J. Math. Tokushima Univ.
Vol. 2. (1968), 1-5

On the Connectivity Structures of Spaces

By

Tadashi TanakaA
(Received September 30, 1968)

1. Introduction

If ¢ is a topology on a set X, the resulting space will be denoted by
(X, 0). The family of all connected subsets of (X, ¢) is called the connectivity
structure of (X, 0) and denoted by C(X, ¢). A function f: (X,0)—> (Y, r)isa
connected function if for every connected subset C of (X, ), f(C) is connected.
Also f is a connectivity function if the graph function g: (X, ¢) > (X, o) x
(Y, 7), defined by g(p)=px f(p), is a connected function [17, [2]. In [3],
S. K. Hildebrand and D. E. Sanderson have shown that f: (X, 0)—(Y,t) isa
connectivity function if and only if C(X, 0)=C(X, 0\Uf'(r)) where c\Uf ' (7)
is the topology on X generated by ¢ and f~'(7).

In this paper we investigate what conditions, if we have such a space
(X, 62) that is finer than (X, o), will lead the relation C(X, ¢,)=C(X, d,).
Some results concerned with this problem may be found [4] and [5].

2. Definitions and preliminary results

Let (X, g,) be a Ti-space and denote it by {U(p)}, the family of all
neighbourhoods of a point p in (X, 01). Let F be a family of subsets of X
having the following properties:

(F,) The empty set ¢ belongs to F.

(F.) If F, and F; belong to F, then the sum F,\UF; belongs to F.

Let {¥(p)} be the family of all subsets V' (p) of X, V'(p) of which takes
the form (U(p)—F)\Up where U(p) € {U(p)} and Fe F. Then the following
proposition holds.

ProrosiTioN. If to each point p of X there corresponds the family {V (p)}
of subsets of X, then there is a unique Ti-space (denoted by (X, 02)) such that,
for each point p of X, {V(p)} is a base of neighbourhoods of p in (X, 0;). And *
moreover (X, 0,) 18 finer than (X, 01).

Proor. To prove this, we shall show that {V(p)} corresponded to each
point p of X satisfies the three conditions on the bases of neighpourhoods of
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a point.

First, it is obvious from the definition of {¥V'(p)} that any set belonging
to {V(p)} contains p. ‘

Second, if ¥,(p) and ¥z(p) belong to {¥( p)}, then V,(p)N Vs (p) belongs
to {V(p)}. For, since V. (p)=(U.(p)—F.)Up and V(p)=(Us(p)—Fs)\Up,
where U, (p) and Ug(p) belong to {U(p)} and F, and F; belong to F, it fol-
lows that

Va(PINVe(P)=A(Ua(p)—Fou)N\(Us(p)—Fs)} Up
={(U(pNFOYN(Us(p)NFE)} Up
={(U(pNUs(p)NFENFE} Up
={(Ua (N Us (p)YN(Fa\JFs)}Up
=AU (pNUs(p)—(Fa\ U Fp)} Up.

Therefore V. (p)N\V(p) belongs to {V(p)}.

Third, if V.(p) belongs to {¥(p)} and g is any point of ¥,(p), then there
exists Vg(g) belonging to {V(¢)} such that Vs(q)C V,(p). For,let ¥V, (p)=
(U.(p)—F.)Up exactly as before and let U, (¢) be a set belonging to {U(g)}
such that Ug(¢) CU,(p). Then it follows that

(Us (@)= F)UqC Un(p)— Fo C(Un(p)— Fo)Up=Va(p).

Hence (Ug(¢q)—F,)\Uq is a set satisfying the required condition, which be-
longs to {V'(¢)}.

Finally, Since (X, 0,) is a T;-space and F contains the empty set, it is
obvious that (X, d;) is a Ti-space and is finer than (X, 7).

Thus our proposition is proved.

The space (X, d;) defined above is said to be the refined space of (X, 01)
by F.

Let 4 be any set of X. Then “4 is 5;-P” means that 4 has the property
P in (X, 0:), and CI., 4 denotes the closure of 4 in (X, 0;) where i=1, 2.

3. Connéctivity structures of (X, a;)

Tueorem 1. Let (X, 0,) be the refined space of (X, 0y) by F and C any
nondegenerate subset of X. In order that C be g;-connected, it is necessary and
sufficient that (1) C be o1-connected and (2) if F, is any set belonging to F then
ClL, (C—F)DC.

Proor. The condition is necessary. For let C be ¢,-connected. Then C
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is g -connected since (X, ¢3) is finer than (X, g;). To show: (2), suppose, on
the contrary, that there exist a point p of C and a set F, belonging to F such
that p is not in CI, (C—F,). Then there exists a set U.(p) belonging to
{U(p)} such that U,(p) is disjoint from C—F,. Let set V,(p)=(U.(p)—
F.)Up, where F, and U,(p) are the sets defined above. Then it follows that

CNV o (p)=CN{(Ua(p)—Fa)\Up}
={CN(Ua(p)—F)} V{CNp}
={CNU.(p)NFS} Up
={U.(pN(C—F)} Up=p.

