Arithmetic Genera of Some Local Rings

By

Motoyoshi Sakuma

(Received September 30, 1968)

Introduction

Let A be a zero dimensional ideal of a local ring $\mathbb O$. The constant term of the Hilbert-Samuel's function of A is called the arithmetic genus of A and is denoted by $p_a(A)$. In this note, we investigate this less studied invariant of A in connection with the properties of complete ideals. We show that if $\mathbb O$ is analytically unramified and of (Krull) dimension 1, $p_a(A)$ is the same for any zero dimensional normal ideal A and that the similar result holds for an analytically irreducible normal local domain of dimension 2 which satisfies the condition $N \lceil 2 \rceil$.

It is to be mentioned that these results are considered, in a sense, as an arithmetic analog of those obtained by Muhly and Zariski [3]. The possibility of the study of the arithmetic genus in this direction was suggested to me by H. T. Muhly, to whom I would express my sincere gratitude. The theorem 1 in §1 is essentially due to him.

All rings (resp. local rings) considered here are assumed commutative (resp. commutative Noetherian) with identity. By a local ring $(\mathfrak{D}, \mathfrak{m})$ we mean that \mathfrak{D} is a local ring and \mathfrak{m} is its maximal ideal.

§1. Arithmetic genus of one dimensional local ring

Let $(\mathfrak{D}, \mathfrak{m})$ be an analytically unramified local ring and let $\overline{\mathfrak{D}}$ be its integral closure in its total quotient ring. Then, $\overline{\mathfrak{D}}$ is a finite \mathfrak{D} -module, say, $\overline{\mathfrak{D}} = \mathfrak{D}\omega_1 + \cdots + \mathfrak{D}\omega_s$ and there is a non zero divisor c in \mathfrak{D} such that c $\overline{\mathfrak{D}} \subset \mathfrak{D}$. Denote by c the conductor of $\overline{\mathfrak{D}}$ with respect to \mathfrak{D} , then $c \in c$ so that c is an m-primary ideal if \mathfrak{D} is one dimensional.

LEMMA 1. Let A_1, \dots, A_r be ideals in \mathbb{O} , then there is an integer k such that $(A_1^{n_1} \dots A_r^{n_r})_a = (A_1^{n_1-k} \dots A_r^{n_r-k})(A_1^k \dots A_r^k)_a$ for $n_i \geq k$ $(i=1, \dots, r)$, where B_a is the integral closure of B. In particular, for an ideal A of \mathbb{O} , $(A^k)_a$ is normal for some integer k. We call this ideal a derived normal ideal of A.

PROOF. The proof of this lemma is quite similar to the one given in

theorem 1 in [8], so that we shall state it briefly in the case when r=2. Let $A=(a_1, \dots, a_r)$ and $B=(b_1, \dots, b_s)$ and let $\mathbb{O}(A, B)=\mathbb{O}[a_1t, \dots, a_rt, t^{-1}, b_1u, \dots, b_su, u^{-1}]$ where t and u are indeterminates. Then, $\mathbb{O}(A, B)$ is a bigraded subring of $\mathbb{O}[t, t^{-1}, u, u^{-1}]$. If $\mathbb{O}^*(A, B)$ is the integral closure of $\mathbb{O}(A, B)$ in $\mathbb{O}[t, t^{-1}, u, u^{-1}]$, then $\mathbb{O}^*(A, B)$ is again bigraded. Since \mathbb{O} is analytically unramified, there is an integer k such that $(A^n B^m)_a \subset A^{n-k} B^{m-k}$ for all $n, m \ge k$. Hence, by the argument similar to lemma 1 and 2 in [8], we obtain our lemma.

Lemma 2. $A \ \overline{\mathbb{D}} \cap \mathbb{D} \subset A_a$. If A is a principal ideal generated by a non zero divisor, we have $A \ \overline{\mathbb{D}} \cap \mathbb{D} = A_a$.

