On the Derivatives of Integral Functions of Several Complex Variables

By

R. K. Srivastava

(Received September 30, 1967)

1. Consider* the double power series

$$f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$$
 (1.1)

of complex variables z_1 and z_2 , where the coefficients a_{mn} are complex numbers. We say that the power series (1.1) represents an integral function of two variables z_1 and z_2 , if it converges for all values of $|z_1| < \infty$ and $|z_2| < \infty$.

Let
$$M(r_1, r_2) = \max_{|z_1| \le r_1, |z_2| \le r_2} |f(z_1, z_2)|$$

be the maximum modulus of the integral function $f(z_1, z_2)$ for $|z_1| \leqslant r_1$, $|z_2| \leqslant r_2$.

From the maximum modulus principle of analytic functions, follows that if the function $f(z_1, z_2)$ is not constant with respect to any one of the variables z_1, z_2 then

- (1) $M(r'_1, r_2) > M(r_1, r_2)$, for $r'_1 > r_1$,
- (2) $M(r_1, r'_2) > M(r_1, r_2)$, for $r'_2 > r_2$,

and consequently

(3)
$$M(r'_1, r'_2) > M(r_1, r_2)$$
, for $r'_1 > r_1$, $r'_2 > r_2$.

In 1955 M. M. Dzrbasyan has defined that the integral function $f(z_1, z_2)$ has finite order ρ_1 and ρ_2 with respect to variables z_1 and z_2 respectively, if

(1) for any arbitrarily small $\varepsilon > 0$ and any $r_2 \gg 0$, there exists a number $R_1(\varepsilon, r_2)$, such that

^{*} For simplicity we consider only two variables, though the results can easily be extended to several variables.

$$M(r_1, r_2) < \exp(r_1^{\rho_1+\varepsilon}), \text{ if } r_1 \geqslant R_1(\varepsilon, r_2).$$

In addition there exists at least one value of r_2 , say, $r_2^0(\varepsilon)$ and corresponding arbitrarily large values of r_1 : $\{r_{1,i}\}$, such that

$$M(r_{1_i}, r_2^0(\varepsilon)) > \exp(r_{1_i}^{\rho_1-\varepsilon});$$

(2) for any arbitrarily small $\varepsilon > 0$ and any $r_1 \gg 0$, there exists a number $R_2(\varepsilon, r_1)$, such that

$$M(r_1, r_2) < \exp(r_2^{\rho_2 + \varepsilon}), \text{ if } r_2 \gg R_2(\varepsilon, r_1).$$

In addition there exists at least one value of r_1 , say, $r_1^0(\varepsilon)$ and corresponding arbitrarily large value of r_2 : $\{r_{2_k}\}$, such that

$$M(r_1^0(\varepsilon), r_{2_k}) > \exp(r_{2_k}^{\rho_2-\varepsilon}).$$

The assertions (1) and (2) are equivalent to

$$\overline{\lim_{r_2 \to \infty}} \left\{ \overline{\lim_{r_1 \to \infty}} \frac{\log \log M(r_1, r_2)}{\log r_1} \right\} = \rho_1$$
(1.2)

and

$$\overline{\lim_{r_1 \to \infty}} \left\{ \overline{\lim_{r_2 \to \infty}} \frac{\log \log M(r_1, r_2)}{\log r_2} \right\} = \rho_2.$$
(1.3)

2. Let

$$M^{(1)}(r_1, r_2) = \max_{|z_1| \le r_1, |z_2| \le r_2} \left| \frac{\partial}{\partial z_1} f(z_1, z_2) \right|,$$

$$M^{(2)}(r_1, r_2) = \max_{|z_1| \leq r_1, |z_2| \leq r_2} \left| \frac{\partial}{\partial z_2} f(z_1, z_2) \right|.$$

We now prove the following theorem:

Theorem 1. If $f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$ is an integral function of finite order (ρ_1, ρ_2) , ρ_1 and ρ_2 with respect to variables z_1 and z_2 respectively, then

$$\frac{\lim_{r_2 \to \infty} \left\{ \frac{\lim_{r_1 \to \infty} - \log \left\{ r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\log r_1} \right\} \geqslant \rho_1, \tag{2.1}$$

$$\frac{\lim_{r_1 \to \infty} \left\{ \frac{\lim_{r_2 \to \infty} - \log \left\{ r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\log r_2} \right\} \geqslant \rho_2.$$
(2.2)

Further, if $a_{mn} \geqslant 0$, then

$$\frac{\lim_{r_2 \to \infty} \left\{ \frac{\lim_{r_1 \to \infty} -\log\left\{r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)}\right\}}{\log r_1} \right\} = \rho_1$$
(2.3)

$$\frac{\lim_{r_1 \to \infty} \left\{ \frac{\lim_{r_2 \to \infty} - \log \left\{ r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\log r_2} \right\} = \rho_2.$$
(2.4)

We shall require the following two lemma's in the proof of the above theorem:

Lemma 1. For any fixed value of $r_2 \geqslant 0$ there exists a number $R_1(f, r_2)$, such that

$$M^{(1)}(r_1, r_2) \gg \frac{M(r_1, r_2) \log M(r_1, r_2)}{r_1 \log r_1}$$
 (2.5)

for $r_1 \gg R_1(f, r_2)$.

