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THE STUDENT’S DISTRIBUTION FOR A UNIVERSE
BOUNDED AT ONE OR BOTH SIDES (Continued)

By
Yoshikatsu WATANABE

(Received September 30, 1964)

In the present note the author attempts to assume the existence of central limit
theorem about the sampling mean taken from a universe with non-negative argument
first - without proof, but rather whence conversely to discover some provisional appro-
ximation of the correction factor §), for the exact sampling distribution he had pre-
viously in the foregoing note reported most generally on the net integral form, which
however being too much complicate, no connection between them is yet made for the

present.

21. The Sampling xv-Joint Distribution taken from a T.N.D. as Universe. Let the parent
T.N.D. be®

1 1 9
@1 f(x)=mexp(——7(x—a) ) x>0
with the parent mean m~a+/1 where A denotes ¢ (a) /@(a), the logarithmic derivative
of untruncated N.D. @(a) = vor J e *dt. Now from (1) a n-sized sample with mean

% and S.D. s being drawn, the #s-joint sampling ff. is given by

(21.2) Jo(® ) dVi=c. exp[—%(:?~a)2—%sz] s"'%),,(%) dsdx, where
AV e ne’ :
(21.3) =50 @ T =D~ m/?(b"(a)’ as n is large.

Hence, on writing r=3/% or z=#/s, the total probability yields
(21.4) 1=c,,” exp[ - a)z——)?272] #12, (0) deds,

where G denotes the whole domain of integration: 0<£<co, 0<r<b=1"n—-1. First
we begin by recognizing solely the well-defined property that 9.(r) is non-negative
continuous and monotonically decreases from 1 to 0. To obtain an asymptotic value

of the integral, we compute after Laplace method®. Rewriting (4) conveniently

(21.5) l= cn”G 1"* (%, v) g (%, v) dedi=cq [,

1) H. Cramér, Mathematical Methods of Statistics, p. 248.

2) Cf. Polya und Szegd : Aufgaben und Lehrsdtze, Bd. I, S. 78 and S. 244.  Also compare Y.
Ichijd : Ueber die Laplacesche asymptotische Formel fiir das Integral von Potenze mit grossem Indexe,
this Journal vol. VI (1955), p. 63, and Y. Watanabe u. Y. Ichij6 : Zur Laplaceschen asymptotishen
Formel, ibid. vol. IX (1958), p. 1, which are cited below as [I]*, [II]* and besides as [I] : Y. Wata-
nabe : Some exceptional example to Student’s distribution, ibid. vol. X (1959), p. 1I, and [II}-[V],
Y. Watanabe, the same topics with the present, ibid. vol. XI-XIV (1960-63).
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where f=#%cE, 9=%E",(r), E=exp<—% (J?—a)z——%x2 TZ):
and we call §, the base of large power, the main part and g the subsidiary factor.

Or putting F=logf{ =log &r— % (F—a)’ — %izrz, we have to evaluate

Jo={[ exp -2 F(x, 1) -0, ) ded.
The maximum of F or f is found from
(21.6) F,=1/i— (x—a) —x*=0, .
(21.7) F.=1/r—#7t=0, bl
which expressions are both continuous

Ag (a>0)

inside G. The former, the positive root
being taken, yields

a+via+4(l+2?)
2(1+7% 7

or t= (1 +ax—x") [x*

(21.8) z=

we call Agnesi or Ag by its resemblance
to the Witch of Agnesi, which lies
rightside its asymptote =0 (Fig. 1),
while the latter denotes simply an ordi-

Fig. 1

nary hyperbola H
(21.9) %#r=1 in the first quadrant.

The upper boundary line t=b=1"z=1cuts the curves at xx=1/1n—1 :171—7/@ + %1)

1 . >
and x‘:ﬁ(1+-21(;f7>’ so that if >0, xz<lxs follows. On the otherhand for the
lower boundary 7=0, xA:%(a+1/a2+4) =d remains finite against xz—co. Hence, if

a>>0, the 2 curves intersect at a point P(a, 1/a), at which hold relations (6) (7) and
besides Fop=—1—1*—1/&%, Fp=—2%c, Fe.=—%'—1/7%, with determinant (FeoFr—Fi’) p
=92>>0. Therefore F and | become maximum at P. Describe a quadrate Q with
center P and side 26, so small that it lies wholly inside G. Take the new &y-coordi-

nates so as i=a+&=a(l+u/N), T:l/a+77=(l+1%>/a with N=172—2 which' tends oo
as n. Now conceive the integral (cf. (IJ* loc. cit.).

(21.10) ”Gexp (11— [F (&, 7) —F(P)]-gdrdx:”Q o[ =@+ G,
where F(P) =F(a, l/a) = —% being the max. F in G, it holds that exp (¥ in R—F(P)) =
(fin R)/F(P) =p<l. But g being integrable in G
(i1) <p"‘2” gdrd% =0(1/n"), however great @ may be.
a

Accordingly (ii) becomes negligibly small and we have only to compute (i). Expand-
ing the integrand of (10) in powers of N and neglecting those terms with negative

power, we get the approximate value of (i), when 7 is sufficiently large :
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[l =g rar ] fulg () =105

which multiplied by (3) and the factor divided out in advance, i.e. exp(——%(n—Q) ),

we see that the required integral (5) becomes

@L11) 1= L2 ) exp (1-5)=u0(5) /0@

But, a being any positive quantity, on writing 1/a=7, we get the first approximation
(21.12) 0. () =0" (/7).

Really, when 7—0, /> and 0"(l/r) tends 1, while, if t—y2-1=cc, 1jr—0 and
0" (0) ~1/2* becomes sufficiently near 0, as n—co. Thus, the asymptotic approximation

(12) endures the well-defined properties of 0.(r), although the order of zero at t=1/2—1
compared with (21) below, cannot be said enough satisfactory. At any rate, if (I12)
be granted, the identity E(%°) =1 would follow approximately. Similarly by multiply-
ing #=a(l+u/N) to the intergrand of J,, we obtain also the identity E(x) =4, which
however conflicts with E(%) =m, what the G.L.T. designates.

In fact, when (12) hold, we had to compute J, more exactly by transferring the
factor 9.(r) =0"(l/r) under the main part. Putting v=1/z for convenience, we have
to replace §,(1/z) by the asymptotic approximation
(21.13) b (1/2) =0" (2) " ()7 (),
where the factor ¢ and r are inserted in order to make the final result=1, and besides
to lighten calculations, it is postulated to be ¢" nearly 0, ie. ¢ almost constant. Under

these trial assumptions we have to recompute the integral

(21.14) Py | [" Gogm" r2 Jideds=c[ [ expn—1)logfg dads,
0 1/ G
where f=x0gElz, ¢=0qFr/z, E:exp(*%(:?—a)2 —%EZ/.f).
Again putting
x | , 1 &
F:logleog(za)q>~—2—(x—a) T 2 /
we obtain
(21.15) F,=1/f— (F—a) —&/z’ =0, Ag
(21.16) F,=—1/z+2(2) +%°/z°=0.
The former is the same Ag as (8): ¢ /
o_at+Va+4(1+1/2% SV
(2L.17) &= 2 (1+1/2 P(y s s
or #[F=1—%(Z—a). N
But the latter now becomes (Fig. 2)
(2L18) 2/*=1—pu(2), u(2) =z24(2),
which being a deformed hyperbola, may 178 ~
be called a pseud-hyperbola PH and its T §
Fig. 2

positive branch £=z1'T—x(z) is only con-
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. .. 1 a
sidered. This time the lower boundary z=1/f cuts the 2 curves at x4 :1—/7(1+277~>,
1

xp:%(l_?‘ﬁ), respectively, so that if a>—1"2/z=—.7979, x,>xr. Now that Ag

lies leftside its vertical asymptote f:d=%(a+1/a2+4) and x,<(d, while PH has its

oblique asymptote z=#% along whose leftside the curves spreads up to infinity and
accordingly extends rightside #=4 ultimately. Hence if a>—1/3/x, e.g. when a=0 or
+0.6745, the 2 curves surely intersect at a point P(xy, z0), and at which (15) (16) as
well as (20) below hold, so that F becomes maximum. Hence, again describing a
small quadrate Q with center P and side 20, and putting ¥=x+&=x(1 +u/N), ézzo
+&=z,(1+9/N), N=1n—1, we may compute J, by integrating only over Q, similarly
as in (10):

21.19) c,,]n=z1fj(%) %(’E"T))%/ZE(%,@)]J [ exp[—%(Au2+2Buv+Cv’):Idudv,

where A=14x"+x"/2">0, B=—2x7/z,", C=—1+4p"+ 12" +3x°/20°, o =20A(20) >0
with the determinant

(21.20) D=AC—B*=2(1— ) x® + (1 — zto + x0") (226” + 22020°) + 20 (26> — x0%) >0,

because of 0<(x,’/z0°=1—po<{1 after (18), 0< pe<{l, x,’<(z>. Consequently the above
double integral reduces to 2r/1v/D. Besides, in view of #’/z'=1—g=1—x(x,—a),

after (17), not only x, but a also being expressible by z,, we get after all
T . _VE SR
Can—Zo\/ p7 @) (Qg)", where Q=""0 () x exP(ano) Aa),

with % =20V T—pto, a=20V'T—pto— f1o/20V Tt

So that ¢, J.=1, if ¢=07", r=1/Dj2/z,. Thus we get E(%) =1 and similarly E(%)=x,.

