On the Connectivity Structures of Spaces

By

Tadashi Tanaka

(Received September 30, 1968)

1. Introduction

If σ is a topology on a set X, the resulting space will be denoted by (X, σ) . The family of all connected subsets of (X, σ) is called the connectivity structure of (X, σ) and denoted by $C(X, \sigma)$. A function $f: (X, \sigma) \to (Y, \tau)$ is a connected function if for every connected subset C of (X, σ) , f(C) is connected. Also f is a connectivity function if the graph function $g: (X, \sigma) \to (X, \sigma) \times (Y, \tau)$, defined by $g(p) = p \times f(p)$, is a connected function [1], [2]. In [3], S. K. Hildebrand and D. E. Sanderson have shown that $f: (X, \sigma) \to (Y, \tau)$ is a connectivity function if and only if $C(X, \sigma) = C(X, \sigma \cup f^{-1}(\tau))$ where $\sigma \cup f^{-1}(\tau)$ is the topology on X generated by σ and $f^{-1}(\tau)$.

In this paper we investigate what conditions, if we have such a space (X, σ_2) that is finer than (X, σ_1) , will lead the relation $C(X, \sigma_1) = C(X, \sigma_2)$. Some results concerned with this problem may be found $\lceil 4 \rceil$ and $\lceil 5 \rceil$.

2. Definitions and preliminary results

Let (X, σ_1) be a T_1 -space and denote it by $\{U(p)\}$, the family of all neighbourhoods of a point p in (X, σ_1) . Let \mathbf{F} be a family of subsets of X having the following properties:

- $(\mathbf{F}_{\scriptscriptstyle 1})$ The empty set ϕ belongs to \mathbf{F} .
- (\mathbf{F}_{II}) If F_{α} and F_{β} belong to \mathbf{F} , then the sum $F_{\alpha} \cup F_{\beta}$ belongs to \mathbf{F} .

Let $\{V(p)\}\$ be the family of all subsets V(p) of X, V(p) of which takes the form $(U(p)-F)\cup p$ where $U(p)\in\{U(p)\}\$ and $F\in F$. Then the following proposition holds.

PROPOSITION. If to each point p of X there corresponds the family $\{V(p)\}$ of subsets of X, then there is a unique T_1 -space (denoted by (X, σ_2)) such that, for each point p of X, $\{V(p)\}$ is a base of neighbourhoods of p in (X, σ_2) . And moreover (X, σ_2) is finer than (X, σ_1) .

PROOF. To prove this, we shall show that $\{V(p)\}$ corresponded to each point p of X satisfies the three conditions on the bases of neighbourhoods of

a point.

First, it is obvious from the definition of $\{V(p)\}$ that any set belonging to $\{V(p)\}$ contains p.

Second, if $V_{\alpha}(p)$ and $V_{\beta}(p)$ belong to $\{V(p)\}$, then $V_{\alpha}(p) \cap V_{\beta}(p)$ belongs to $\{V(p)\}$. For, since $V_{\alpha}(p) \equiv (U_{\alpha}(p) - F_{\alpha}) \cup p$ and $V_{\beta}(p) \equiv (U_{\beta}(p) - F_{\beta}) \cup p$, where $U_{\alpha}(p)$ and $U_{\beta}(p)$ belong to $\{U(p)\}$ and F_{α} and F_{β} belong to F, it follows that

$$V_{\alpha}(p) \cap V_{\beta}(p) = \{ (U_{\alpha}(p) - F_{\alpha}) \cap (U_{\beta}(p) - F_{\beta}) \} \cup p$$

$$= \{ (U_{\alpha}(p) \cap F_{\alpha}^{c}) \cap (U_{\beta}(p) \cap F_{\beta}^{c}) \} \cup p$$

$$= \{ (U_{\alpha}(p) \cap U_{\beta}(p)) \cap (F_{\alpha}^{c} \cap F_{\beta}^{c}) \} \cup p$$

$$= \{ (U_{\alpha}(p) \cap U_{\beta}(p)) \cap (F_{\alpha} \cup F_{\beta})^{c} \} \cup p$$

$$= \{ (U_{\alpha}(p) \cap U_{\beta}(p)) - (F_{\alpha} \cup F_{\beta}) \} \cup p.$$