Lemma 2. For any fixed value of $r_1 \geqslant 0$ there exists a number $R_2(f, r_1)$, such that

$$M^{(2)}(r_1, r_2) \geqslant \frac{M(r_1, r_2) \log M(r_1, r_2)}{r_2 \log r_2}$$
 (2.6)

for $r_2 \gg R_2(f, r_1)$.

PROOF OF LEMMA 1. It can easily be shown that for a fixed value of $r_2 \gg 0$

$$g(r_1, r_2) = \frac{\log M(r_1, r_2)}{\log r_1}$$

is monotonic increasing, say, for $r_1 \geqslant R_1(f, r_2)$. Let ξ_1 be such that $|\xi_1| = r_1$ and $|f(\xi_1, z_2)| = M(r_1, r_2)$ and let $f_{z_1}(z_1, z_2) = \frac{\partial}{\partial z_1} f(z_1, z_2)$. We then have,

$$egin{aligned} M^{(1)}(r_1,\,r_2) &\geqslant \left|f_{\xi_1}(\hat{\xi}_1,\,z_2)
ight| \ &= \left|\lim_{h o 0} rac{f(\hat{\xi}_1,\,z_2) - f(\hat{\xi}_1 - \hat{\xi}_1 h,\,z_2)}{\hat{\xi}_1 h}
ight| \ &\geqslant \lim_{h o 0} rac{M(r_1,\,r_2) - M(r_1 - r_1 h,\,r_2)}{r_1 h} \end{aligned}$$

$$= \lim_{h \to 0} \frac{r_1^{g(r_1, r_2)} - (r_1 - r_1 h)^{g(r_1 - r_1 h, r_2)}}{r_1 h}$$

$$\ge \lim_{h \to 0} \frac{r_1^{g(r_1, r_2)} - (r_1 - r_1 h)^{g(r_1, r_2)}}{r_1 h}$$

$$= \frac{M(r_1, r_2)}{r_1} \frac{\log M(r_1, r_2)}{\log r_1} .$$

The proof of Lemma 2 is similar to that of Lemma 1.

PROOF OF THEOREM 1. From (2.5), we have

$$\frac{\lim_{r_{2}\to\infty}\left\{\frac{1}{\lim_{r_{1}\to\infty}}\frac{\log\left\{r_{1}\frac{M^{(1)}(r_{1},r_{2})}{M(r_{1},r_{2})}\right\}}{\log r_{1}}\right\}}{\log r_{1}}\right\} \gg \frac{\lim_{r_{2}\to\infty}\left\{\frac{1}{\lim_{r_{1}\to\infty}}\frac{\log\log M(r_{1},r_{2})}{\log r_{1}}\right\}}{\log r_{1}} = \rho_{1}. (2.7)$$

We now suppose $a_{mn} \ge 0$, then, for any fixed value of $r_2 \ge 0$, we have

$$M(r_1, r_2) = f(r_1, r_2); M^{(1)}(r_1, r_2) = \frac{\partial}{\partial r_1} M(r_1, r_2);$$

i.e. in this case $M^{(1)}(r_1, r_2)$ coincides with the partial derivative of $M(r_1, r_2)$ w.r.t. r_1 and so is for the higher derivatives.

Further, for any $r_2 \gg 0$, $\log M(r_1, r_2)$ is an increasing convex function of $\log r_1$. This enables us to write $\log M(r_1, r_2)$ in the following form:

$$egin{align} \log M(2r_1,\,r_2) &= \log M(r_1,\,r_2) + \int_{r_1}^{2r_1} rac{\partial}{\partial t_1} M(t_1,\,r_2) \ &> r_1 rac{M^{(1)}(r_1,\,r_2)}{M(r_1,\,r_2)} - \log 2, \end{aligned}$$

and therefore,

$$\lim_{r_{2}\to\infty} \left\{ \lim_{r_{1}\to\infty} \frac{\log \left\{ r_{1} \frac{M^{(1)}(\mathbf{r}_{1}, r_{2})}{M(r_{1}, r_{2})} \right\}}{\log r_{1}} \right\} \leqslant \rho_{1}.$$
(2.8)

From (2.7) and (2.8) follows

$$\frac{\lim_{r_2 \to \infty} \left\{ \lim_{r_1 \to \infty} \frac{\log \left\{ r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\log r_1} \right\} = \rho_1.$$

Similarly, on using Lemma 2, we can prove that (2.2) and (2.4) hold.