The actual maximal point P(x, z,) shall be found by Newton’s method of succes-
sive approximations. E.g. in case 1° a=0 we get equations x=z/V1+2*=211-22()
and whence 2z,=.6225, x,=.5619. In case a=-+.6745, we have A(2) = (*+.7725z
67451/ T+ 1.11372%) | (1 +2°) %, which gives 2° 2,=1.1275, x,=.8474; 3° z=.095, x,=.0967.
However, the C.L.T. insists 1° m=.7979, 2° m=1.2098 and 3° m=.5966. Thus here ob-
tained new values x, are all still too small than the theoretical true value m although
they are far better reformed compared with those obtained before, e.g. in 2° x=
8474>a=.6745, &c. All these discrepancies
would be revised by adjusting the asymptotic
estimation for §, more suitably, e.g. raising

the power excelsior, so that the pseud-hyper-
Kn-1(jus)

bola spreads farther Ileftward z=x to cut
Agnesi at a higher position and make x, in

~
crease.
Really the author has obtained an exact
asymptotic formula for 0, as r=s/x is ~b

=1/n—1. Let 4, and G be a vertex and cent- Fig. 3

Br-1(fn (s-4s))
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roid of the simplex S,_, (Fig. 3). If the s-sphere K,_, passes through A4,, ie. its radius
becomes G4,=1n(m—1)%, then 7=} and the common area o=S_,NK,_, reduces to
naught. However when the radius is only a little smaller, say, V= (s—ds) =1 2 (b

—4r) %, the sphere cuts out from §,.; an infinitesimal simplex 45,_, of height A=
a h

VvV nds=v"n%dc with base-area ¢/n by simmetry. Since the volume of 45, Y

:(h\/E> ‘/”) (cf. (1.8) and (1.7) in [I] loc. cit.), we get o =1/a—T"" K"y 7" I'(n).

n I
—n—-1 n-2
On the otherhand the general surface is o= F,_; (s—45) B, (z) =21/7r 11(1(/72__ 1()3/2)43)

Ba ().
On eliminating ¢, & among them, we obtain
~( Fdr " Ja= 1"V 2 (n—1) I'((n—1)/2)
w25 V5 G N

1
in which the multiplication theorem of gamma function I'(%) :%P( 9 )I’ (n-; l) and

asymptotic relations 1/ (n—1)/n"=¢ "%, I'(n) =1/2zn" "¢ being applied, we find that

@1.21) bt = /2) (=)

where b=1"2—T1 is enough large, and dr=b~7 may also be pretty large yet sufficiently
small compared with b, say b (0<6<1), so that

f)’&)(v»T(O)b) <1/ 2 271: (%) <1/ 2 \/;:_ (b(b"% 1))7‘*2’

and thus the correction factor §,(r) is far smaller than ¢"(1/r) ~1/2". Or, if r and 4r

be replaced by 1/z and bdz/z, 4r=z—1/b, we get

i el ST s L (1YL L e ()
QL2 BG=ID =L W Sh()=sn/r 0
in which as small enough z is, yet dz=z4c/b becomes furthermore small, and indeed
(21.23) —zl—,,f),(%) is integrably small, as z tends 1/6=1/1v2—1~0.

We require to reconstruct the asymptotic formula for %, more suitablly. However,
to perform it, we ought to treat prelusively

22. Some Corollaries concerning A(a), m(a) and Their Allied Functions, as these seem to
be somewhat important even apart the pressing needs. If the T.N.D.

22.1) £ =mexp<—% (x—)*) for ¥=0

be taken as universe, its mean (parent mean) is

(22.2) mzmﬁo x eXp<—% (x—a)2>dx:a+/l, where

(22.3) i=¢@)/0 (a), ¢(@) ="V

is the logarithmic derivative of @(a) = Von r ¢~**dt. Besides, the parent variance is

1
1220 (a)

Thus, the T.N.D. having its mean and variance, the concerned C.L.T. holds in all

(22.4) o' = ro x° exp(— % (x—a)* )cixvm2 =1-—2Am>0.
0 .

probability.  Also it is clear that both of m=a+2 and 2 are essentially positive for
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all finite a>=<0; even for a<{0 holds a+2>>0, so that 2(a) >—a>0. Furthermore, as
(22.5) lim a’¢(a) =0 holds for however great o, so also

(22.6) hm a®A"(a) =0 for >0, a>0. Besides we have hrn mf=lim (a+A4)"=

=lim la“(l + %) :lim%‘( u) ~*A*'=0. Notwithstanding
22.7) lim A(a) =lim ¢(a)/¢(a) =lim —ap/e¢=lim (—a) = +co by I’'Hospital.

In fact, although both y=¢, y=0 tend 0 as a— —oo, the latter tends 0 far rapidly than
the former (Fig. 4), and lies below the former already beyond the point (—0.3026,

o] —1 —2 "3 /,/T
®|.24197].00443 | .00014 iad y=0
| .15866] .00135 | .00003 e

—1 —3063 0 1
Fig. 4

0.3810). However for any prescribed small >0, we have again by I’hospital
alin})0 e 10=lim— (1 +a)ap®= (1 +a) im (—ap®) = (1 +-c) lim (—a) e~***/1/2z" = +0°, 1.e
(22.8) "< g<e, as a— —oo for whatsoever small >0, a delicate relation between
¢ and 0. After (8) and (5) a”® tends 0 as a——oo also. However, if we consider

(22.9) m=2+a= (p+a0®)/0=" [0, say, the ratio a¥/0=am tends

@210 lim D im0y 20 i 2“’2
a——oo (4 —ag ag —ae
_ Vo
o 14+0%
so that lim —a?/@=1-0% namely @=—a¥, as a— —co. Reterning to 4, we have
A _ —ap _..oa—1_ . . 1 4
(22.11) alir_nwz—hm@ hm¢+a¢~hm2;a2— 1 hrnrzﬂ2 =—1—-0%
A little more generally: 11m A —al“=+o, 1, 0 according as (0<Qa<=>1. Also
(22.12) lim m= hm(l—l—a) =lim¥/0=1lim®/¢=1lim 1/(—a) = +0".

ar—o0

Or else, as with large la], a<C0, it holds asymptotically, because of ga’(a):—ago(a),
0w=| pwdom| LOpuot@ _[* 60ym0@ ) L, ]

—a —oo

so also follows

2(a<00) = ;ZEZ; ~—a(1-54) =—a—2 4, and lim_ (A+a) =~ L 4= 40 again.

In view of (7) and (12) y=1(a) has its asymptote y=—a besides y=0 Quite similary.
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Iim (m—a) =limi=0°

>+ o0

(2213)  limm=lima=+co, lim "=1+lim* =10,

a— + o0 4>+ oo

©2.19  lim m=lim(A+a) =lim—1/a=0,

lim am= lim a(a+2) =lim a(%l):—l after (12).

