A Note on General Projective Spaces of Paths and Tangent Bundles I

By

Yoshihiro Існіјуо̂

(Received September 30, 1967)

§1. φ -spaces and φ -paths

First of all, we consider a φ -space $(M, T(M), \tau, \varphi, \widetilde{\mathfrak{X}}(M))$, which is defined in the preceding paper¹⁾. Of course M is an n-dimensional differentiable C^{∞} manifold, T(M) is its tangent bundle, τ is the canonical projection $T(M) \rightarrow M$, φ is a homogeneous φ -connection (i.e., non-linear connection) and $\widetilde{\mathfrak{X}}(M) = d\tau \cdot \mathfrak{X}(T(M))^{2}$.

Take a point z=(x, y) on T(M) where x is a point of M and y is a tangent vector of M at the point x, then we can consider a vertical lift of y to the point z=(z, y) and denote it $(Y)_z$, i.e.,

$$(1.1) (Y)_z = (y)_{z=(x,y)}^v.$$

Then Y_z form a vector field Y on T(M). Similarly, we can take a vector field X_{φ} defined by a horizontal lift of γ to (x, γ) , i.e.,

$$(1.2) (X_{\varphi})_z = (y)_{z=(x,y)}^h$$

In a local canonical coordinate system, X_{φ} and Y can be represented by

$$(1.3) \quad (X_{\varphi})_z = y^i \left(\frac{\partial}{\partial x^i}\right)_{(z=x,y)} - \varphi_m^i(x, y) y^m \left(\frac{\partial}{\partial y^i}\right)_{z=(x,y)}, (Y)_z = y^i \left(\frac{\partial}{\partial y^i}\right)_{z=(x,y)}.$$

Now we define over T(M) a 2-dimensional distribution D_{φ}^2 which is spanned by X_{φ} and Y. Direct calculation leads us to $[X_{\varphi}, Y] = -X_{\varphi}$. Hence this distribution D_{φ}^2 is integrable. Thus we denote by S_{φ}^2 its integral submanifold.

Next, we shall define a path (or φ -path) in M. A curve C in M is called a path with respect to φ (or a φ -path) if the curve C satisfies

¹⁾ Y. Існіјуо̂: Almost complex structures of tangent bundles and Finsler metrics, J. Math. Kyoto Univ. 6 (1967) 419-452.

The terminology and signes of the preceding paper will be used in this paper without too much comment.

$$\nabla_{\dot{x}}^{\sharp}\dot{x} = p\dot{x}$$

where \dot{x} is a tangent vector along C, p is a scalar and p^* is a covariant differential with respect to the φ -connection along the curve C.

Proposition 1. A curve C in M is a path if and only if the natural lift \tilde{C} of C is included in the submanifold S^2_{φ} in T(M).

PROOF. Take a tangent vector U_z of \tilde{C} at any point $z=(x,\dot{x})$ of \tilde{C} in T(M), then U_z is written in a canonical coordinate system as $U_z=\left(\dot{x}^i\frac{\partial}{\partial x^i}+\ddot{x}^i\frac{\partial}{\partial y^i}\right)_{z=(x,\dot{x})}$. If C is a path, then U_z is rewritten as

$$U_{z} = \left(\dot{x}^{i} \frac{\partial}{\partial x^{i}} + \left\{p\dot{x}^{i} - \varphi_{m}^{i}(x, \dot{x})\dot{x}^{m}\right\} \frac{\partial}{\partial y^{i}}\right)_{z=(x, \dot{x})}$$
$$= (X_{\varphi} + pY)_{z}.$$

Thus we have $U_z \in D_{\varphi}^2$.

Conversely, if $U_z \in D^2_{\varphi}$, then it follows that

$$U_z = (\alpha X_{\alpha} + \beta Y)_{z=(x,\dot{x})}$$

which implies $\alpha = 1$ and $\nabla_{\dot{x}}^{\sharp} \dot{x} = \beta \dot{x}$.

§2. Affine vector field

The horizontal vector field X_{φ} defined by (1.3) has a form $(X_{\varphi})_z = \left(y^i \frac{\partial}{\partial x^i} - \gamma^i \frac{\partial}{\partial y^i}\right)_{z=(x,y)}$, where $\gamma^i = \varphi_m^i(x, y)y^m$. The quantities γ^i have a law of transformation

(2.1)
$$\bar{r}^{i\prime} = \frac{\partial \bar{x}^{i\prime}}{\partial x^l} r^l - \frac{\partial^2 \bar{x}^{i\prime}}{\partial x^l \partial x^m} y^l y^m.$$

Hence it follows directly that the quantities

$$\gamma_k^i = \frac{1}{2} \partial_k \gamma^i = \frac{1}{2} \left(\varphi_k^i(x, y) + \dot{\partial}_k \varphi_m^i(x, y) y^m \right)$$

define a new non-linear connection $\gamma(\varphi)$ satisfying

$$(2.2) T_{\gamma} = 0, \quad X_{\gamma} = X_{\varphi},$$

where T_{γ} is a torsion with respect to $\gamma(\varphi)$.

