition 1.2,
Ij=pj+Bi4,CTy
18 a non-linear connection, and
=i — ACLot + y"0u(AiC)) — T y™0,(4iCp)

) ) . p)
18 @ quasi-covector, where 0,=———.

oy”
Proor. Calculating the laws of transformation, we obtain

=1 =i 250 — o
0% 0% mi—_ 0% iand 9% —q1,.  qed

m oOxk  0x' *F T dxkox! T oxk

§2. General projective connections

In the previous section, we defined the connection 6= {07} on a projective
vector bundle, but it includes more than a projective connection in general.
So, in this and following sections, we assume that the 6} have the following
forms in canonical coordinate systems, that is

(0=0iCx", yH+3i,

@.1)
1 efngj(xka yk>+Aj(xk>z>

where ¢! and ¢; are positively homogeneous of degree 1 in the y* and 4; is a
function of the x* only. It is evident from the law of transformation (1.17)
that this form of the 6} is independent of the choice of the canonical coordi-
nate system. Under the assumption (2.1), the II? and II,; in Proposition 1.2
are written in the forms

I'i=¢i+0id,y™,
(2.2)
Hj = g[)J—Amqo;” -+ ymOjAm.

In such a case, we call 6 a general projective connection.

Let us consider a C'-curve C: x'=x(t) on M. A curve C on P is called
the horizontal lift of C if it satisfies following two conditions, that is (1) 7(C)
=C and (2) the tangent vector to C at each point of € belongs to the horizon-
tal distribution @*. The condition (2) can be restated that the tangent vector
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field along the C is given by _fltiz X;. And so, a curve C: x'=x'(s), y'= y'(2),

z=2z(t) on P is the horizontal lift of C: x*= x%(¢) on M if and only if the
condition

dy* . d«' dz . dx'
2:3) PR Pt T
is satisfied.

Let x, and x, be two distinct points of M and C be a curve joining these
points. We define a mapping from z~'(x,;), the fibre over x,, into 7~ 1(x,),
the fibre over x,, as follows. For each point of 7#~'(x,), there corresponds
one and only one horizontal lift of € through the point and this curve on P
passes 7 '(x,) by one point. In this manner, a point of 7~ (x,) correspond
to a point of 77!(x,), and this mapping is obviously one to one and onto. We
denote it by hc and call it the transformation associated with the curve C.
From the homogeneity of 6; (1.7), we can see that a straight line through the
origin is mapped into a straight line through the origin by Ac. If C, is a
curve joining x, and another point x3;, and if we denote by C-+C; the curve
joining x; and x3; which is obtained by combining C and C, at «,, the relation

heyc,=hc,*he
holds good. And the relation
hcﬂ:(hc)—l

also holds good if we denote by C~! the curve obtained by reversing the
orientation of C.

Now, if we remove the origin from R"*'! and identify all points on a
straight line through the origin, we obtain an n-dimensional real projective
space P”. A fibre bundle which has the P” as the standard fibre, is defined
by taking the projective transformation group which leaves fixed the point
obtained by identifying the (n-1)-th axis of R**! as the structural group,
and the projective transformation determined by (1.1) as the coordinate
transformation. We denote this fibre bundle by P(M, #, P*, G,) where P is
its total space, 7 is the projection P—M of the bundle and G, is the group.

It is obvious that the transformation associated with the curve C joining
two points x; and x, of M determines a one-to-one mapping between fibres
of P, # '(x1) and # '(x,). We denote this mapping by %c. In general, the
mappings Ac and % are dependent on the given connection 6= {0}}, but if for
all curves on M the mapping Ac="c(0) defined by the connection 6 and the
mapping he=~hc(@) defined by another connection 4 coincide, we say that two
connections are mutually projective and denote by 070.
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TueoreM 2.1. In order that two connections 0 and 0 are mutually projective,
it 1s necessary and sufficient that the coefficients of these connections are related
by

(2.4) 6y =06+ 0;(x"w",
where 0;(x%) s a function of the x*. Or using (2.1)
f Pi=pito0i(x")y,
@.4) =0,
Aj=A;+0/(x").