PROOF. If $x \in A$ $\overline{\mathbb{D}} \cap \mathbb{O}$, then we can write $x\omega_i$ as $x\omega_i = \sum_{j=1}^s a_{ij}\omega_j$ with $a_{ij} \in A$. Therefore $\sum_{j=1}^s (a_{ij} - \delta_{ij}x) \omega_j = 0$ $(i = 1, \dots, s)$ and whence $\det ||a_{ij} - \delta_{ij}x|| = 0$. Consequently $x \in A_a$. Suppose A = (x), x is a non zero divisor of \mathbb{D} . If $y \in (x)_a$, then y satisfies the equation of the form, $y^p + c_1 x y^{p-1} + \dots + c_p x^p = 0$, where $c_i \in \mathbb{D}$. Dividing by x^p , we get $(y/x)^p + c_1(y/x)^{p-1} + \dots + c_p = 0$ and hence $y/x \in \overline{\mathbb{D}}$.

Lemma 3. Let α and β be non zero divisors in $\mathbb O$ such that $\alpha^{m_0} \in \mathfrak c$, then we have $(\alpha^m \beta^n)_a = (\alpha^{m-m_0} \beta^n)(\alpha^{m_0})_a$ for $n \geq 0$ and $m \geq m_0$.

PROOF. We have $(\alpha^m \beta^n)_a = (\alpha^m \beta^n) \, \overline{\mathbb{Q}} \cap \mathbb{Q} = \alpha^m \, \beta^n \, \overline{\mathbb{Q}} = \alpha^{m-m_0} \, \beta^n \, \alpha^{m_0} \, \overline{\mathbb{Q}}$ (since $\alpha^{m_0} \, \overline{\mathbb{Q}} \subset \mathbb{Q}$) $= (\alpha^{m-m_0} \beta^n) (\alpha^{m_0} \, \overline{\mathbb{Q}} \cap \mathbb{Q}) = (\alpha^{m-m_0} \beta^n) (\alpha^{m_0})_a$.

Lemma 4. If $\mathbb S$ is one dimensional and if A is a normal m-primary ideal, then for any m-primary ideal B, there exist positive integers p, q and non-negative integer m_0 such that $A'^mB'^n$ is complete for $n \ge 0$ and $m \ge m_0$ where $A' = A^p$ and $B' = B^q$.

PROOF. For suitable powers $A^p = A'$ and $B^q = B'$ of A and B, A' and B' have minimal reductions of order 1, i.e., $A' = A'_a = (\alpha)_a$ and $B'_a = (\beta)_a$ for some non zero divisors α and $\beta \ [4, 5]$. If m_0 is an integer such that $\alpha^{m_0} \in \mathfrak{c}$, then, from the relation, $(A'^m B'^n)_a = (\alpha^m \beta^n)_a = (\alpha^{m-m_0} \beta^n)(\alpha^{m_0})_a \subset A'^{m-m_0} B'^n A'^{m_0} = A'^m B'^n$ (lemma 3), our assertion follows.

Lemma 5. Let A and B be m-primary ideals in an one dimensional local ring $\mathbb O$ and assume that A and B have minimal reductions of order 1 and that A is normal, then we have $A^m B^{n-1}/A^m B^n \approx A^{m_0}/A^{m_0}B$ for n>0 if $m \geq m_0$ where m_0 is some integer depending on A and B. Consequently, $l(A^m B^n) - l(A^m B^{n-1})$ is constant for n>0 if $m \geq m_0$, where l(A) denotes the length of an m-primary ideal of A.

PROOF. By lemma 4, we have $A^m B^n = (\alpha^{m-m_0} \beta^n)(\alpha^{m_0})_a = \alpha^{m-m_0} \beta^n A^{m_0}$. Hence $A^m B^{n-1}/A^m B^n = \alpha^{m-m_0} \beta^{n-1} A^{m_0}/\alpha^{m-m_0} \beta^n A^{m_0}$. Since α and β are non zero divisors in \mathbb{Q} , we see immediately that $A^m B^{n-1}/A^m B^n \approx A^{m_0}/\beta A^{m_0} = A^{m_0}/B A^{m_0}$.