Q—r—o0
Thus y=a and =0 are also the asymptotes of y=m.
12/z=.7979). Nevertheless these two curves are not symmetrical with respect to y-axis,

Besides y=m, y=2 meet at (0,

as shown in Fig. 5:

\1.5251

y
y——a 1.2876 y=a
y=m
1
—3026 74810
7979
" ].5251 g=1
2876
-1 —s120 0 5060 1 “

Fig. 5

The monotonic decreasing property of A(a) is clarified by the fact that

(22.15) X’=Z—2= —2(A+a) =—2im<0. And whence follows
2
(22.16) A= Za/} = —‘%7!”= @A+a) Q+a)A—2=21A—a) (A5 >0,
y=a y=3 ¢
y=g
127z
Yz =2
0 a
y=a
y=-%a
=8 gt
y=-—a

Fig. 5a
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where a’,[—?=%(-—3ai1/a2+8). For, the quadratic (y—a) (y—B)=2y"+3ay+a"—1=0

denotes a hyperbola, whose 2 branches y=a and y=8 extend above and below its

diameter y= —%a symmetrically, with 2 asymptotes y=—a and y=—a/2 (Fig. 5a). The

J-curve being wholly above the hyperbola, >« as well as 2>>8, so that 2”>>0 hold

and the A-curve is concave upward in the whole domain —co<{a<(oo throughout.
Further, in view of (16), the curves

(22.17) y=2m=1—¢* (complementary variance) and y=1—2im=¢" (variance)

are monotonic decreasing and increasing respectively with the properties

(2218)  limim=lim% . ™ =0° after (5) and (13} but lim zm=1im@;;i)i
a—+o =00

a¥v 1L N_qi_o
5 az_l)—l 0.

(22.19) lim ¢*=lim(1—am) =1-0°, lim ¢*'=lim (1 —am)=%=1F0".
a—>+co

-+

which

becomes after (10) and (11)=lim

-2 —lim(1-

(22.20) lim ¢’=1lim (1 —Am) =lim 1/a*=0* in virtue of (18), and lim ¢™'=0" or co.

a——oco a——o0

v
~7"7 is above y=0~ 5 S
throughout ~J
S e
Foss T
=" RN
a
0 .55
Fig. 6

Thus both curves extend between 2 parallels y=0, y=1 and symmetrically about y=
0.5, intersecting with each other at (0.55, 0.5), and their point of inflections yield at
a=—0.05 (Fig. 6). Whence we see that m'=1+2=1~m>0 and m”=21"=(—im)" >0,
after (16), so that the m-curve monotonic increasing and concave upward also.

Besides, not only the m-curve lies above the variance y=¢* when a(<0) is finite,
but also when a— —co, the same still endures. For, as seen from the asymptotic ex-
pansion (27) below, it holds that

limim—e¢®)=lim(m—(1—2m)) = —%+%—(—3{2+ ): —%>O.

On the otherhand the 2A-curve intersects already with the complementary variance
y=2m when m=1, ie. at a=.4810, and for a>>4810, the A-curve undergos below y=im,
because, as a—>+oo, A=~0°, while Im=~0* (Fig. 6). These facts show that m- and A-curves

are never symmetrical about y-axis (2=0), while variance and its complementary are
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cxactly symmetrical about the y-parallel y= é—, since (1—2Am)— % = %

Also the curve (Fig. 7)
(22.21) y=yp(a) =ak(a) =ap(a) |0 (a)
is of frequent use which becomes maximum at (0.84, 0.294), so that x(a)<{l. It inter-
sects with A-curve at (I, 0.2876) and x is <2 according as a=<1, but both 1, x tend 0°
2

when a—+oco. However, when a— —oco, u behaves as the parabola y= —a
When the curve y=p=al is superposed with the parabola y=a’, the resultant-curve

becomes (Fig. 7).

(22.22) y=al+a’=am/(a),

which touches y=g upside at origin having y’=1/2/z in common, and downward has
its asymptote y=—1 at left, since after (10) lim am=1lim a(¢+a®)/0=lim a¥ /0= —1+0"

a——co

holds, while, when a- 4o, y=am=~a?, so that y=qa* is the asymptotic parabola of

y=am at right.

y
\ AN
\\ AN 1
AY ~
\ > /
\ ~o /
A ~ 7
N Lo )
\ ~ o /
~_ y=am
\ = -~
\ y=1 SAL
\\ \\/\
= b 289
S =7 2b4 | ST -
N — S Vs
\\ // \5\‘
- ~_ —,
0 .84
y="
y=n
/_ 153 y=—1
Fig. 7

Also, the exponential raised to power %,a(a)

(22.23) exp wai(a) =M
behaves as g or am each increased by 1, according as a> or <0, and thus it touches
to the first asymptote y=1 at right, but to the second asymptote y=0 at left (Fig. 7).

In fact, when a— +co, 2 decays and so also M=l+%+---:l, while, when a-— —co, y—

—a*, am=~—1 and M:exp(i ):exp(f%f)zow. Naturally M’s maximum takes places

2
at the same time with s The maximum of gz is obtained from %z%(l—az—%g) =0.

Solving f(a) =1—a’—ag/0=0 with [ (a) = —2a— f(a) ¢/® by Newton’s method, we get a,=
0.8400, so that max. u=a,A(a,)=0.2945 and max. M=exp. (%X .2945) =1.1585 (Fig. 7).
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Now we consider the variable which plays very important role later on:
(22.24) z=mjo=m/VT=im (>0),
for which, by (13) and (19) or (14) and (20), hold
(22.25) al.ljg, z=limm=lim a— + oo,

1.324

z mns_i:/

above g
1:\\1'0“5\‘0“ e
o=
0 48 ¢
Fig. 8
(22.26) ulir_nw Z=lim m*/6’=1im a*/a* =1, wl_l'{g’ z=L

Hence the z-curve has 2 asymptotes y=a and y=1 (Fig. 8).
To prove (26) directly, we may proceed by successive applications of I'Hospital:
lim z*=lim m*/ (1 —Am) =lim ¥*/(@*~¥¢) =---=1lim (2a* — 134>+ 7)/ (2* — 17a* +17) =1+ 0"

However, more briefly, it can be shown by asmptotic expansions in a™*

, as a~—oco:

1 3 15 105 945 10395
(2227) ‘D(a) :(%<1_”__2_+ at - a8 PE _71'1'0' a ‘_"'>,
1 2 10 74 706 92
100 = 51— o =g~ o e = ),
l(a)=¢/(l7:—a<1+ Lllz ——374- lag - v )
4 2
m(a) =a+i=——- ( = 7a“ T 7286 — 210 +...),
1 4 24 188 1808 3488
(e 21 0 900,
- ;2 + jj ‘Z" 53188_1_;?
1 1 6 518 1716
g at (l a® . a& ”>’
o=V T"tm=——- 1 (l 41 g?z? +%§%_...),

o 230 1981
1/a=1/1/1_1m:—a(1+7— - )

These hold also for g— +co, ie. if @,—a be replaced by 1—-0 and q, e.g. 1-0=¢(a)/a,
or 0=1—g¢/a, &c.

Therefore we attain e.g. to prove (26)
i 2o lim ™ fim(1— 2 3\
lim z= llmT—hm<l — +>( e )

O~ -0

—~=1+0%
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Next, as I'=—2m, m'=1—Im=¢*, we get for z=m/v'T—2m (Fig. 8).

d 1 d di 1., 2
(22.28) _d'c%:Vl—lm iZZ . 2VT—2m3<zva%+mw(ia—>:T¢3[a (1 +6%) —m*(1—3%)].
So that 7_..=+0 and z'm:l—élmS:l—O, because of (6).

By the way we observe that both y=m, y=0¢ osculate the negative a-axis, when
a——oco, but
(22.29) m>e, m'>o’
hold in the whole domain throughout.

Although the members m and ¢ in z=m/s are both monotonic increasing, yet the
former varies far greater than the latter, what is the more remarkable as a is the
larger. Consequently the ratio m/¢ becomes monotonic increasing and the derivative
is s0 also. Thus, when a increases from —co to +oo, z as its function increases mono-
tonic as 1<z<Coo, and really (29) hold. Hence inversely a can be also considered as
a monotonic function of z in (I, o), so that any function of 2 may be also defined
as a function of z, and vice versa. If the middle point a=0 be considered, when a

runs from oo into 0, z goes from co into

(22.30) A g / / @ = % —1.3236

and thenceforth a runs further from 0 into —oo, and z restarts from z, to end at 1.