Proor. Let C: x'=x(¢) be a curve on M, and C(0) and C(6) be two horizontal
lifts of C determined by connections 6 and § respectively. Suppose that the
equations of C(0) and C(6) are respectively given in the forms of

CO): x'=x'1), w=w"(),
CO): x'=x'(), *=a"(©).
From (2.8), the differential equations satisfied by w* and #* are

du))h x dx A\ dx .
dt T dt 0; dt ;=0

respectively. If we notice that %c(0)=%c () means that the image points of
a point under the mappings hc(0) and hc(@) belong to the same straight line
through the origin in each fibre, we have

W (e) = o(®)w* (1),

providing that o(¢) is a certain function of ¢. Substituting the right hand
side of above relation for the #* in the differential equations, we have

_dp dw”
di di
_ do { x N m } dx' _
dt w*—0103(x, w) — 0;(x, w) 7 =0
that is,
{93-(96, w) — O3z, w)}_?: dl((j);go N

Since this equation should be true for all curves on M, we must have
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_dlogpo _ dx’

A

where p; is a function of the x* and w*. Moreover, in this circumstance, the

dx

direction i

may be arbitrary, so we have
6?(“’-9 w)—@:‘(x, 'W):pi(x, w)wh.

If we put 1=o0, and use (2.1), it becomes clear that p; is a function of the x*
| only and does not contain the w*.
The converse is obvious. q.e.d.

From this theorem, it is easily verified that the relation 676 is an equi-

“valence relation. So, if two general projective connections 6 and 8 are in the

relation 0/N0, we can say that the two general projective connections are
projectively equivalent.

Put Y= y"%yiJrzTaz, then Y is a vector field on P. For, from (1.2)

we have

0 ox” 0 0 0 0

= : i1 - =

5y~ ou gy ToOHl084 T, and =

so using (1.3), we have
i 0 9 _ 4 0 _ 0
A AL P T T

This vector field Y on P is independent of connections, and we call it the
intrinsic vector field of P.

If we put p(6) = 0"PY (direct sum) where @”" is the distribution defined
by a connection 6 and Y is the intrinsic vector field of P, then p(0) is an
(n+1)-dimensional distribution on P and we have the following theorem.

TuroreMm 2.2. Two connections 0 and 0 are projectively equivalent, if and only

if p(0) and p(6) coincide.

Proor. Suppose 6750, then, since Y is independent of connections, and

s 0 _fm 0 _f= 0

Xi= Ox’ o oy™ b 0z
0 om0 o N
T oxi (01 +01y ) aym (6, +0iz) 5z

=Xi—0:Y € p(0),
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we have p(8) Cp(0). In like manner, we have p(6) Cp(@B).
Conversely, suppose p(6)=p(0). Since vector fields X; which form a basis
of p(d) with Y, belong to p(0), we can write

5 0 s 0 Ao O
Xi: - T
Oxt o; oy™ b; 0z
=prXn—0:Y

J—— 1 a_l a_~°°6>__la._ 6
—"<axm O 0y! On 0z 0y 0y! S

Comparing components on both sides and giving care to (2.1), we obtain the
following.

pr=07, 0r=01+0,y", 07=07+0:z,
where p; is a function of the x*. g.e.d.

If 7 i is a non-linear connection and 1I; is a quasi-covector defined by (2.2)
using the coefficients of a connection 0, then the relations between these and
the same quantities from a connection 6 which is projectively equivalent with
§ are given by

HJ':]I/' - pmH;‘n"— ijmym"Jl_ (0J0m> ym'

ReMARK. At the beginning of this section, we assumed that a general pro-
jective connection 6 had the form of (2.1). If we take a stronger assumption
that 6} is linear in the w", then (2.1) is rewritten in the form

{ 0i=¢i(x)y"+0iz,
07 =(x") y*+ 4;(x")z.
In this case, IT¢ and II; of (2.2) take the forms of

(2.6)

2.7) Hi=M},(x"y", =)y

J

where

ITiy(x') =g ls+ 054,
(2.8)

(5" =jn— Amp +0;Ap.