For fixed m-primary ideals A and B, we denote by r(m, n) the length of $(A^mB^n)_a$ and by s(m, n) the length of A^mB^n . By a theorem, due to Bhattacharya, s(m, n) becomes polynomial in m and n if $m \ge M$ and $n \ge N$ for some integers M and N [1]. We denote this polynomial by $\rho(m, n)$. In the one dimensional local ring, we can write $\rho(m, n) = \tilde{\alpha}m + \tilde{\beta}n + \tilde{\gamma}$.

Lemma 6. In the situation of lemma 5, we have $r(m, n) = \rho(m, n)$ if $m \ge \max\{m_0, M\}$ and $n \ge 0$.

PROOF. Both r(m, n) and $\rho(m, n)$ are integer valued functions and coincide if m and n are sufficiently large (lemma 4). Since r(m, n) - r(m, n-1) is constant, say b, if $m \ge m_0$ (lemma 5) and $\rho(m, n) - \rho(m, n-1) = \tilde{\beta}$. Hence $\tilde{\beta} = b$ and $r(m, n) = \rho(m, n)$ for $m \ge \max\{m_0, M\}$ and $n \ge 0$.

THEOREM 1. If A and B are normal m-primary ideals in an analytically unramified local ring of dimension 1, then $p_a(A)=p_a(B)$ where $p_a(C)$ is the arithmetic genus of C.

PROOF. Since $p_a(A) = p_a(A^p)$ for any positive integer p, we can assume that both A and B have minimal reductions of order 1. By lemma 6, there exist integers m^* and n^* such that

$$r(m, n) = \rho(m, n)$$
 for $m \ge m^*$ and $n \ge 0$, or for $m \ge 0$ and $n \ge n^*$.

Hence, $r(m, 0) = \rho(m, 0) = \tilde{\alpha}m + \tilde{\tau} = l(A^m) = e(A)m + p_a(A)$ and $r(0, n) = \rho(0, n) = \tilde{\beta}n + \tilde{\tau} = l(B^n) = e(B)n + p_a(B)$ where e(C) is the multiplicity of C. Consequently, we have $p_a(A) = \tilde{\tau} = p_a(B)$.

We denote this common arithmetic genus of normal m-primary ideals by $p_a(\mathfrak{D})$ and call it the arithmetic genus of the local ring \mathfrak{D} .

THEOREM 2. For any in-primary ideal A of \mathbb{Q} , we have $p_a(A) \geq p_a(\mathbb{Q})$.

PROOF. Let $A_g = (A^g)_a$ be a derived normal ideal of A (lemma 1). Then, by theorem 1, $p_a(A_g) = p_a(\mathfrak{D})$. Hence our assertion follows from the relations: $e(A^g)n + p_a(A^g) = l(A^{gn}) \geq l((A_g)^n) = e(A_g)n + p_a(\mathfrak{D})$, $e(A^g) = e(A_g)$ and $p_a(A) = p_a(A^g)$, q.e.d.

§2. Arithmetic genus of two dimensional local ring which satisfies the condition N