Therefore $V_{\alpha}(p) \cap V_{\beta}(p)$ belongs to $\{V(p)\}.$

Third, if $V_{\alpha}(p)$ belongs to $\{V(p)\}$ and q is any point of $V_{\alpha}(p)$, then there exists $V_{\beta}(q)$ belonging to $\{V(q)\}$ such that $V_{\beta}(q) \subset V_{\alpha}(p)$. For, let $V_{\alpha}(p) \equiv (U_{\alpha}(p) - F_{\alpha}) \cup p$ exactly as before and let $U_{\beta}(q)$ be a set belonging to $\{U(q)\}$ such that $U_{\beta}(q) \subset U_{\alpha}(p)$. Then it follows that

$$(U_{\beta}(q)-F_{\alpha})\cup q\subset U_{\alpha}(p)-F_{\alpha}\subset (U_{\alpha}(p)-F_{\alpha})\cup p=V_{\alpha}(p).$$

Hence $(U_{\beta}(q)-F_{\alpha})\cup q$ is a set satisfying the required condition, which belongs to $\{V(q)\}$.

Finally, Since (X, σ_1) is a T_1 -space and F contains the empty set, it is obvious that (X, σ_2) is a T_1 -space and is finer than (X, σ_1) .

Thus our proposition is proved.

The space (X, σ_2) defined above is said to be the refined space of (X, σ_1) by F.

Let A be any set of X. Then "A is σ_i -P" means that A has the property P in (X, σ_i) , and $Cl_{\sigma_i}A$ denotes the closure of A in (X, σ_i) where i=1, 2.

3. Connectivity structures of (X, σ_i)

THEOREM 1. Let (X, σ_2) be the refined space of (X, σ_1) by \mathbf{F} and C any nondegenerate subset of X. In order that C be σ_2 -connected, it is necessary and sufficient that (1) C be σ_1 -connected and (2) if F_{α} is any set belonging to \mathbf{F} then $Cl_{\sigma_1}(C-F_{\alpha}) \supset C$.

Proof. The condition is necessary. For let C be σ_2 -connected. Then C

is σ_1 -connected since (X, σ_2) is finer than (X, σ_1) . To show (2), suppose, on the contrary, that there exist a point p of C and a set F_{α} belonging to F such that p is not in $Cl_{\sigma_1}(C-F_{\alpha})$. Then there exists a set $U_{\alpha}(p)$ belonging to $\{U(p)\}$ such that $U_{\alpha}(p)$ is disjoint from $C-F_{\alpha}$. Let set $V_{\alpha}(p) \equiv (U_{\alpha}(p)-F_{\alpha}) \cup p$, where F_{α} and $U_{\alpha}(p)$ are the sets defined above. Then it follows that

$$C \cap V_{\alpha}(p) = C \cap \{(U_{\alpha}(p) - F_{\alpha}) \cup p\}$$

$$= \{C \cap (U_{\alpha}(p) - F_{\alpha})\} \cup \{C \cap p\}$$

$$= \{C \cap U_{\alpha}(p) \cap F_{\alpha}^{c}\} \cup p$$

$$= \{U_{\alpha}(p) \cap (C - F_{\alpha})\} \cup p = p.$$

Hence in the case in which C is a subspace of (X, σ_2) , p is both open and closed in C. Therefore the nondegenerate set C is not σ_2 -connected, contrary to the supposition, and thus (2) is proved.