Moreover, it is the direct result of proposition 1.2 that I}, is a linear connec-
tion and I7;; is a covariant tensor of degree 2. The condition (2.5) for projec-
tive equivalence becomes
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ﬁfk:]]f:k'l‘ 050j+ 0504,
(2.9)

~

I;,=1;,— pmﬂ?‘k* 0;0%+0;04.

(2.9) is the condition satisfied by the coefficients of Cartan’s projective con-
nection. And so, the linear general projective connection gives Cartan’s
projective connection, and we call the 6 of this case a restricted projective
connection.

§3. The integrability condition for b

We have showed in the previous section that, if a general projective con-
nection 6 was given on a projective vector bundle P, the distribution p(0)=
0"PY was same for all § which were projectively equivalent to 6. In this
section, we will try to seek the integrability conditions for p.

For this purpose, we first calculate the brackets between X; and Y.
From (1.12) we can rewrite Y in the form

(3.1) Y=y Yi+ (z— y'C) 2.
So using (1.14) and (1.15), we have
[X;, Y]=[X, Y Y +[X;, (z—y'C)Z]
= (Y00t — oD Vit {y 01— 0=y Br0i— D} Z.

Both ¢* and ¢; are positively homogeneous of degree 1 in the y*, so the
coefficients of Y, and Z vanish. And we have

3.2) [X; Y ]=0.

Next we should calculate brackets between X; and X;. Since [ X}, X; |=
R%, Y+ RY,Z by (1.14), [ X;, X;] does not belong to #*. And it can be stated
that p is integrable, if and only if

(3.3) R%:, Y+ R, Z=H;Y
=Hyy" Yo+ Hy(z— y'C)Z,
for suitable H;;, that is,
3.3) R =Hyy*, RY=(z—y'C)H.
Putting the first equation into the second, (3.3") is rewritten in the form

(3.4) RY;=Hyy", Ry;+UR{;=zHi;.
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We substitute (1.15) by (2.1), then we have for R%;
(3.5) R} =E}+ Fz,

where

6 { B} = 0,01 — ¢70ne} —0105) — (010 — ¢T0np} —050),

Py =Bk 40545 — 0,0+ 0% 4)).

And for R?; we have

3.7 R}, = Pi;j+Qijz,

where

38 { Pij=(0;¢:— ??’a’mﬁbi— Aip;) — 0ih; — @10mh;— 4;1) — L,
Qi;=(0;4;—0;¢:) — (0;4; —0:p;) — {, F% .

Then the integrability condition (3.4) for p is given by
3.9 B+ Frz=H;y*, Pi+CuEb + Qi+ CuF%)z=Hyz.

In the first equation, E*; and F%; do not contain z, so we can put H;=H,,+
H;z, assuming that H;; and Hj; do not contain z. In the second equation of
(3.9), we compare the respective coefficients of z%, z and z° (¢; in the left hand
side may contain z, but P;-+{,E% and Q;+.F% do not contain ¢, by (3.8).
So it is reasonable to compare coefficients of 2% z and z° in the second equa-
tion of (3.9).).

