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§1. @-spaces and ¢-paths

First of all, we consider a g-space (M, T(M), ¢, ¢, £(M)), which is defined
in the preceding paper”. Of course M is an n-dimensional differentiable ¢~
manifold, T(M) is its tangent bundle, r is the canonical projection T(M)—
M, ¢ is a homogeneous ¢-connection (i.e., non-linear connection) and ¥(M)=
dex(T(M)).

Take a point z=(«, y) on T'(M) where x is a point of M and y is a tan-
gent vector of M at the point w, then we can consider a vertical lift of y to
the point z=(z, y) and denote it (Y)., i.e.,

(1.1) (Y)o=(y)=ay>

Then Y, form a vector field Y on T(M). Similarly, we can take a vector field
X, defined by a horizontal lift of y to (x, y), ie,,

(12) (X¢)z:<y)g=(x,y>
In a local canonical coordinate system, X, and Y can be represented by

_ ii — ot m<__@_> = 1<—Q——>
(1.3) (Xw)z_y<axi>(2__x’y) O (%5 ¥)y 5y ZZW;(Y)Z N0y ) oetayy”

Now we define over T'(M) a 2-dimensional distribution D? which is span-
ned by X, and Y. Direct calculation leads us to [ X,, Y ]=—X,. Hence this
distribution D? is integrable. Thus we denote by S2 its integral submanifold.

Next, we shall define a path (or g-path) in M. A curve C in M is called a
path with respect to ¢ (or a ¢-path) if the curve C satisfies

1) Y. IcHijvO: Almost complex structures of tangent bundles and Finsler metrics, J. Math. Kyoto
Univ. 6 (1967) 419-452.

2) The terminology and signes of the preceding paper will be used in this paper without too much
comment.
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(1.4) Vii = p

where # is a tangent vector along C, p is a scalar and p* is a covariant differ-
ential with respect to the ¢-connection along the curve C.

Proposition 1. A curve C in M is a path if and only if the natural lift C
of C is tncluded in the submanifold S in T(M).

Proor. Take a tangent vector U, of C at any point z=(x, %) of C in

. . . . . .0
T(M), then U, is written in a canonical coordinate system as Uz=<x’W+
0

x’a—y,> . If Cis a path, then U, is rewritten as
z2=(%,%)

Uz:<x" 0
X

i im0
a7 TAPE —onlr OF 5 ><>
:(X¢+PY)Z'

Thus we have U, € D2.
Conversely, if U, € D2, then it follows that

Uz :(OCX¢+ .8 Y)z:(x,x))

which implies =1 and piiz=px.

§2. Affine vector field

The horizontal vector field X, defined by (1.3) has a form (X¢)2:< y‘ﬁ?j
—Tiaiyi) - where ' =¢i(x, y)y”. The quantities ;' have a law of trans-
2=(%,5)
formation
—i/ 2-1s
(21) T,',_ 0% H 0°% ! m

L T Ox'0x™ ry

Hence it follows directly that the quantities
i Lo 1, e m
Th=— 0 =5 (0i(x, N+00}(x, )y")

define a new non-linear connection 7 (¢) satisfying

(2.2) T,=0, X,=X,,
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where T, is a torsion with respect to 7 (¢).
Conversely, as for a vector field X,, if any non-linear connection ¢’ satis-
fies T\,,=0 and X, = X,, then ¢'=7(¢). Because the relation X, =X, gives 7}

)
1 - 1% m 14 1 1 - i .om I3 14
=5 (0w’ ny"+¢'h). And T, =0 leads us to ri=—5 0ne'sy" +¢'D=¢'}
Thus we call the y(¢) a symmetric non-linear connection derived from ¢.
Of course, the relation D2=D? holds good.

A vector field 4 on T(M) is called an affine vector field on T(M) if 4
satisfies the following conditions;

2.3) [ de A=y
. 1 A2 Az 3y = Az ny)

where 2* is a mapping T(M)— T(M)((%, y)—>(x, Ay), 1>0).
An affine vector field 4 has, therefore, components of (y,—7") in a ca-
nonical coordinate system. Since A is a vector field on T(M), v satisfy the

law of transformation (2.1). Thus r}e:~2* 07" give a symmetric non-linear

connection 7. Of course (2.3); gives that X, = 4.

Conversely, the above mentioned result shows us that y is a uniquely
given non-linear connection which preserves A4 horizontal and is symmetric.
Hence the non-linear connection y thus defined is called, hereafter, a sym-
metric non-linear connection derived from A. On the other hand if an affine
vector field 4 is given, M becomes a general affine space of path with respect

to 7', 7,;;:_%,,, 0xy" and 7i,=0,7;. Hence we obtain directly the
Proposition 2. In order that a manifold M is a general afiine space of

path, it is necessary and sufficient that the T (M) admits an affine vector field
satisfying (2.3).