Now, it is very desirous to continue z furthermore into the internal (1~0), which
can be naturally done by taking the reciprocal of the original z defined by (24)
(22.31) Z=o/m=1"1—2m/m, so that z and Z are both essentially positive.
To distinguish them, the hitherto considered original z in (co, 1) may be said to be
proper and the continued Z in (1,0) to be improper. Analytic character of the im-
proper z follows from that of the proper z. When the proper z goes from oo into 1,
the variable a runs already over its whole course from oo into —oo, while, when the
improper z continues from 1 into 0, the variable a goes again over its whole course
in a backway from —oo into oo, as shown by the arrowed piles annexed on zZ curves
in Fig. 8. Or we may put them altogether, and call z=1 to be the turn or turning
point; to say more precisely, the proper z turns in 1, and the improper g turns out 1.

We may also conceive ¢(z), 0(z), 2(z), #(z) &c. and e.g. $(2) takes either @ (o)
=1 or @(0) =1/2 when a=co, but @(1+0) =0(1—0) =.841345 when a=—co. However
they are uniquely determined for the proper z in (I, oo) as well as for the improper
z in (0, 1), so that e.g. 2(z) is wholly positive, and properly monotonic decreasing from
0.2876 into 0, while, improperly starting from 0 ends at 0.2876, taking in the midway
the maximum value 0.298, when a=0.84, 2=0.64 (cf. Fig. 7). Thus
(22.32) 2@y >z@>0, 0)>002), ¢ <ed), A@)<AR), &c.

We notice that, as z=m(a)/s(a) is readily computable for any prescribed a, but
inversely to find 4 from a given ¢ it is somewhat troublesome, which, however, can
be interpolated by means of Tables in Sect. 23. Still to be added, we have
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dz dz _ -1 dz
(22.33) WZO, but W-— Zz (a) da <0

Hence, the proper z is, so to speak, semisynchronous with a: i.e. when a increases in
(—o0, ), so also z increases in (I, o), although their speeds are different. On the

otherhand, the improper z is contrasynchronous to a, as they move with contrary
sense : when a increases in (— oo, o), the continued Z decreases in (1, 0). We shall

write below simply @, ¢, 4, &c. omitting the argument, when the parameter is a, or
its value is obvious, however for z it is explicitely written as @(z), ¢(z), 1(z) &c.
We construct below several special functions of z, where z being defined by m/s

properly, but by ¢/m improperly. First we define, just likewise as z=m/o,

(22.34) Z=Z(z,a) =0)c=20/m=0[v/T—im, properly, so that, improperly
(22.35) Z=70/m=00/m?= (o/m)*Z=1"1=im®/m’.
It starts properly from lim Z=lim @/v/T 2m=1im 1/4/'T—ap=1+0" because, as a—co,

Im="¢/0*~ap while @>1—¢(cf. (22.8),) and becomes at the turning point lim Z=

a0, 21
i@ (1- L) (o) (142

P ---)zlim ¢(a) =0°; then restarting improperly ends

2

T

again with lim Z=lim 1/m*=0" (Fig. 9). Intermediately for a=0, ZZ%/ \/ 1-

a— + oo, z—|

= 08294, and Z=4/1— 2 /£ =04734. To find the maximum of Z, putting

{%=§3(%—;’%)= 2‘; (B—3m—m?) =0, ie. 4X+5aA+a*—3=0 (A=¢(a)/0(a))

which solved by Newton, affords the root a,=1.245, 2(a,) =.2057, Z=1.067. Also, as to
the improper Z, we have Z'=0f/2m’s, f(a)=m* (1 —¢*) +0°—54*, so that max. Z, is ob~
tained by solving f=0. Really we get a,=.2458, Z,=.48425, again by Newton.

Yy
z 1.667
] - ]
8204| o — |
Q'=H |
-1
M 6577 {
turn of @2 B :
4734 |
‘ |
|
i 7 |
Z’s turn ‘ qQ* Z '
0 1.245 ¢
Fig. 9

Next, consider the quotient formed by (23) and (34): Q=M/Z or its reciprocal
(22.36) Q~'=Z/M= @Js)exp( ~ 5 #(@ ) properly, and

(22.37) G~'=Z|M= (o0/m")exp( — 51(@) ) improperly. Hence we have firstly

lim Q‘1=lim(l——‘f)(l—l—%w)(l—%o)zlim(l—%):1~0“’; next as u=al=a(m—a),

A—ro0,2—00
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availing (27) for Z and am, lim Q limg (a) (1 +%2) exp[——é—am+%a2]=lim‘/2%(l +—1—2>

a—»—00,2-1

=.6577+0%; but this being multlphed by o'/m*=1-2/a* vyields hm Q'=.6577-0%
Lastly hm Q limZ/lim M=+0% But, as lim @/Z=lim /M= l () , @ lies below

ultlmately. Thus Q™! extends between y=1 and y=17¢2z, while @ between y=1/¢2z
and y=0. The turning-in and turning-out value are .6577+0 (Fig. 9), respectively.

Further we define a power index
(22.38) p=miu(z) =mifz2(z) =al[A(z) properly, but
bp=m*Ae(Z) =ma/p(z) improperly (Fig. 10).

At first in order to find the starting value lim ﬁzlim(m/z)x?—z), we observe first
2—00, G—co

m/z=a=1/1—zm:1*%mp, so that z:m<l+%a¢):a(l+go/a)<l»l—%a<p>2a+éa2¢. Second

Ao ol-¢la) _ ¢ (i ¢ ¢ (z) : e b 1
o= v e @ e U eJI+9E). Third ele@ =expy (o) = cxpya'e

~1 —I—%aggo. Hence, p(z—>o0) :(1 —%aqp) +e ) /2) (1 +%a3w>. But ¢ (2) /zZ(p(l —%aaw)/

a<1+~é—aq)):<p/a. Therefore we obtain as the starting value

p(+o0) :(1 —éa(p)(l —ga/a)(l +La3go): 1 +ia3<p: 1+0°
Next, as to the turning-in value lim p, after (27) holds Ao~ (1+1/a®) (1 -38/a>) =1

21, a——~

—2/a’, and since z=m/o~1+1/a?, we have /I(1+1/a2)~g%3 ;8; _:zg;;z:: i;;{;l; %

:,{l(l—ltll), where 4,=¢(1)/@(1) =.2876. Thercfore the turning-in value is

p=1+0)=(1-2/a®) A+ (1+2;)/a) A= (1 —(1—2,)/a)*/ X =1/2 —0*=3.47705— 0,

p's turn 3.477

¢’s turn & 1.199
:
e Sc—— L
8 —maem== Y
e s e P T T T T st r
3762
i 1 ———
0 1 2 ¢
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which also gives the turning-out value. Intermediately, when a=0, it hold either
2o= (mfo) o =1/2](x—2) =1.3236 and p(z) =0 (0)2(0)/2(20) =2.626, or Z,= (s/m),=0.7555,
pZo) =m*(0)2(0) /o (0) 2(Z,) =2.178. The ultimate ending value is zaoliﬁl:oj:laiﬂ m*2/eA(0)
=lim (a-+2)*A/72=+0 (Fig. 10). '

Now considered @(z) raised to power p and multiplied by Q
(22.39) 9% (z2) Q properly, or 9° 2@ improperly, ((36), (38) and Fig. 9, 10),
of which the proper value starting from lim =1 decreases to the turning-in value

800, G0

lim  =.841345%" x 6577=.8335, and then increases to end with lim (%)"Q(z)

21, g—>—c0 2—0, ¢——o0

=co. Therefore, its reciprocal
(22.40) g=1/Q0"(z) or g=1/Q07(z)
beginning with ¢(c0) =1 increases up to ¢ (1) =1.199 very slowly and then decreases
to end at ¢(0) =0 (Fig. 10). Consequently we get finally
(22.41) 90 (2) =Q7=H({2)
which starting from H(co) =1 properly, monotonic decreases to the turning value
H(1) =.6577 and continues decreasing up to H(0) =0, as shown before in Fig. 9.
Our ultimate idea is to approximate the correction-factor %),(1/z) by the combina-

tion of the above members:
(22.42) 0. (1/2) = (@ (g () "r(2) =Q " r=H"r,

where H=0"=2z0%a)exp ( — %ﬂ (a) >/m {(z), in which ais defined inversely by z=m(a)/

a{a). The full reasoning process would be developped in section 24. But, it should be

touched on the factor standing outside the power
(22.43) r(2) 2%1/ D/2, where ® denotes the determinant of a certain quadratic:

(2249 D(z,a) = 2—ppr(2) +mH [2—3pp(2) +pr ) (u(2) +2)1-4(1—pu(2))?
in which pu=2m after (38), so that 0<{pu<(l and properly z>>1, so that 0<Cu(z)<{.2876
hold (Fig. 7). Hence it can be readily seen that ©>0. For, on rewriting, we get
(22.44)" D= (2—2dm+m®) Im(u(z) +2*) +m* 2—3im—2%)

= (1=2m) [2m (u(2) +&°) +2m’]+ Amlp(2) +2" —dm+m® (n(2) +2°— 1) 1>0,
because of 0<Am=p(u) <1<z%. Besides, so far a is finite, so also D is finite. But, when
a—o, z—co, we have im=~0” and #(z) =0, so that lim1/'®2=limm=co. However,

z—00 a0

this being divided by z=m/s, we obtain limr=lime=1. Or more indetail, since, for

22—

a0, O~1—g¢laz=l, 2~¢, m~a+g, o:l—%acp:l hold, we get z=m/a:a<l+%mp),

u(2) =ap, so that D=da’¢+a’(2—3ap) =24’ (1 —l—%aﬁga). Hence r= %1/@7/2:(1 +%a5<p)

<l - éaga): 1 +%a5¢ =140° On the otherhand, when a— —oo, 7=140, we have after

1 2
@7, e=" =1+, u.z):xl(l—lj;*l), A=1D), a@=4(1-%) and =i+ G+A,

a2



The Student’s Distribution 15

—A%/d’. So at length r=%1/$5/§21/m+ B+4—-24H1V24*=.3792+0. In fact r start-

ing from r(co) =140, after taking a maximum midway, decreases up to the turning-
in value r=0.3792.

Lastly, to continue the function r(z) =%1/S’D7i into the region z<(l, we have to
take 2=1/z, so that
(22.45) F=7192, where Z=g¢/m and
(22.46) D= 2—m+m?)[2—3Am+2Im (u(Z) +2%) —4(1—Im)*
= Q—2am+m®) dIm[p(2) + 71+ m*[2—3im— %)
the same as (44) and its positivity still holds. The turning-out value becomes 7":\/ %(1

2
+3;Tl2h), the same as the turning-in value. Finally it ends when a— +co0, z—0. Here

again m=a(l+¢/a) ~co, n~ap, =1 —ap/2 and z‘:a/m:%( ——~> A(Z2) ~2=1"2m, t{Z)
3 i — 5 7
=~ 2,/a, so that 9@:2512(1—?@0):00, but r:r—anSD/ZZI—Imp:l—O .
Thus 7 remains finite>>0 throughout (Fig. 10).
N.B. Below we shall frequently neglect the derivatives of p and ¢ in regard to z,
partly because of simplifying the computations. It is clear that it is permissible about

¢, as may be seen from Fig. 10. Also, as to the proper p, it is —Z‘Z— is rather flat.

Really assumed that >0 or la| is not so large if a<C0, Z—j is also finite, and p’

dz —de— —— is tolerably small. In addition, it appears in the derivative (p@(z))’

=pA() +4 log(D(.z) and as z>z(a,) >1, log@(z) becomes small so that the last term
may be neglected. Also # is negligiblly small by the flatness of the r-curve (Fig. 10).

When p° be preserved without omitting, we should find somehow the value of p,
e.g. by means of an infinite series We have clearly

, d
— —a2/2 _.
@41 @ == e R (- D= Ta®y = ¢@da=
But, since @,C**D = " and 0,%% =g, =( except k=0, we get

_ 1 (—1) kgt 1 a"‘ @ J a  a"
(248) 0@ =0t 7-Tormr Ty 1= 3 vzﬂL 5t 40 33 T3a56 42200

alS al5 a17 al? aZl

+599040 9676800 T 165150720 3158507520 T 70601932800 "
whence, e.g. for a=1, 0 (1) =0.8413447438, exactly.
Both ¢, @ being entire (besides ‘Einheits’), the radius of convergence=oo, and the

above hold steadily for any finite ¢=<0. However, the convergence becomes slow when
la] is somewhat large, it is rather preferable to use the asymtotic expansion, i.e. if
a~+oo, taking

13 135
0@ =1+ 1, 4]

at at

stopping at the term before that which becomes absolutely minimum, while, if a~—oo,
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the above —1 will do. In general, for moderate a, denoting 12/z by ¢, we obtain
from (47) (48)

0 (@) 1 2 S )
(22.49) o) =59 = [l—oa+(c —5 )& (-2 e (o —go+g T
and whence furthermore m(a) =a+4(a), ¢’=1—24m, &c. can be also given by infinite

series, which all converge for any a>>0.

As is shown later on, the maximum of F=log(x®*(z)q()/z) —%(x~a)2 —ixZ/z2

yields when F,=[l—x(x—a) —x’7*}/x=0, F—d plog @(2) ——(l—4) 0. Hence, if the

C.L.T. be affirmed, the first equation affords already x,=m, z,=m/s for the coordinates

of the muximum point, and accordingly the second equation reduces to gé(‘b log®(z))

=4 log @(2) +pA(z) =2¢6. Here however the term p" log @ (z) has been neglected in the

text, for the sake of simplicity. If this term be preserved we obtain by integration
m(a) m (0) 1 s (L N

9250) p log m( G )) —polog @ (0(0) ) jz(a) (a) < do= Lx[ua (62 )m ]da,

which integral can be found by means of series in g, if ¢ moderate, or else, more

generally after Gauss’ method of numerical integrations. In particular, if a—co, the
corresponding z=m (o) /s (o) becomes also +oo, so that log @(z) =0 and (50) reduces
to

(22.51) polo gl/w(’”%) sl {r+0 —(—-—1) m Jia

7!‘/2
:f o sec *0d0, if a=tand,

0
which is again capable to use Gauss’ method. Hence, combining (50) and (51), the
values of p, p, can be determined, whenever a is prescribed. Lastly, taking
_9@ g Z

HO

the further process continued in the same way as in the text, leads just to the same

(22.52) 07 (20) =1/Q (20) 8" (20) , the same form as (40),

result.

23. Numerical Tables for Several Values of @(a), A{a) efc. computed for Assigned Values
of a. They are inserted here partly in order to explain the foregoing theoretical re-
sults and partly to make use in the subsequent sections. As the original calculations
were made with many figured numbers, they are generally contracted into 4 or 5
efficient figures for brevity. Naturally the approximations being roughly of the first
order, it is quite nonsence to treat so many figured numbers. Notwithstanding, since
ultimately we concern with so large n-sized sample, as »=100, 1000, &c., which become

power-indices, it requires rather tolerably many figures.
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TABLE I
(1 2) (3) (4) (5) (6) (7 8
No. o
a 0 (a) @ (a) @) =g/t | pl@)y=ar |m=a+2 mi=1—6® | o=11-im
1 oo 1 0° 0* 0 ool 0* 1
2| 5 .9871335 | .0°148672 » .0°743360| 5+ ¢ .0° 743360 .9%62832
3| 4 .9683 .0°133830 | .0%133834 .03535336| 4+ ¢ .0%535354 9873232
4| 3 .928650 .0%44318 .0%443784 .0133135 |3.024438| .013333 .993311
5( 2 .977250 .539910 .055248 110496 12.05525 | .113548 .941516
6| 1 .841345 .241971 .287600 .287600 [1.28760 | .370314 .793528
7| 1.64488 .95 .10313 .10856 .17857  |1.75344 | .19035 .89980
8| 1.28156 .9 .17550 .19500 .24990  |1.47656 | .28793 .84384
9| 1.03645 .85 .23316 .27431 .28431  |1.31076 | .35955 .80028
10 .84163 .8 .27996 .34995 29453 |1.19158 | .41699 .76355
11 .67449 .75 .31777 .42370 28578  (1.09819 | .46530 .73123
12 52441 .7 .34769 .49670 .26047 |1.02111 | .50718 .70201
13 .38532 .65 .37039 .56983 .21957 95516 | .54428 .67507
14 .28335 .6 .38634 .64390 .16313 .87725 | .57774 .64982
15 . 12567 .55 .39580 .71964 .090437 | .84531 | .60832 .62584
6] 0 .5 .39894 .79788 0 .79788 | .63662 .60281
17 | —.12567 .45 .39580 .87956 —.11053 .75389 | .66308 . 58044
18 | —.25335 4 .38634 .96585 —.24470 .71250 | .68817 .55842
19 | —.38532 .85 .37039 1.0583 —.40777 67294 | .71214 .53652
20 | —.52441 .3 .34769 1.1590 —.60778 63456 | .73544 .51435
21 | —.67449 .25 .81778 1.2711 —.857%4 .59663 | .75838 .49155
22 | —.84163 .2 .27996 1.3998 —1.1781 .55817 | .78133 .46762
23 |—1.0364 .15 .23316 1.5544 ~1.6110 51796 | .80512 .44145
24 |—1.2816 .1 .17550 1.7550 —2.2491 47344 | .83089 41134
25 |—1.6440 .05 .10313 2.0626 —3.3929 .41778 | .86174 .37183
26 |— oo ) = —o ‘0 ] 1 0
217 |—.67449 do. to No. 21
16°| 0 y p 16
11" .67449 p P 11
61 Vi Vi 6
1| o Vi Vi 1
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TABLE II
5 ) ) ) ) m 1 [
No. 0@ 20
z=mfo. o (2) ¢ (2) 2@ p@R) | M=eredr | Z== T=T00 QoM|Z