Hence in the case in which C is a subspace of (X, 03), p is both open and
closed in C. Therefore the nondegenerate set C is not g,-connected, contrary
to the supposition, and thus (2) is proved. '

The condition is sufficient. For suppose, on the contrary, that C satisfies
the conditions (1) and (2) in this theorem, and that C is not g;-connected.
Let C=A\UB be a g;-separation of C. Then by (1), we assume, there exists a
point ¢ of A4 such that a is in CI, B without losing generality. Let V,(a)=
(Un(a)—F,)\Ua be a set belonging to {¥/(a)} that is disjoint from B. Then
there exists a point of & of B such that & is in U,(a). Let V3(b)=(Ug(b)—
Fg)Ub be a set belonging to {V(b)} such that Us(8)C U,(a) and V4 () is
disjoint from A. Then it follows that

BNUg(b)CBNU,(a) CBN{(Uy(a)—Fo)UF,}
={BN(Ua(@)—F)} V(BNFo)=8\U(BNF,)CF,
and
ANUg(B)CAN{Y(Ug(b)—Fg) U Fp}
={AN(Ug(d)— F)} \J(ANFp)=¢\J(ANFz)C Fp.
Hence

CNUz(B)=(ANUz () J(BNUs () C Fo\J Fg.

Therefore the point b of B is not in Cl, (C—(F,\UFg)). This contradicts the
condition (2) since F,\UF; belongs to F.
Thus the sufficiency is proved.

Lemma 1. If F, is any set belonging to F, then F, is either empty or 0,-
totally disconnected.
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Proor. Let F, be any set belonging to F, p be any point of F,, and
U.(p) be any set belonging to {U(p)}. Let us define V.(p)= (U.(p)—F.)Up.
Then we have

FoN Va(P):Fam{(Ua(P)—Fa)UP} =p-

Therefore, in the case in which F, is a subspace of (X, d;), p is open in F, and
hence p is a component of F,.
Thus F, is 0;-totally disconnected.

_ Lemma 2. If we have C(X, 6,)=C(X, 0;), then any set belonging to F s
etther empty or o,-totally disconnected.

Proor. Suppose, on the contrary, that there exists a set F, belonging
to F which is neither empty nor ¢;-totally disconnected. Let C be a nonde-
generate g;-connected subset of F,. Then, by the hypothesis C(X, 7,)=C(X,
03), C is 0,-connected. On the other hand, by Lemma 1 F, is 0,-totally discon-
nected and so is C.

This contradiction proves Lemma 2.

Lemma 8. Assume that (X, 0,) satisfies the condition as follows:

If C is any nondegenerate o.-connected subset of X, p is any point of C,
and U,(p) s any set belonging to {U(p)}, then CNU,(p) is not o,-totally dis-
connected.

Then if each set belonging to F is either empty or d,-totally disconnected,
we have C(X, 0,)=C(X, 02).

Proor. Let C be any nondegenerate ¢;-connected subset of X. To prove
this, by Theorem 1 it is only need to show that for any set F, belonging to
F we have Cl, (C—F,)>C. Suppose, on the contrary, that there exist a
point p of C and a set U,(p) belonging to {U(p)} such that U,(p)N\(C—F,) is
empty. Then U,(p)NCCF,. Hence F, contains a nondegenerate ¢;-con-
nected set since U,(p)N\C contains the same. This is impossible because F,
is 01-totally disconnected. Therefore we have CI, (C—F,)DC.

Thus Lemma 3 is proved.

Combining Lemma 2 with Lemma 8 we have the following theorem.

THEOREM 2. Assume that (X, 0,) satisfies the condition as follows:

(x) If Cis any nondegenerate g1-connected subset of X, p is any point of
C, and U.(p) 18 any set belonging to {U(p)}, then CNU.(p) ts not oi-totally
disconnected.

Then in order that we have C(X, 6,)=C(X, 02) it ts both necessary and
sufficient that
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(xx) FEach set belonging to F 1is either empty or oi-totally disconnected.

On the condition (x) in Theorem 2 used only for the proof of sufficency,
we have the following results.

CoroLLARY. In order to have C(X, 6,)=C(X, 0,) for every refined space
(X, 09) of (X, 01) by any family F of subsets of X satisfying the conditions (F,),
(F..) and (xx), the condition (x) 1s both necessary and sufficient.

Proor. By Theorem 2 the condition (x) is sufficient. To prove the ne-
cessity suppose, on the contrary, that the condition (x) is not satsified. Then
there exist a nondegenerate o;-connected set C, a point p of C and a set
U.(p) belonging to {U(p)} such that CNU.(p) 1s o,-totally disconnected.
Then the family of subsets of X consisting of the empty set and CNU,(p)
satisfies the conditions (F,), (F,;) and (xx). Let (X, ¢;) be the refined space of
(X, 61) by the family above. Then C is not g,-connected since if V,(p)={U.(p)
—(CNU.(p))} up we have CNV,(p)=p. This contradicts our hypothesis.

Thus the corollary is proved.

Remark. In[67], Mazurkiewicz has shown the existence of nondegenerate
connected set in a plane containing none of bounded nondegenerate connected
subsets. Accordingly, no spaces containing a subspace homeomorphic to the
plane satisfy the condition (x).

On the other hand any nondegenerate continuum which is locally con-
nected and contains no simple closed curve (called the dendrite) satisfies the
condition (%), because every connected subset of any dendrite is arcwise con-
nected [7].
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