First, we recall the following definitions which will be needed in this section [2]. Let $(\mathfrak{O}, \mathfrak{m})$ be a normal local domain and let v be a discrete rank 1 valuation of the quotient field F of $\mathbb O$ which dominates $\mathbb O$. We say that v is a divisor of second kind if the residue field R_v/M_v of v is a finitely generated extension of transcendence degree r-1 over the residue field $\mathfrak{D}/\mathfrak{m}$ of $\mathbb O$ where $r = \text{dimension } \mathbb O$. Let $A_0 = \mathbb O$ and $A_i = \{x \in \mathbb O | v(x) > v(A_{i-1})\}(i > i)$ 0), then the sequence $A_0 = \mathfrak{D} \supset A_1 \supset A_2 \supset \dots$ of valuation ideals has the property that $A_iA_j\subset A_{i+j}$. If $B_0=\mathfrak{O}\supset B_1\supset\dots$ is any subsequence of $A_0\supset A_1\supset$... such that $v(B_{i+j}) = v(B_i) + v(B_j)$, then the direct sum $G(B) = \sum B_i/B_{i+1}$ becomes a graded ring. The divisor v is said to be Noetherian if there exists a subsequence $B_0 \supset B_1 \supset \ldots$ such that G(B) is Noetherian. If every divisor of second kind is Noetherian, we say that $\mathbb O$ satisfies the condition N. If $\bar v_A$ is the homogeneous pseudo valuation associated with powers of an m-primary ideal A, \bar{v}_A can be represented as a subvaluation, $\bar{v}_A = \min\left\{\frac{v_1}{e_1}, \dots, \frac{v_s}{e_s}\right\}$, $e_i = \frac{v_1}{e_1}$ $v_i(A)$, and v_i is a divisor of 2nd kind if $\mathbb O$ is analytically irreducible. valuations v_1, \dots, v_s are uniquely determined by A and are called the Rees valuations associated with A. We denote the set $\{v_1, \dots, v_s\}$ by S(A). An ideal W in $\mathbb O$ is called asymptotically irreducible if all powers $\mathbb W^n$ of W are the valuation ideals of some divisor of 2nd kind relative to $\mathbb{O}[2, \S 2]$.

Lemma 7. Let $(\mathfrak{D}, \mathfrak{m})$ be an analytically irreducible 2 dimensional normal local domain which satisfies the condition N and let A and B be \mathfrak{m} -primary ideals. Suppose $S(A) \subset S(B)$ and B is normal, then for some powers $A' = A^p$ and $B' = B^q$ of A and B, $A'^m B'^n$ is complete for $m \geq 0$ and $n \geq 1$ where S(A) and S(B) are the sets of Rees valuations associated with A and B respectively.

PROOF. Let $S(A) = \{v_1, \dots, v_s\}$ and $S(B) = \{v_1, \dots, v_s, v_{s+1}, \dots, v_t\}$. Since $\mathbb O$ satisfies the condition N, each v_i defines an asymptotically irreducible ideal $W_i (i=1, \dots, t)$ and there exist sets of positive integers $p, \alpha_1, \dots, \alpha_s$ and $q, \beta_1, \dots, \beta_t$ such that

$$(A^p)_a = (W_1^{\alpha_1} \cdots W_s^{\alpha_s})_a \text{ and } B^q = (B^q)_a = (W_1^{\beta_1} \cdots W_s^{\beta_s} \cdots W_t^{\beta_t})_a$$

[2, theorem 4.3]. Moreover, these sets of integers are defined up to proportionality, so that we can assume $\alpha_i \leq \beta_i$ (i=1, ..., s). Now, let

$$C = W_1^{\beta_1 - \alpha_1} \cdots W_s^{\beta_s - \alpha_s} \ W_{s+1}^{\beta_{s-1}} \cdots \ W_t^{\beta_t}.$$

Then, $B^q = (B^q)_a = (A^pC)_a$. Hence, if n is sufficiently large, say $n \ge n_0$, we have

$$(A^{\prime m}B^{\prime n})_a = (A^{\prime m}(A^{\prime}C)^n)_a = (A^{\prime m+n}C^n)_a = (A^{\prime m+n-n_0}C^{n-n_0})(A^{\prime n_0}C^{n_0})_a$$
$$= A^{\prime m}(A^{\prime}C)^{n-n_0}(A^{\prime}C)^{n_0} \subset A^{\prime m}B^{\prime n-n_0}(B^{\prime n_0})_a = A^{\prime m}B^{\prime n},$$

in view of lemma 1, where $A' = A^p$ and $B' = B^q$.