1] oo ’ 0 \ 0 ‘ 0 1 1 1

2| 5.0t20071 | .9971338) .0°74329] .0°74320] .0°74329| 1.0°37168 | 1.0°34301 | 1.0°28665

3| 4.0°1205 | .946846 | .0°13366 .0°1337 | .0853292] 1.0°26770 | 1.0°23604 | 1.0!31656

4| 3.02467 .928705 | .0°41144) .0°4567 | .0212461) 1.0°66813 | 1.0%53745 | 1.0°12098

5| 2.18291 .985478 | .0368281] .03737 | .0815773 1.056803 | 1.03745 1.01816

6| 1.62266 | .947663 | .10695 | .11286 | .18313 | 1.15465 1.06026 1.08908

7| 1.9487 .974334 | .05974 | .06131 | .11948 | 1.0934 1.0558 1.03562

8| 1.7498 .959924 | .08648 | .09010 | .15764 | 1.1331 1.0666 1.04382

9| 1.6379 .049277 | .10399 | .10955 | .17943 | 1.1523 1.0621 1.08533
10| 1.5606 .940690 | .11671 | .12407 | .19362 | 1.1587 1.0477 1.10587
1] 1.5018 .933424‘ 12917 { .13838 1 .20782 ’ 1.1531 1.0257 1.12473
12| 1.4546 027101 | .13852 | .14041 | .21782 | 1.1301 .99714 1.14236
13| 1.4149 021448 | .14871 | .161390 | .22835 | 1.1604 .96286 1.15909
14 | 1.3808 .916320 | .15378 | .16782 | .23173 | 1.0850 .92333 1.17507
15| 1.3507 911603 | .16023 | .17577 | .23741 | 1.0463 87882 1.19053
16| 1.323 907179 | .16615 | .18315 | .24242 | 1. 82945 1.20562
17| 1.2088 .002013 | .17164 | .19010 | .24686 .94623 77527 1.22052
18| 1.2759 .899002 | .17678 | .19664 | .25089 88484 .71631 1.23528
19| 1.2543 .895131 | .18167 | .20295 | .25456 | .81556 65235 1.25019
20| 1.2337 .891340 | .18639 | .20911 | .25798 .73795 58326 1.26520
21| 1.2138 887586 } .19008 ‘ .21517 ; .26117 1 .65137 50860 1.28074
22| 1.1936 .883680 | .19568 | .22144 | .26431 55485 42770 1.29729
23| 1.1733 .879660 | .20043 | .22785 | .26734 44686 .33979 1.31511
24| 1.1510 .875133 | .20570 | .23505 | .27054 | .32480 .24311 1.33602
25| 1.1236 860406 | .21221 | .24409 | .27426 | .18333 13447 1.36335
2% | 1. 841345 | .24197 | .28760 | .28760 | 0 0 1.52035
21| .82385 .794985 | .28414 | .35742 | .29446 .65135 34520 1.88698
16| .75551 775026 | .29989 | .38694 | .29234 | 1 47344 2.11220
1| - .66587 .747250 | .31962 | .42773 | .28481 | 1.1531 45475 2.53678
6| .61628 | .731144 | .32793 | .44852 | .27810 | 1.15465 21782 2.86732

| o 5 .30804 | .79788 |0 1 0 o
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TABLE III
[y} 18 19 @0 @ ) QZ)Q_ . 333 . (23_
1 nlog Q™ - n=Q"r
Nol p 2| gr@) | g=yor2| —Lym| 52,
©#R®) Z for the example n=100

1 1 1 1 1 0 0 1 1

2 1.0%955 .9%71335 1.0°26 1.0%83 —.0660036] 1.9999340 .999848 .99993

3 1.024573| .9*68316| 1.0728 1.0°20 - .0%72956 1.9927044 .983342 .98531

4| 1.06948 .9286155| 1.0%865 1.0264 —.0%56414 1.943586 .878185 .90158

5| 1.39191 .979844 1.0%2237 1.0431 -0.%278160 1.21840 .16535 .63086

6| 2.02214 .89700 1.0237 .95125 —0.370383 4.29617 .031978 .0%1881

7 1.5932 .95942 1.0065 1.0050 — 0152004 2.47996 .030197 .03035

81 1.8264 .92797 1.0143 .9776 —.0186256 7.13744 .013723 .01342

9| 2.0038 .90095 1.0227 .9566 —.0355618 4.44382 .032779 . 03,266
10| 2.1536 .87662 1.0315 .9285 —.0437041 5.62959 .014262 .0396
11| 2.2390 .85705 1.0379 .8999 —.0510483 6.8952 .0°7856 .0%707
12| 2.3338 .83807 1.0445 .8753 —.0578030 6.2197 .0%1658 .0%145
131 2.3835 .82284 1.0485 .8530 —.0641171 7.5883 .083875 .08331
14| 2.4932 .80424 1.0581 .8414 — 0700637 8.9932 .07 9845 .07828
15 ] 2.5623 .78888 1.0648 .8105 —.0757404 8.4260 .07 2667 .07216
16 | 2.6261 .77428 1.0713 .7908 —.0811744 9.8826 .087631 08603
17 | 2.6861 .76008 1.0780 L7713 —.0865449 9.3455 .082216 L08171
18 | 2.7429 .74675 1.0841 L7530 —.0917654 | 10.8235 .0% 6660 .0°501
19| 2.7976 .73350 1.0905 L7317 —.0969760 | 10.3024 .0°2006 .0°147
20 | 2.8508 72042 1.0971 L7156 —.1021592 | T11.7841 .01%083 .01%435
21 | 2.9038 .70731 1.1039 .6962 —.1074610 11.2539 .01°179 .010124
22 | 2.9561 .69381 1.1110 .6759 —.1130370 | 12.6963 .011497 L0134
231 3.0116 .68077 1.1170 .6684 —.1189621 | 12.1038 L0127 .01285
24 | 3.0712 .66746 1.1181 .6263 —.1258130 | 13.4187 012262 L0216
25 | 3.1421 .64329 1.1402 .5883 —.1346074 | 14.5393 .0%3346 L0320
26 | 3.4770 l .54844 1.1993 .3792 —.1819436 19.8056 .0%%64 01824
2171 2.5755 .55383 .9564 4144 —.2757673 | 28.4233 .0%726 L0771
167} 2.1777 .57407 .8247 .4664 —.3247350 | 35.5265 .0%434 L0342
117] 1.5916 .62127 .6348 . 5656 —.4042828 | 41.5717 04037 01022

6| 1.3315 .65903 .5292 .6371 —.4574761 46.2524 .0%%18 .0%1

1] o K o 1 - —oo 0
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TABLE IV
N (] 00 @) 09 09 @0 (53)] @) (85
Yl e p=daima) 0R) | () | Q= |pR)=2@) | prR) = p | P
0 (2)/9(2) A(a)m(a)