Conversely, as for a vector field X_{φ} , if any non-linear connection φ' satisfies $T_{\varphi'} = 0$ and $X_{\varphi'} = X_{\varphi}$, then $\varphi' = \gamma(\varphi)$. Because the relation $X_{\varphi'} = X_{\varphi}$ gives $\gamma_k^i = \frac{1}{2} (\dot{\partial}_k \varphi'_{m}^i y^m + \varphi'_{k}^i)$. And $T_{\varphi'} = 0$ leads us to $\gamma_k^i = \frac{1}{2} (\dot{\partial}_m \varphi'_{k}^i y^m + \varphi'_{k}^i) = \varphi'_{k}^i$.

Thus we call the $\gamma(\varphi)$ a symmetric non-linear connection derived from φ . Of course, the relation $D_{\varphi}^2 = D_{\gamma}^2$ holds good.

A vector field A on T(M) is called an affine vector field on T(M) if A satisfies the following conditions;

(2.3)
$$\begin{cases} d\tau \cdot A_{(x,y)} = y_x, \\ d\lambda^* \cdot A_{(x,y)} = A_{(x,\lambda y)} \end{cases}$$

where λ^* is a mapping $T(M) \rightarrow T(M)((x, y) \rightarrow (x, \lambda y), \lambda > 0)$.

An affine vector field A has, therefore, components of $(y^i, -\gamma^i)$ in a canonical coordinate system. Since A is a vector field on T(M), γ^i satisfy the law of transformation (2.1). Thus $\gamma_k^i = \frac{1}{2} \partial_k \gamma^i$ give a symmetric non-linear connection γ . Of course (2.3)₂ gives that $X_{\gamma} = A$.

Conversely, the above mentioned result shows us that γ is a uniquely given non-linear connection which preserves A horizontal and is symmetric. Hence the non-linear connection γ thus defined is called, hereafter, a symmetric non-linear connection derived from A. On the other hand if an affine vector field A is given, M becomes a general affine space of path with respect to γ^i , $\gamma^i_k = \frac{1}{2} \cdot \partial_k \gamma^i$ and $\gamma^i_{kj} = \partial_j \gamma^i_k$. Hence we obtain directly the

Proposition 2. In order that a manifold M is a general affine space of path, it is necessary and sufficient that the T(M) admits an affine vector field satisfying (2.3).

§3. General projective space of path

Let us now assume that two non-linear connections φ and $\bar{\varphi}$ are given. If any path with respect to φ is, at the same time, a path with respect to $\bar{\varphi}$ and vice versa, then φ and $\bar{\varphi}$ are called *projective* and denoted by $\varphi \wedge \bar{\varphi}$.

Proposition 3. In order that non-linear connections φ and $\bar{\varphi}$ are mutually projective, it is necessary and sufficient that the relation $D_{\varphi}^2 = D_{\bar{\varphi}}^2$ holds good.

PROOF. If $\varphi \nearrow \bar{\varphi}$, the relation $\bar{\varphi}_m^i y^m - \varphi_m^i y^m = p y^i$ is true. Hence we have $X_{\varphi} = X_{\bar{\varphi}} + p Y$. This leads us to $D_{\varphi}^2 = D_{\bar{\varphi}}^2$. The converse is evident.

A symmetric non-linear connection $\gamma(\varphi)$ derived from a non-linear connection φ is, of course, projective to φ .

A 2-dimensional distribution D^2 in T(M) is called projective distribution if it satisfies

$$(3.1) \begin{cases} (1) & Y \in D^2, \\ (2) & D^2 \text{ admits, at least, a vector field } X \text{ satisfying } d\tau \cdot X_{(x,y)} = y_x. \end{cases}$$

Then D_{φ}^2 is evidently an example of a projective distribution.