Lemma 8. With the same hypothesis as in lemma 7, for suitable powers A^* and B^* of A and B, $\rho^*(m, n) = r^*(m, n) = s^*(m, n)$ for $m \ge 0$ and $n \ge 1$, where $\rho^*(m, n)$, ... denote the corresponding functions relative to A^* and B^* .

PROOF. Since $(A'^m B'^n)_a = (A'^m (A'C)^n)_a = (A'^{m+n-n_0} C^{n-n_0})(A'C)_a^{n_0}$ for $n \ge n_0$, the length $l(A'^m B'^n)_a$ becomes polynomial in m and n if $n-n_0$ is sufficiently large, say $n-n_0 \ge n_1$. Hence we can take $A^* = A'^{n_0+n_1}$ and $B^* = B'^{n_0+n_1}$.

THEOREM 3. If A and B are normal m-primary ideals in an analytically irreducible two dimensional normal local domain which satisfies the condition N and if S(A) = S(B), then $p_a(A) = p_a(B)$ where S(C) is the set of Rees valuations associated with C.

PROOF. Since $S(A) = S(A^p)$ and $p_a(A) = p_a(A^p)$ for any positive integer p, we can replace A and B by their powers. Hence, by lemma 8, we can assume A and B satisfy the following relation:

$$\varrho(m, n) = r(m, n) = s(m, n)$$
 for $m \ge 0$, $n \ge 1$, or for $m \ge 1$, $n \ge 0$.

If $P_B(n)$ is the Hilbert-Samuel's function of B, then $P_B(n) = \rho(0, n)$. Hence $p_a(B) = P_B(0) = \rho(0, 0)$. Similarly, we have $p_a(A) = \rho(0, 0)$, and consequently $p_a(A) = p_a(B)$.

We know that every two dimensional regular local ring satisfies the condition N [2, coroll. 5. 4] and if a simple ideal W corresponds to the divisor v of 2nd kind [9], then W is the asymptotically irreducible ideal of minimal value for v. From these remarks, we get the following

COROLLARY. Let $A = \mathfrak{P}_1^{\alpha_1} \cdots \mathfrak{P}_s^{\alpha_s}$ and $B = \mathfrak{P}_1'^{\beta_1} \cdots \mathfrak{P}_t'^{\beta_t}$ be the factorizations of the complete ideals A and B in a two dimensional regular local ring into the products of simple ideals. If s = t and $\{\mathfrak{P}_1, \dots, \mathfrak{P}_s\} = \{\mathfrak{P}_1', \dots, \mathfrak{P}_t'\}$, then $p_a(A) = p_a(B)$.

Faculty of Education Tokushima University

References

- [1] P. B. Bhattacharya: The Hilbert function of two ideals, Proc. Cambridge Phil. Soc. **53** (1957), 568-575.
- [2] H. T. Muhly and M. Sakuma: Asymptotic factorization of ideals, J. London Math. Soc. 38 (1963), 341-350.
- [3] and O. Zariski: Hilbert characteristic functions and the arithmetic genus of an algebraic variety, Trans. Amer. Math. Soc. 69 (1950), 78-88.
- [4] D. G. Northcott and D. Rees: Reduction of ideals in local rings, Proc. Cambridge Phil. Soc. 50 (1954), 145-158.
- [5] : A note on reductions of ideals with an application to the generalized Hilbert function, Proc. Cambridge Phil. Soc. **50** (1954), 353-359.
- [6] D. Rees: Valuations associated with a local ring (1), Proc. London Math. Soc. (3) 5 (1955), 107–128.
- [7] ——: Valuations associated with ideals, Proc. London Math. Soc. (3) 6 (1956), 161-174.
- [8] M. Sakuma and H. Okuyama: On a criterion for analytically unramification of a local ring, J. Gakugei, Tokushima Univ. 15 (1966), 36-38.
- [9] O. Zariski and P. Samuel: Commutative algebra Vol. II, Van Nostrand (1960).