1] o 0 5 } .39894‘ 79789 ‘ 0 0° 0 0
7|5 19° .570260| .39104 | .67507 13501 0974336 | .0155060].0137169
3| 4 .24992 | .508319| .38676 | .64641 16154 .0°53535 | .0733140].0221422
v 3 .33061 | .639526) .37772 |  .60001 .19836 013333 | .067216 |.040330
512 .45810 | .676559) .35970 | .53166 24355 113548 | 46622 |.24787
61 61627 | 731149 .32993 | 45125 27811 37031 | 1.3315 |.60084
7| 1.64488 | .51316 | .696092] .34971 | .50239 25783 .19035 | 0.73828 |.37091
811.28156 | .57149 | .716168| .33883 | .47312 .27039 .28793 | 1.0649 |.50382
o] 1.03645 | .61054 | .729234| .33111 | .45405 .27720 .35055 | 1.2971 |.58895
10/| 1.84163 | .64078 | .739173 .32489 | .43953 28165 41699 | 1.4805 |.65072
11| .67449 | .e6587 | .747260| .31961 | .42771 28480 .46530 | 1.6338 |.69879
12| .52441 | .68747 | .754114] .31497 | .41767 28714 50718 | 1.7663 |.73773
13| .38532 | .70676 | .760152 .31076 | .40881 28893 54428 | 1.8838  |.77012
1| .28335 | .72422 | .765526] .30602 | .40098 .29036 57774 | 1.9716  |.79047
15| .12567 | .74036 | .770471] .30330 | .39366 .29145 60832 | 2.0872 |.82165
16| 0 75652 .775023’ .29989‘ 38694 ,29234 63662 | 2.1777 |.84264
1771— 12567 | .76094 | .779050| .20661 | .38073 .29314 66308 | 2.2620 |.86121
18'|—.25335 | .76376 | .783419| .29343 | .37455 .29356 68817 | 2.3442 |.87802
19'|—~.38532 | .79726 | .787360| .29031 | .36871 29396 71214 | 2.4226 89324
20/ |—.52441 | .81057 | .791202 .28723 | .36303 .29426 73544 | 2.4993  |.90732
21|~ .67449 | .82386 ‘ .794988‘ .28413] 35741 29446 .75838 ’ 2.5755 ;.92051
99| 84163 | .83780 | .798927| .28086 | .35155 29453 78133 | 2.6528 |.93259
9% |—1.0364 | .85230 | .802075| .27744 | .34552 29449 80512 | 2.7339  |.94462
ou|—1.2816 | .e6881 | .807521 .27353 | .33873 29429 83089 | 2.8234 |.95637
25 |—1.6440 | .89000 | .813267) .26848 | .33013 29382 86174 | 2.9320 |.096824
9%/ |— oo 1 ‘ .841345’ .24197 | .28760 .28760 | 1 ( 3.4770 ]1

In the same way as above Table III (22)~(24) made for n=100, we may calculate
b, for several values of 7. The results are given in Table V and Fig. 11. In particu-
lar, when z—co, B,(r) behaves just as Dirak’s 8-Function: b, (r) =1 for ==0, but=0
for r#0, which corresponds to what the central limit theorem enunciates, ie. the
sampling mean of a sufficiently large size concentrates about its parent mcan with

almost vanishing S.D., so that it hits the true parent mean.
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TABLE V
@) (30 60 ba(z) for
No.
z =1z | a=10 \ n=25 { n=50 |n=500 ‘ 2=10° | n=10* ‘n:lO“ .

1] 0 1 1 1 ‘ 1 1 1 } 1 1
2| 5.0¢20 200 | 1.0t7 |1.06 | 1.0°3 | .9908 | .0986 | .9850 | .4572 0
3| 40012 245 | 1.0°32 | .9978 | .9936 | .9213 | .8471 | .1868 | .0%11 0
4| 3.0247 .331 1.0132 | .9936 | .0518 | .5361 | .2800 | .0723 | .0%47 0
5| 2.1829 .458 8713 | .9199 | .8112 | .0°107 | .0°16 | .0°710 | .0™%1 | O
@ | 1.949 .513 7082 | 4123 | 1746 | .or252 | .6 | .owip [ owwes] o
® | 1.750 571 6367 | .3347 | .1145 | .0°476 | .02 | .05 0
© | 1.638 .610 4218 | .1235 | .0159 | .016 | .0%2 | .0%2 0
© ! 1.623 .616 4054 | 1128 | .0134 | 0129 | .0%9 | .0%19 0
10| 1.561 .639 .3395 | .0750 | .0°61 | .0%13 | .0%2 | .0%7g 0
1| 1.502 .666 .2778 ’ L0476 [ 0025 | .0m27 | .0m8 | .0%03 0
121 1.455 .687 2312 | L0314 | .or11 | .om1 | o1 0
13| 1.415 .707 1949 | .0213 | .0°56 | .0%75 | .0%7 0
14| 1.381 .72 .1696 | .0149 | .0°26 | .0%78 | .0%7 0
15| 1.351 740 1417 | .ot04 | 0013 | .oerir | Lot 0
16 1.324 755 .12201 L0274 } 047 } .0%02 ‘ L0917 } 0
17| 1.200 .769 1052 | 253 | 004 | Lot 0
18] 1.276 .783 L0910 | .0238 | .0t1 | .01 0
19| 1.254 797 0784 | .0228 | .06 | .0%2 0
20| 1.2%4 811 0681 | .0220 | .°3 | .0% 0
21| 1.214 .823 .0586} .0214} 052 \ L0531 0
2| 1.1% .838 0501 | L0210 | .ov8 0
23| 1.173 .852 0432 | .07 | .0°7 0
2| 1.151 .869 0346 | .0°4 | .0°3 0
25 | 1.124 .890 0265 | .0%2 | 051 0
2% | 1 1 .0258< 001 }.093 ‘ ‘ 0
orr| 824 1.12 087 | 075 0
16 756 1.32 02 | 081 0
1| .666 1.50 065 | Lo 0
6| .616 1.62 062 | .0u2 | Lomg | Loy | Lowtg | Lowny | gumsy|

rl o = ' 0 [ 0 ‘ 0 0 0 0 0 0

N.B. Since 0<v<{V'n—1, c0>z>1/3/n—1 truly, it must be already 5. (r) =0 for r=
V=T in reality; e.g. 0="1;0(3) =05 (4.9) =15 (7) -+ &ec.
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24. A Trial Determination of Y. under Affirmation of the C.L.'T. about the Sampling Distri-
bution taken from a TIN.D. Now we are to explain under the assumption that the C.L.T.
exists about our sampling distribution, how reasonably it is determined the asymptotic
approximation for 9,(l/z) in the form (22.42), i..

(2¢. ba(1/2) = (07 (2 g () "r(2) =Q"r,
where p, ¢, r denote some positive functions of z, however, as have been seen in Sect.
22, 23, the variations of p and ¢ being slight, their derivatives are neglected.

We consider the total #z-joint probability taken in the whole domain G': 0 <&<leo,

1Vb=1/V2-1<z<c0;

(24.2) Pr=a| exp[—5 G-0'~ 5 5] Zr0" 0" @1 @) duds
=anf[ 1"(5.2) -8(5,2) dadx, z

where Ag PH

f =§€D” @)gR)E,

¢
_r@)
©43) (87 x> / .
1 1 %
E:exp(—f(xwa)z——??), L

ca=ne"*Im1V/ 20" (@), a>=<0.
To compute the integral after Laplace, putting
(24.4) F=logf 1/b

8]

0 a
=log %QP(z)q(z) ~% r—a)*—5 e Fig. 12
we have to find the point P;(x, z,), where F becomes maximum, and x, is presup-
posed to be the sample mean E(%). First writing
(24.5) F,=1/z— (x—a) —x/7"=0,

we obtain the same Agnesi as defined in (21.17):

Eon e 3 ._atVa@+4(1+1/z%)
(24.6) Z.Z—l ¥(x—a), le. z—“vm, or x_&2(1+1/z2)
with the vertical asymptote de:%(a-l”'l/az—F‘l-) =2/(V'a*+4—a) >0, which tends £=0,
when a— —oo, but extends indefinitely remote when a— +co (Fig. 12).

