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1.  Consider* the double power series

f(z1, 22)= i [amn 27 2% (1.1)

msn=

of complex variables z; and z,, where the coefficients a,, are complex num-
bers. We say that the power series (1.1) represents an integral function of
two variables z; and z,, if it converges for all values of |z;| <eo and |z;|
< o,

Let M(ri, r2)=max | f(z1, z2)|

12117, 1221<7,

be the maximum modulus of the integral function f(zy, z;) for |z;|<{ri, | 22|
<\T2.

From the maximum modulus principle of analytic functions, follows that
if the function f(z1, z2) is not constant with respect to any one of the varia-
bles zi, z2 then

1) M@}, ry)>M(ry, ry), for ri>ry,
(2) M(ry, r))>M(ry, 1,), for ri>r,,
and consequently
(8) M, ry)>M(ry, 1), for r{>ry, r4>r,.

In 1955 M. M. Dzrbasyan has defined that the integral function f(z, z)
has finite order p;, and p, with respect to variables z; and z; respectively, if

(1) for any arbitrarily small ¢ >0 and any r, >0, there exists a number
R; (g, ry), such that

* For simplicity we consider only two variables, though the results can easily be extended to several
variables.
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M(Tl, r2>< eXp(r +6), lf ry .= R1(8 Tz)

In addition there exists at least one value of r,, say, r3(e) and corre-
sponding arbitrarily large values of r;: {r, }, such that

M(ry, r3(e))>exp(rs:=®);

(2) for any arbitrarily small ¢ >0 and any r, >0, there exists a number
R (¢, r1), such that

M(ry, r2)<exp(rbe*®), if ro > R (e, r).

In addition there exists at least one value of r,, say, rf(¢) and corre-
sponding arbitrarily large value of r,: {r; }, such that

M(r9(e), r2,) >exp(rgy®).

The assertions (1) and (2) are equivalent to

- loglog M(ry, ry) }

fim i OO T = 2
and

’lim{hm loglog M(r, r2) } o (1.3)

71 [ dad logrz
2. Let

M(l) (7’1, TZ):maX. . f(Zl, Zz)
(ol <rolzsl<rs | 021

M®(ry, ry) =max.

121171 2,<7,

,768;2—]('(‘21, ZZ) .

We now prove the following theorem:

TaeoreM 1. If f(z1, 22)=2, am, 27 2% 18 an integral function of finite

mn=0

order (01, 02), 01 and p; with respect to variables z, and z, respectively, then

1)
logfry M) |
lim ! Tim rire) 1 s 2.1)
72720 | 730 logrl

M (T1 rz)
. log 1 r [1272).
lim{lim {Z Mr, 12) }}>02- 2.2)
rymoo logr,

70
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Further, if an, >0, then

1)
log{rl M (Th r2) }
lim { lim M(rs, r2) } =0 (2.3)
Ty [ 7 logr1
2)
_ log{rz M (ry, rzl}
lim{Iim M(ry, 12) }202. (2.4)
170 [ 1y logrz

We shall require the following two lemma’s in the proof of the above
theorem:

Lemma 1. For any fixed value of r,>>0 there exists a number R,(f,ry),
such that

M(l)(rl, re) > M(ry, ry)log M(ry, r2) (2.5)
rilogr;

fOr T >R1<f, rz).

Lemma 2. For any fixed value of ri >0 there exists a number R.( f> ),
such that

M(ry, r2)log M(ry, r3)
rologr;

MP(ry, ) > (2.6)

Jor ra >Ry (f, ).

Proor or LEmMma 1. It can easily be shown that for a fixed value of
T2>0

log M(Tl, 7'2)
logr,

g(rla rZ) =

is monotonic increasing, say, for ri1>R,(f, r;). Let & be such that |&|=r

0
and | f (&1, z2)| =M(ry, r2) and let [ (2, Zz):@‘;f(zh z2). We then have,

UGy = e 20

_ "lim [ (&1, z2)—f(E1—&1h, z2)
! A0 &1h

= lim M, r2) = MGy —r1h, 12)
h=0 Tlh
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. hm rf(r, Jr2) (rl__rlh>g(r1 rih,72)
Tlh

rg(rl 372) (rl_rl h)g(rlyrﬂ

> lim rh

h—=0

M(ry, r2) log M(ri,rs)
1 logr1

The proof of Lemma 2 is similar to that of Lemma 1.