§3. General projective space of path

Let us now assume that two non-linear connections ¢ and ¢ are given. If
any path with respect to ¢ is, at the same time, a path with respect to ¢ and
vice versa, then ¢ and ¢ are called projective and denoted by ¢ X @.

Proposition 8. In order that non-linear connections ¢ and ¢ are mutually
projective, it is necessary and sufficient that the relation D%= D2 holds good.

Proor. If ¢ /N @, the relation ¢}, y"—¢} y"=py' is true. Hence we have
X,=X,+pY. This leads us to Di=D2. The converse is evident.
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A symmetric non-linear connection y(¢) derived from a non-linear con-
nection ¢ is, of course, projective to ¢.

A 2-dimensional distribution D? in T'(M) is called projective distribution
if it satisfies

a1 J(l) Ye D?,
. 1(2) D? admits, at least, a vector field X satisfying dr-X(. ;)= y..

Then D2 is evidently an example of a projective distribution.

Let us now assume that a tangent bundle 7(M) admits a projective dis-
tribution D?. Then the basic vector field X in D? is a kind of affine vector
field. In a canonical coordinate system, we represent X as (y',—4°). Then the
quantities G'=A'—(9,4")y’/, .1 become invariant with respect to the choice of
the basic vector field X. But the law of transformation of the G’ is given by

_ ox’’
Ox'

%%, .. 2y'ologd _,

l———- N ———
G Oxﬁ@qu Y n+1 Yo

(3.3) G

—ir

0%
where we put 4= 1—-0—367—

Now take a canonical parameter p* in T(M) which satisfies

(1) p* is positively homogeneous of degree 1 with respect to y,

(2) p* is independent to the choice of X,

(3.4)
(3) the law of transformation of p* is given by
o*=p*+2y'0,log 4.
If we put
(3.5) riegi—_ 0"

n+1y’

then ( y"£~7—[’ i 32” > form an affine vector field over T(M), which we call

an affine vector field with respect to D* and p*, and denote it by I”. The vector
field 7" is, of course, independent to the choice of X.

Proposition 4. Let a tangent bundle T(M) admit a projective distribution
D? and a canowical parameter o*. A 2-dimensional distribution D2, which is
spanned by the vector field Y and the affine vector field I" with respect to the D*
and o*, cotncides with the given progective distribution D?, i.e., the relation
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D2%=D? holds good.

Proor. In order to prove the Proposition, it is sufficient to show that
I e D?. This follows at once from the relation

014" + p*

=X+ n+1

Y.

The above arguments show that a manifold whose tangent bundle T'(M)
admits a projective distribution D’ is a so-called general projective space of
path.

§4. Natural almost complex structures in a general projective space of path

If a tangent bundle T'(M) admits a non-linear connection ¢, the T(M)
also admits a family of almost complex structures J,(p, &) which is defined
by

2

(4.1)
1 J, (o, a)u’=pu"—au?,

where p and « are any scalar fields on the 7T'(M).

Especially the family of almost complex structures J,(—1, «) is called a
family of natural almost complex structures and is denoted by J(¢, «). The
components of J(p, &) in a canonical coordinate system are given by

ak,—o, —E,
(4.2) (J3(p, @)= < >

¢*—2ap+(1+a*)E,, ¢—aE,

If another non-linear connection ¢’ is given and the relation J(¢', ')
= J(p, @) holds good, then the straightforward calculation gives us that
¢'—a'E,=¢—akE, And the converse is also true.

Proposition 5. As for two non-linear connections ¢ and ¢’ the projective
dustribution D2 in a tangent bundle T (M) is preserved invariant by the family
of natural almost complex structures J(¢', &) if and only 1f the relation ¢ /N ¢’
holds good.

Proor. If the relation ¢ /X ¢’ holds good then Di= D% is also true. Hence
D: is spanned by the vector fields ¥ and X,.. Now we have
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I ](qﬂ/, a)‘X¢/:(XX¢/+(1 —l—afz)YE quo,

| J(¢', @) Y=—X, —aYe D2

Hence J(¢’, «) preserves D? invariant.

Conversely, if J(¢', @) preserves D2 invariant, the relation J(¢', a)-Y € D3
holds good. On the other hand the relation J(¢', )= — X, —aY also holds
good. Thus we obtain X, € D%, i.e., 9o N¢'.
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