The second equation of (3.9) is

P+ ChEl 4 (Qy+CoFE )z =H} 2+ HY ;22
So, H;;=0, and the first equation of (3.9) becomes
B} + Flz=Hj; v,
which is equivalent to
(3.10) Ef,=Hj,; y*, F% =0.
Using this relation and H}; =0, the second equation of (3.9) becomes
P+ 84 E% Q2 =Hj ;2.
Consequently we have

(8.11) P+ CEY =0, Qyy*=Et,,
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and the integrability condition for p is expressed as follows.
(3.12) F/f] :0, P,'j'FCkE?]-:O, Ef’j-—QijykZO.
Substituting (3.12) by (2.2), (3.6) and (3.8) we obtain the

TueoreMm 3.1.  In the projective vector bundle P with a general projective con-
nection 0, the integrability condition for the distribution p(0) is given by

J 0;IT%—0,;IT% =0,
(B13) | 0Tt =04+ 0T ¥ — 1170, T 4+ 04 IT;— 0411 ;+ v*0,01;— v*0;1T ;= 0,
l 61171——&II,—}—H;”OmTL—HTamHJ:O
Remark. If we take the assumption that 6 is linear, this (3.13) becomes, in
terms of (2.7), the condition for a projectively flat space. It is wellknown
that, in this case, the space is locally isomorphic to the projective space.
However, we have not assumed the linearity in this paper, so we cannot state

in general that the space M is locally isomorphic to the projective space even
if the condition (3.13) has been satisfied. We call the case “projectively semi-

fat”.
The following theorem is obvious from the remark.

TueoREM 3.2. A mecessary and sufficient condition for a manifold M with a
general projective conmection 0 to be locally isomorphic to a projective space i3
that the relations (3.13) and 0,0,0%=0 hold true.

Remark. If we put, as in the restricted case,

Kb, =014 — 0,1 %+ 1179, IT% — 1179, IT*,
(3.14)
K=K,

mjs
we have, from the second equation of (3.13),
K;+nlIl;— y™0,11 ,,= 0.

This equation is, of course, a projective one. Solving this equation for I7;,
we have

= ;;_} |+ Y 0K,

We call a general projective connection, in analogy with the restricted
case, a generalized normal projective connection, if it satisfies the condition
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(3.15) 0.1 — 4,114 =0, JIJ:;;_LI (nEK;+ y"0;Kom).

§4. The holonomy group of a general projective connection

We defined in §2 a mapping % between fibres of P. If we take a closed
curve, which has the same point x, as the initial and the end point, for the
curve C, the /¢ is a transformation of the fibre 7~!(x,) since the 6} is positi-
vely homogeneous of degree 1 in the w*. The set {ic}., for all closed curve
through x, forms the holonomy group with reference point x,, of P(6) with
a general projective connection determined by a connection 6 on P.

Now, we assume that a field of hypercones on fibres of P(0) is given and
1s expressed by the equation

(4.1) 222G (x*, yk)z—H(xk, yk):().

Since each fibre of P(6) is a projective space, G (x*, y*) and H(x", y*) are
necessarily positively homogeneous of degree 1 and degree 2 in the y* respec-
tively.

TraeoreEMm 4.1.  The laws of transformation of G and H under the coordinate
transformation ' =z (x*) of M are given by

G=G+ cy’0;log 4,
(4.2) _ - .

H=H—2c y'G0;log 4+ c*y’ y*0;log 4-0; log 4.

And H+G? is invariant under the coordinate transformation, that is, the
relation

(4.3) H+G*=H+G?
holds good.
Proor. If we rewrite the equation
22 —2G (&*, y)z—H&", y)=0

in terms of z by (1.3), we obtain (4.2). (4.3) is directly obtained by substitut-
ing G in the right hand side of the second equation of (4.2) by the right hand
side of the first equation of (4.2). q.e.d.

The quantity H+G?* is invariant under the coordinate transformation, so
we put H+G*=L. Then the equation (4.1) can be written in the form

(4.1 222Gz + (62— L) =0.
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TueoreMm 4.2. The field of hypercones (4.1") on fibres of the projective vector
bundle P is left invariant by the holonomy group of the general projective con-
nection (2.1), if and only if the following condition is satisfied.