Proor oF Tarorem 1. From (2.5), we have

M- (rla 72)
_{__logyri—
lim{hm .{” M(r, r2) }}>lim{hm loglog M(ry, r2) }:01. @)
oo | rie logr, roe Lypmeo logr,

We now suppose a,., >0, then, for any fixed value of r, >0, we have

0

M(rh T2> f(rl, Tz) M )(Tl, T'z)—— M(rb Tz),

i.e. in this case M (ry, ry) coincides with the partial derivative of M(ry, rs)

w.r.t.r; and so is for the higher derivatives.
Further, for any r, >0, logM(r,, r2) is an increasing convex function of

This enables us to write log M(r,, r2) in the following form:

log ri.
0
2ry Oty M(tl, rz)
log M(2ry, r2)=log M(ry, r2)+ gn M(ty, 2) dt;
M( )(7'1, Tg)
> b MG, ) log 2,
and therefore,
)
o 10g{rliﬂ_iﬂgﬁ}
R b ﬁ(f“ r) ) <o, 2.8)
7o [ 7 1

From (2.7) and (2.8) follows

log{rl M (rl’lzl}
Tim { lim M(ry, 12) 01
72 | 717 10g‘r1

Similarly, on using Lemma 2; we can prove that (2.2) and (2.4) hold.
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8. We shall consider from the family of integral functions of finite order a
special subclass of integral functions, i.e. class ‘a’, which we define as fol-
lows:

Derinirion: We shall say that integral function f(zi, z2) of finite order
belongs to class ‘«’, if it always follows

(1) for any fixed value of r, >0, there exists a number R,(Ki, i, r3),
such that (K, >0, #;>0)

M@y, 1) . .
THGy,ry T TR

ri

(2) for any fixed value of r; >0 there exists a number R:(K,, x, r1),
such that (K;>0, #,>0)

M(2)<7‘1 Tz)
bJ /. l( 2] .
—-—M(rl’ rz) < 2T2"2, for T2>R2,

T
and so there exists a number R (K, Kz, #, #,), such that

M(1)<T1 Tz) M(2)<r1 7”2)
> 2 Kri#iro#2 f R.
M(Th Tz) T M(Tb rz) <Enfir, dorn, ra>

ri

We prove the following property for the above class of functions:

TaeoreM 2. If f(z1, z2)= 2lam. 27 25 18 an integral function of order
m,n=0

(01, 02)(0< 01 < 00, 0< 0 < 0), then if amn >0

MOGyr) - MOy, ry)
1 { 1y 72 1y 72 }
i eV MG T M, Sy 3.1)
Pror g pi1logri+pzlogr,

Proor: From (2.3) and (2.4), we have respectively
(1) for any arbitrary ¢>0 and any r; >0, there exists a number R, (s, r»),
such that

M(l)(rl, Tzz
M(Tl, Tz)

ry

<rf*¢, for ri >Ry (e, ra);

(2) for any arbitrary ¢>0 and any r; >0, there exists a number R, (e, ry),
such that

________ p2t€ .
ra Mry, 1) <r5r*¢, for ro > Ry (e, r1);

and so there exists a number R (¢), such that
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MOy, 1), UMD, 1)

p1+E py+E f /R .
MG, 1) 2 M(ry, ra) Sttt forn, = RG)

r

From this follows that

1 MP(ry, rs) MP (ry, 1)
I 0g4ry M( ) T2 M( )
A= lim T, T2) 1, T2 <1 (3.2).
e o1logr--pzlogr,

Now, let 4<1 and 4<A4'<A"<1. Then

M(l)(r1,rz)+ M(Z)(Tl,rz)

p1A’ P A
M(ry, r2) 2 M(ry, r2) <ritrgd form, >R (33)

r

From (38.3), we obtain that for any r,_>0, there exists a number R,(r;), such
that

M(l) (rly 7”2) P1A”
. ,M_,(rl,’ ry <", for ri > Ry (r2).

r

This contradicts the hypothesis that the integral function f(z,, z5) has order
p; with respect to the variable z,, because for sufficiently small ¢>0

01 A"<p1—e.

Hence 4=1 and the theorem is proved.
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