The condition is sufficient. For suppose, on the contrary, that C satisfies the conditions (1) and (2) in this theorem, and that C is not σ_2 -connected. Let $C = A \cup B$ be a σ_2 -separation of C. Then by (1), we assume, there exists a point a of A such that a is in $Cl_{\sigma_1}B$ without losing generality. Let $V_{\alpha}(a) \equiv (U_{\alpha}(a) - F_{\alpha}) \cup a$ be a set belonging to $\{V(a)\}$ that is disjoint from B. Then there exists a point of b of b such that b is in $U_{\alpha}(a)$. Let $V_{\beta}(b) \equiv (U_{\beta}(b) - F_{\beta}) \cup b$ be a set belonging to $\{V(b)\}$ such that $U_{\beta}(b) \subset U_{\alpha}(a)$ and $V_{\beta}(b)$ is disjoint from A. Then it follows that

$$B \cap U_{\beta}(b) \subset B \cap U_{\alpha}(a) \subset B \cap \{(U_{\alpha}(a) - F_{\alpha}) \cup F_{\alpha}\}$$

$$= \{B \cap (U_{\alpha}(a) - F_{\alpha})\} \cup (B \cap F_{\alpha}) = \emptyset \cup (B \cap F_{\alpha}) \subset F_{\alpha}$$

and

$$A \cap U_{\beta}(b) \subset A \cap \{(U_{\beta}(b) - F_{\beta}) \cup F_{\beta}\}$$

$$= \{A \cap (U_{\beta}(b) - F_{\beta})\} \cup (A \cap F_{\beta}) = \phi \cup (A \cap F_{\beta}) \subset F_{\beta}.$$

Hence

$$C \cap U_{\beta}(b) = (A \cap U_{\beta}(b)) \cup (B \cap U_{\beta}(b)) \subset F_{\alpha} \cup F_{\beta}.$$

Therefore the point b of B is not in $Cl_{\sigma_1}(C-(F_\alpha \cup F_\beta))$. This contradicts the condition (2) since $F_\alpha \cup F_\beta$ belongs to F.

Thus the sufficiency is proved.

Lemma 1. If F_{α} is any set belonging to \mathbf{F} , then F_{α} is either empty or σ_2 -totally disconnected.

PROOF. Let F_{α} be any set belonging to F, p be any point of F_{α} , and $U_{\alpha}(p)$ be any set belonging to $\{U(p)\}$. Let us define $V_{\alpha}(p) \equiv (U_{\alpha}(p) - F_{\alpha}) \cup p$. Then we have

$$F_{\alpha} \cap V_{\alpha}(p) = F_{\alpha} \cap \{(U_{\alpha}(p) - F_{\alpha}) \cup p\} = p.$$

Therefore, in the case in which F_{α} is a subspace of (X, σ_2) , p is open in F_{α} and hence p is a component of F_{α} .

Thus F_{α} is σ_2 -totally disconnected.

LEMMA 2. If we have $C(X, \sigma_1) = C(X, \sigma_2)$, then any set belonging to F is either empty or σ_1 -totally disconnected.

PROOF. Suppose, on the contrary, that there exists a set F_{α} belonging to F which is neither empty nor σ_1 -totally disconnected. Let C be a nondegenerate σ_1 -connected subset of F_{α} . Then, by the hypothesis $C(X, \sigma_1) = C(X, \sigma_2)$, C is σ_2 -connected. On the other hand, by Lemma 1 F_{α} is σ_2 -totally disconnected and so is C.

This contradiction proves Lemma 2.

Lemma 3. Assume that (X, σ_1) satisfies the condition as follows:

If C is any nondegenerate σ_1 -connected subset of X, p is any point of C, and $U_{\alpha}(p)$ is any set belonging to $\{U(p)\}$, then $C \cap U_{\alpha}(p)$ is not σ_1 -totally disconnected.

Then if each set belonging to **F** is either empty or σ_1 -totally disconnected, we have $C(X, \sigma_1) = C(X, \sigma_2)$.