Let us now assume that a tangent bundle T(M) admits a projective distribution D^2 . Then the basic vector field X in D^2 is a kind of affine vector field. In a canonical coordinate system, we represent X as $(\gamma^i, -\Lambda^i)$. Then the quantities $G^{j} = A^{j} - (\partial_{l}A^{l})\gamma^{j}/_{n+1}$ become invariant with respect to the choice of the basic vector field X. But the law of transformation of the G^{j} is given by

$$(3.3) \qquad \qquad \bar{G}^{j\prime} = \frac{\partial \bar{x}^{j\prime}}{\partial x^l} G^l - \frac{\partial^2 \bar{x}^{j\prime}}{\partial x^p \partial x^q} y^p y^q + \frac{2 y^l \partial_l \log \Delta}{n+1} \bar{y}^{j\prime},$$

where we put $\Delta = \left| \frac{\partial \bar{x}^{i\prime}}{\partial x^j} \right|$

Now take a canonical parameter ρ^* in T(M) which satisfies

- ρ^* is positively homogeneous of degree 1 with respect to γ ,

(3.4) $\begin{cases} (1) & \rho \text{ is positive.} \\ (2) & \rho^* \text{ is independent to the choice of } X, \\ (3) & \text{the law of transformation of } \rho^* \text{ is given by} \\ & \bar{\rho}^* = \rho^* + 2y^l \partial_l \log \Delta. \end{cases}$

If we put

(3.5)
$$\Gamma^{i} = G^{i} - \frac{\rho^{*}}{n+1} \gamma^{i},$$

then $\left(y^i\frac{\partial}{\partial x^i}-\Gamma^i\frac{\partial}{\partial y^i}\right)$ form an affine vector field over T(M), which we call an affine vector field with respect to D^2 and ρ^* , and denote it by Γ . The vector field Γ is, of course, independent to the choice of X.

Proposition 4. Let a tangent bundle T(M) admit a projective distribution D^2 and a canonical parameter ρ^* . A 2-dimensional distribution D_r^2 , which is spanned by the vector field Y and the affine vector field Γ with respect to the D^2 and ρ^* , coincides with the given projective distribution D^2 , i.e., the relation

 $D_T^2 = D^2$ holds good.

Proof. In order to prove the Proposition, it is sufficient to show that $\Gamma \in D^2$. This follows at once from the relation

$$\Gamma = X + \frac{\partial_l \Lambda^l + \rho^*}{n+1} Y.$$

The above arguments show that a manifold whose tangent bundle T(M) admits a projective distribution D^2 is a so-called general projective space of path.

§4. Natural almost complex structures in a general projective space of path

If a tangent bundle T(M) admits a non-linear connection φ , the T(M) also admits a family of almost complex structures $J_{\varphi}(\rho, \alpha)$ which is defined by

$$(4.1) \int_{\varphi} (\rho, \alpha) \cdot u^{h} = \alpha u^{h} - \frac{1 + \alpha^{2}}{\rho} u^{v},$$

$$\int_{\varphi} (\rho, \alpha) \cdot u^{v} = \rho u^{h} - \alpha u^{v},$$

where ρ and α are any scalar fields on the T(M).

Especially the family of almost complex structures $J_{\varphi}(-1, \alpha)$ is called a family of natural almost complex structures and is denoted by $J(\varphi, \alpha)$. The components of $J(\varphi, \alpha)$ in a canonical coordinate system are given by

(4.2)
$$(J_B^A(\varphi, \alpha)) = \begin{pmatrix} \alpha E_n - \varphi, & -E_n \\ \varphi^2 - 2\alpha \varphi + (1 + \alpha^2) E_n, & \varphi - \alpha E_n \end{pmatrix}.$$

If another non-linear connection φ' is given and the relation $J(\varphi', \alpha') = J(\varphi, \alpha)$ holds good, then the straightforward calculation gives us that $\varphi' - \alpha' E_n = \varphi - \alpha E_n$. And the converse is also true.

Proposition 5. As for two non-linear connections φ and φ' the projective distribution D^2_{φ} in a tangent bundle T(M) is preserved invariant by the family of natural almost complex structures $J(\varphi', \alpha)$ if and only if the relation $\varphi \nearrow \varphi'$ holds good.

PROOF. If the relation $\varphi \nearrow \varphi'$ holds good then $D_{\varphi}^2 = D_{\varphi'}^2$ is also true. Hence D_{φ}^2 is spanned by the vector fields Y and $X_{\varphi'}$. Now we have

$$\int J(\varphi',\alpha) \cdot X_{\varphi'} = \alpha X_{\varphi'} + (1+\alpha^2) Y \in D_{\varphi}^2,$$

$$\int J(\varphi',\alpha) \cdot Y = -X_{\varphi'} - \alpha Y \in D_{\varphi}^2.$$

Hence $J(\varphi',\,\alpha)$ preserves D_{φ}^2 invariant.

Conversely, if $J(\varphi',\alpha)$ preserves D_{φ}^2 invariant, the relation $J(\varphi',\alpha)\cdot Y\in D_{\varphi}^2$ holds good. On the other hand the relation $J(\varphi',\alpha)=-X_{\varphi'}-\alpha\,Y$ also holds good. Thus we obtain $X_{\varphi'}\in D_{\varphi}^2$, i.e., $\varphi\bigwedge\varphi'$.

College of General Education University of Tokushima