3. We shall consider from the family of integral functions of finite order a special subclass of integral functions, i.e. class ' α ', which we define as follows:

Definition: We shall say that integral function $f(z_1, z_2)$ of finite order belongs to class ' α ', if it always follows

(1) for any fixed value of $r_2 \ge 0$, there exists a number $R_1(K_1, \mu_1, r_2)$, such that $(K_1 > 0, \mu_1 > 0)$

$$r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} < K_1 r_1^{\mu_1}, \text{ for } r_1 \geqslant R_1;$$

(2) for any fixed value of $r_1 \gg 0$ there exists a number $R_2(K_2, \mu_2, r_1)$, such that $(K_2 > 0, \mu_2 > 0)$

$$r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} < K_2 r_2^{\mu_2}, \text{ for } r_2 \gg R_2;$$

and so there exists a number $R(K_1, K_2, \mu_1, \mu_2)$, such that

$$r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} + r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} < K r_1^{\mu_1} r_2^{\mu_2}, \text{ for } r_1, r_2 \gg R.$$

We prove the following property for the above class of functions:

THEOREM 2. If $f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$ is an integral function of order $(\rho_1, \rho_2)(0 < \rho_1 < \infty, 0 < \rho_2 < \infty)$, then if $a_{mn} \geqslant 0$

$$\frac{\lim_{r_1, r_2 \to \infty} \frac{\log \left\{ r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} + r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\rho_1 \log r_1 + \rho_2 \log r_2} = 1.$$
(3.1)

PROOF: From (2.3) and (2.4), we have respectively

(1) for any arbitrary $\varepsilon > 0$ and any $r_2 \gg 0$, there exists a number $R_1(\varepsilon, \mathbf{r}_2)$, such that

$$r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} < r_1^{
ho_1 + \varepsilon}, ext{ for } r_1 \geqslant R_1(\varepsilon, r_2);$$

(2) for any arbitrary $\varepsilon > 0$ and any $r_1 \ge 0$, there exists a number $R_2(\varepsilon, r_1)$, such that

$$r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} < r_2^{
ho_2 + arepsilon}, ext{ for } r_2 \geqslant R_2(arepsilon, r_1);$$

and so there exists a number $R(\varepsilon)$, such that

$$r_1rac{M^{(1)}(r_1,\,r_2)}{M(r_1,\,r_2)} + r_2rac{M^{(2)}(r_1,\,r_2)}{M(r_1,\,r_2)} < r_1^{
ho_1+arepsilon}\,r_2^{
ho_2+arepsilon}, ext{ for } r_1,\,r_2\!\geqslant\! R(arepsilon).$$

From this follows that

$$A = \overline{\lim_{r_1, r_2 \to \infty}} \frac{\log \left\{ r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} + r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} \right\}}{\rho_1 \log r_1 + \rho_2 \log r_2} \ll 1.$$
 (3.2).

Now, let A < 1 and A < A' < A'' < 1. Then

$$r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} + r_2 \frac{M^{(2)}(r_1, r_2)}{M(r_1, r_2)} < r_1^{\rho_1 A'} r_2^{\rho_2 A'}, \text{ for } r_1, r_2 \gg R.$$
 (3.3)

From (3.3), we obtain that for any $r_2 \gg 0$, there exists a number $R_1(r_2)$, such that

$$r_1 \frac{M^{(1)}(r_1, r_2)}{M(r_1, r_2)} < r_1^{
ho_1 A''}, ext{ for } r_1 >\!\!\!> R_1(r_2).$$

This contradicts the hypothesis that the integral function $f(z_1, z_2)$ has order ρ_1 with respect to the variable z_1 , because for sufficiently small $\varepsilon > 0$

$$\rho_1 A'' < \rho_1 - \varepsilon$$
.

Hence A=1 and the theorem is proved.

I wish to express my gratitude to Dr. S. K. Bose for suggesting this problem to me and for his guidance in the preparation of this paper.

Department of Mathematics & Astronomy, Lucknow University, Lucknow, India.

Reference.

M. M. Dzrbasyan, On the theory of some class of integral function, Izv. Akademi Nauk. Armyanskoi. S. S. R. VIII, No. 4, 1955.