PROOF. Let C be any nondegenerate σ_1 -connected subset of X. To prove this, by Theorem 1 it is only need to show that for any set F_{α} belonging to F we have $Cl_{\sigma_1}(C-F_{\alpha})\supset C$. Suppose, on the contrary, that there exist a point p of C and a set $U_{\alpha}(p)$ belonging to $\{U(p)\}$ such that $U_{\alpha}(p) \cap (C-F_{\alpha})$ is empty. Then $U_{\alpha}(p) \cap C \subset F_{\alpha}$. Hence F_{α} contains a nondegenerate σ_1 -connected set since $U_{\alpha}(p) \cap C$ contains the same. This is impossible because F_{α} is σ_1 -totally disconnected. Therefore we have $Cl_{\sigma_1}(C-F_{\alpha})\supset C$.

Thus Lemma 3 is proved.

Combining Lemma 2 with Lemma 3 we have the following theorem.

THEOREM 2. Assume that (X, σ_1) satisfies the condition as follows:

(*) If C is any nondegenerate σ_1 -connected subset of X, p is any point of C, and $U_{\alpha}(p)$ is any set belonging to $\{U(p)\}$, then $C \cap U_{\alpha}(p)$ is not σ_1 -totally disconnected.

Then in order that we have $C(X, \sigma_1) = C(X, \sigma_2)$ it is both necessary and sufficient that

(**) Each set belonging to \mathbf{F} is either empty or σ_1 -totally disconnected.

On the condition (*) in Theorem 2 used only for the proof of sufficency, we have the following results.

COROLLARY. In order to have $C(X, \sigma_1) = C(X, \sigma_2)$ for every refined space (X, σ_2) of (X, σ_1) by any family F of subsets of X satisfying the conditions (F_1) , (F_{11}) and (**), the condition (*) is both necessary and sufficient.

PROOF. By Theorem 2 the condition (*) is sufficient. To prove the necessity suppose, on the contrary, that the condition (*) is not satsified. Then there exist a nondegenerate σ_1 -connected set C, a point p of C and a set $U_{\alpha}(p)$ belonging to $\{U(p)\}$ such that $C \cap U_{\alpha}(p)$ is σ_1 -totally disconnected. Then the family of subsets of X consisting of the empty set and $C \cap U_{\alpha}(p)$ satisfies the conditions (F_1) , (F_{11}) and (**). Let (X, σ_2) be the refined space of (X, σ_1) by the family above. Then C is not σ_2 -connected since if $V_{\alpha}(p) \equiv \{U_{\alpha}(p) - (C \cap U_{\alpha}(p))\} \cup p$ we have $C \cap V_{\alpha}(p) = p$. This contradicts our hypothesis.

Thus the corollary is proved.

Remark. In [6], Mazurkiewicz has shown the existence of nondegenerate connected set in a plane containing none of bounded nondegenerate connected subsets. Accordingly, no spaces containing a subspace homeomorphic to the plane satisfy the condition (*).

On the other hand any nondegenerate continuum which is locally connected and contains no simple closed curve (called the dendrite) satisfies the condition (*), because every connected subset of any dendrite is arcwise connected [7].

Faculty of Engineering Tokushima University

References

- [1] O. H. Hamilton, Fixed points for certain non-continuous transformations, Proc. Amer. Math. Soc., vol. 8 (1957), pp. 750-756.
- [2] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math., vol. 47 (1959), pp. 249-263.
- [3] S. K. Hildebrand and D. E. Sanderson, Connectivity functions and retracts, Fund. Math., vol. 57 (1965), pp. 237-245.
- [4] S. K. Hildebrand, A connected topology for the unit interval, Fund. Math., vol. 61 (1967), pp. 133-140.
- [5] Carlos J. R. Borges, On extensions of topologies, Canadian J. Math., vol. 19 (1968) pp. 474-487.
- [6] S. Mazurkiewicz, Sur l'existence d'un ensemble plan connexe ne contenant aucun sous ensemble connexe, borné, Fund. Math., vol. 2, (1921), pp. 96-103.
- [7] G. T. Whyburn, Analytic Topology. Amer. Math. Soc. Colloq. publ., vol. 28, Providence, 1942.