G (0uG— Ay) — fpu— 4G+ ¢,{;6,-G+—;_a'k1::0,

(4.4)
G* (06— 43— Cs—COC +Colb Gt -OuL— - pldiL— LG — A7) =0.
And this condition is independent of the choice of the projectively equivalent

general projective connections on P.

Proor. We develop (4.1") along an arbitrary curve x'=x'(t) on M. Differen-
tiating both sides of (4.1") by ¢ and using (2.3) and (2.1), we obtain

A= 0i6)+ (94046 — 010,6 G Ay + GG —-L L)
) o k
+(eeipe+Lor— L oLpi-6p—cac)| L <o,

dx*
Sdr
the bracket vanishes. The hypercone defined by putting the inside of the
bracket =0 coinsides with the hypercone defined by (4.1"), if and only if the
coefficients of z%, z and z° are proportional. So we obtain (4.4). The converse
is evident from above consideration.
The last part of the theorem is obvious from Theorem 2.1 and homogenei-

ty of quantities. q.e.d.

This equation should hold for an arbitrary direction , so the inside of

§5. F-hypersurfaces

As we have shown in the previous section, the L in the equation of the
hypercone (4.1') is positively homogeneous of degree 2 in the y* and is invar-
iant under the coordinate transformation. So we assume, in this section, that
the function L of 2n variables x* and y* defines a Finsler metric on M.

If we denote the components of the Finsler metric tensor by g;; then

C1 T
(5.1) L=giy'y’, 9 0iL=giy’, 5 0:0;L= gi.

Moreover, let G and G}, be the coefficients of the Berwald’s connection, that
is
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i 1 - i .M i ~Sall
(5.2) G}:Taf(rrznly y‘), C—,-k:@ij,

where 7, is the Christoffel’s symbol. The law of transformation for G} is
given by
» 0% 0t , 0% 0x™

G =65, 0w ) ox0x" 0% >

from which we obtain
Gi=G5— y"0,log 4.

So if we notice the first equation of (4.2), we can put
(5.3) G=—cGl,

for the G in (4.1%).

We call the field of hypercones (4.1") with (5.1) and (5.3) for its L and G,
an F-hypersurface. In other words, an F-hypersurface is a field of hypercones
which assigns to each fibre of P a hypercone having the origin as its vertex
and having the equation

(5.4) 22+ 2cGhz+ (c*GiGI— L)=0.

THEOREM b.1. Suppose that a Finsler metric L is given on M. The holonomy
group of a general projective connection O on P leaves an F-hypersurface (5.4)
invariant, of and only if 0 is projectively equivalent with 0 which is defined by
the following ¢l and ¢,

@i =(G],+ cOiGr,+ cOiGn) y" + Ti+ y' Ay,
&9 Gr=gun— cGLCP+ cO4GI,— c2G1Gm) y" — oG, Th,
where T% is an arbitrary (1, 1)-tensor satisfying
(5.6) gix Tiy* =0,

and being positively homogeneous of degree 1 in the y*.

Proor. Putting (5.1) into the condition (4.4) for the holonomy group of 6 to
leave invariant the field of hypercones (4.1"), we obtain

i1 g i i P v
(5.7) Cginy' =5 ¥'0rgiterguy' + iy y' 06— giy'y' 4:=0,
Dr=G(0:G— Ap) —0,G+ 010,G+ giny’.
We put
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A
C;el:_zﬁg] amgkla
and
(5.8) ¢l=y dy—0{G— y'0,G+ 7],y —Cl7 ¥y + Ti.

Substituting (5.8) into the first equation of (5.7), we obtain (5.6). Writing
down the condition for ¢] given by (5.8) to satisfy the law of transformation
(1.17), we see that the T is a tensor. On using the famous relation between
the connections of Rund and Berwald, we obtain

Gg = (7’1];1 - primT?z)y’-

So, giving care to (56.2) and (5.3), (5.8) becomes the first equation of (5.5).
The second equation of (5.5) follows from the second equation of (5.7). q.e.d.

The first curvature tensor R;;." of the Berwald’s connection Gi, is given by

(5.9) Rij" = (061, —G10,G1,) — (0,64, — G10,G1,) + GG 1 — Gl Gy

Jm

It can be stated that a Finsler space which satisfies
(56.10) ¥* R = y* (g0 — gindl),

is a generalization of a certain kind of Riemannian spaces of constant curva-
ture. So, in this case, we call such a Finsler space a generalized space of
constant curvature. Then, as a generalization of the restricted case, we
obtain the

TueoreM 5.2. Let M be a Finsler space with a metric function L, P a projec-
twve vector bundle over M and 0 a general projective connection on P. If the
distribution p(0) (defined in §2) is integrable and the holonomy group of 0
leaves a F-hypersurface invariant, then M 1is a generalized space of constant
curvature.

Proor. In consequence of Theorem 5.1, ¢; and ¢, of (5.5) must satisfy the
integrability condition for p(6) (3.13). So, if we rewrite (3.13) using (2.2) and
(5.5), we obtain

0, T"—0;Tt=0,
(0,6, —0;G%, -+ GG — GG, + G0, T — G0, TF)
(5.11) | F0;T4—~0, T4+ T7G:,,— TGk, + T70, Tt — 170, T"

+ (g0t — gud}) y" =0,
(058 —0igim+ &G — gmGCT) " + gm T7 — g T} =0.
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The well known formulae on Cartan’s 7“ ;’lh

F*;ﬂ,, yh=G7, f;.ﬂk: / , and

. * %

0;gin—G70mgin—1'7; gun—1 71 gim=0,

and the relation
y’”@ £ 8imn="0
lead us to
v"(0; gin—0: gin+ ginGT— gimGT) =0.
Then the third equation of (5.11) is reduced to
gimT7 — gm T7=0.
Using this and (5.6) we obtain
ginTLy* =g T7 y* =0,

which shows

T7y*=0.

Differentiating both sides by y’ and using the first equation of (5.11) we
obtain

0=y, Tp+ T7=y*0, TP+ Tr=2T7,
that is

(5.12) T7=0.

J

And, finally, if we give care to the relation 9,,G%,y"=0, the second equation
of (56.11) becomes (5.10). q.e.d.

In this theorem we assumed that p(0) was integrable. Now let us take
a weaker assumption that the conrection is a generalized normal projective
connection. Or equivalently the first equation of (3.13) and the equation
obtained by contracting £ and i in the second equation of (3.13) are satisfied.
So, in this case, the first equation of (5.11) and the equation obtained by con-
tracting £ and i in the second equation of (5.11) must be satisfied, thus we
obtain
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0; T —0,T%=0,
(5.13) ] (0,65, — 0,67, + G167, — GG+ G0, T1 — G0, T7) v
0, T —0; T+ T7G,, — T7GT, + T8, Tr — T80, T5 + (n— 1) gy =0.

If we put
(5.14) It =G%,+ T%,, where T%,=0,T?,

then, from G%,=G}; and the first equation of (5.13), we have
(5.15) It

Jh

=I%..
And if we put
(5.16)  Kijp"= (@il ", —Gronl ) — 0, — G0, )+ T8, 10— Th, 7,

J z mm

and

(5.17) K=K,

then, from the second equation of (5.13), we obtain
(5.18) Kiny"=—(n—1) giny".
The following theorem is thus obtained.

TrEOREM 5.3. If the holonomy group of a generalized normal projective con-
nection on a projective vector bundle P over a Finsler space M leaves an F-hyper-
surface invariant, then the M satisfies (5.18).

If we take a Riemannian space for M, and the connection is a restricted

one, then this theorem is the wellknown result of Yano-Sasaki and Otsuki.
In this case, (5.18) becomes R;,= —(n—1)g;» and M is an Einstein space.

From above consideration, a Finsler space which satisfies (5.18) may be
called a Finsler-Einstein space.
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