The sample-size being sufficiently large, we may assume that the C.L.T. exists, so
(24.7) Xo=m=a+24,
holds, where m denotes the parent mean of the T.N.D., and which substituted in 6)
yields immediately the coresponding z
(24.8) Zo=m[V' T~ im=m/a,
that coincides with the proper z(>1) in (22.24). Thus already (7) combined with (8)
afford the coordinates of the maximum point P,. Further

(24.9) Fo=—1/z4p2 ) +x°1z°=0
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holds under neglections of #’, ¢, which reduces to

(24.10) #/z*=1—pnu(z), a pseud-hyperbola, P.H., whose positive branch only being taken.
Equated (10) and (6), yields

(24.11) pr(z) =%(x—a) =ma after (7), so that p=mi/u(z)

coincident with (22.38). And when a— —oo, z—1, we get p—1/p(1) =1/.2876=3.744, m—0,

l—oo, but when a— +co, z—co, it hold p-—1, m—co, A—0. Hence a point on P.H.

starting from (0,1) extends indefinitely along its asymptote z=x. Since (5) yields already

Eo=exp[—% (1—ad) ], the max | is attained by

(24.12)  exp F(m, zo) = (m@® (20) ¢ (20) [20) exp(—~%(1~,u(a) ), where u(a) <<l after (22.21).
Now, to integrate (2), writing as before

(24.13) g=m+E=m(1+u/N), z=z+C=21+y/N), N=17,

we see that, by the same reasoning made in (21.10), we have only to integrate over

the small quadrate Q with center P and side 28 (Fig. 12): As N=1/n is sufficiently

large, we may expand several terms in power of N and neglect those with negative

indices, and obtain approximately

(24.14) Pre=c, exp (nF(m, z0) j [ exp [n(F(, O F (m, z0)] "2 dgac

m/nzew" (a) (mwpqexp ( ; —pula) >>nj-fj:mrv::nexpn [log[(l + l) (1 + ]—s—)_la)"(zo(l +%)>/

@) |-y (n(1+5)—a) +3m-a’—5 Px () () 1) ey (=),
whose coefﬁcmnt after (22, 23, 34, 39 and 36) reduces to

L 1rm0? (20)q (20) L My 1
(24.15) V2l 2.9 exp2,u(a)] Ty 2 (Q Z) A

by using the notations in the previous section. Executing the integration we get

(24.16) J2= 207 (20) IT L exp[ - (Au® +2Bup + Cv*) ]dudz),

where coeflicients of linear terms Nu, Nv in the brackets have reduced to naught in
view of (6) (10) (11), and

(24.17) A=1+m*+0">0, B=-24", C=pu(to+2) +30*—1, zo=mlo, t=p0),
whose determinant D=AC—B* being nothing but (22.44) becomes positive So we get

(24.18) fmfm = fwéxp< — % Qu >duj oQexp (— %(v g > )dv = 1/D

Therefore, the total #z-joint probability arrives after all
(24.19) Pre E(x,) = 207 (20) \/1%:1 by definition of 7 in (22.45).

Similarly, by multiplying £=m (1 —u/N) to the integrand of (14) or (16) and integ-
rating, we obtain
(24.20) E(®) =m,

what the C.L.T. claims. Thus our approximation (1) stands in good stead.
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However, we have atove neglected all negative powers of N=1"». Let us seek a
more precise expression taking some negative terms, up to O(l/n), say, into account.
Writing in short

(24.21) AF=F(m+§, z2+6) —Fm, 2) =5F(, ©)
. _ a* ip] H -_@Hi(x_’_z)
where Fk _:L+_7Z=k ‘L |L S 4 with Qg = axiazj T=ms z2=z0=m/o

and to point out the order of magnitudes in evidence, £, ¢ are expressed in u, v by
(24.22) E=mu/N, C=zw/N, N=1v"n, as mz, is #0.

It was already a,,=a,,=F,=0 and there remains the quadratic

(24.23) nFy = (@308 +28,,6C + 80sC")
= %[ 2+am)u’ —26"uv+ (P (o +20") +36°—1) %]

= — & (A" + 2Bus+ Co") = —Q, say.
To compute up to 0(1/n), we are still further to take nR=nF;+nF,, but no more:

(2428 cxprR=141F(, O +nF,(€, O +yn'FEE, € +0(Un)

1 1 1
=Lt S D) 4 filw ) +0(L),
where Fj, F, being homogeneous in §=mu/t/n and {=zw/V n with degree 3 and 4
about 1/1/n, f; and f, are independent of n. In detail e.g.

(2425)  fim g0+ (o~ w) g ben 2t G— Dzt +20) +126° 20, &e.

The hitherto used determinant
D=AC—B*= (—m’az0) (—20’a02) — (—=m2011)* =M*20* (FeoFos— Fe") | 2=y 220
was a particular one pertaining to the quadratic @ about #, v. Now it needs to treat
the general determinant
D=D(x, 2) =m’20" Faolos— Fes") | a=mass s=s0420
With their general arguments it holds

m Fop=—A+m’ (as0€ + a2:8) +%m2 (44052’*‘2513156 +422C2) +0(1/n) )
mzol e = — B4+mz, (4,6 +a,,8) +%m50 (031§2+251225C+a1352) +0(1/ﬂ),

2o o= — C+20" (4126 +aosf) +%Zo2 (@26 +2a156C + 3,48 +0(1/m) .

Thereforc we obtain
(24'-26) @ (x =m- C; Z=2o + C) = mzzo2 (Fa::szz - F.rz2) TEmELy 2TZ04L
=D — (Azy’a,,—2Bmzya,, + Cm’ay) § — (A20°a0s —2Bmzoa,, +Cm*as) €

1
- <%A50202z —Bmzyas, + v Cm*a,—m*zy’ (@19850— 21%) >$2

1
- (‘Q_Azozam —2Bmzya5, + Casias, —m*20" (@005 — G1551) >EC
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1 .
- (%AZozaM —Bmzya,, + 9 Cm’ay; —m*20" (@n8os — a12") >C'

=D —Lu, 0)/v' 7 —M(u, v)/n+0{1/n),
where
(24.27) L(u, v) = (Azo*a,, — 2Bmzoa,, + Cmlase) mu+ (A20°aos — 2Bmzea,, + Cm’az) 20, &e.
Consequently

o Ty M A bt ()]

where d,, d, are of degree 1, 2 with regard to u, v. In detail,

1 :
(2429) dy=5[pmo(to+2s®) +0' = 3m'a 1+ Bl ghrme@motBmar +2* (&1—1) (L+a* +m)

+1),uo(,u0+zoz)az+m2(602—l)+9a"—8¢;2—1], &e.

In view of (14)-(19) and (21)-(27) the expectation of #'=m"(1+u/N)” expanded up
to 0(1/n) is

(2430) EG) ="vD ”Qumﬁiﬂ( f,z / 291~ —- i)(” >u1+(u+v(§l;§l\z;+uv/N”

VDJ_J -Qﬂ[l+ L Koo ) Jtude,

where
24.31) H.=wvu—u—v—d,+f;

K= gy (o= D+ oo +dy u—u—2) —do+ (u—u—0—d,) fo+ fo

But H. being of odd degree about u, », the corresponding integral reduces to naught.
So that on writing

(24.32) ‘é——f—f:’ | iome‘Q/ZKy @, o) dudo=Fk, Vol rwe"e’zdudv: 1,

we obtain finally

(24.33) E@) =m"(1+k/n+0(1/n).

In particular for v=0, 1+k/n=C,"" say (#1), which discrepancy from 1 appears
because in our foregoing approximation for B, the magnitude 0 (l/n) has been ignored.
Really, e.g. r(z) should have been multiplied by

(24.34) Co=1—ko/n+0(1/n).
In fact, if this factor multiplied throughout, we obtain
(24.35) E®) =m" (1+k/fn) (1—ko/n) =m” (1 + (ko —ko) /n) +0(1/n) with

2436)  h ko_%frl[_wf_w ~o v D+ (fimdy) Jduds

= %u (v—1)C/D+vK,
where

(24.37) g=YP [ [ u( fimdy) e duds,

which value if wanted may be found from (25) (29) by aid of the following table for
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(24.38) Li:%fn [ et duds.
) ’ 20 16L& 0| G D @22 (1, 3)
I, | ap | -Bp| @D -BD| YD | -BD-BID’

Thus we get ultimately

(24.39) E@®) :m"(1+%<u_l %+K)>. In particular,
(24.40) Ex) =1,
E® =m(1+K/n)=m
22y _ 1C
B =m(14+-{(F+ 2K)), SR

(24.41) Variance D*(%) =E(#) — E(#)*=miC/nD,
__m_/C
(2442) SD. ¢5= 1/;\/ =z,

The distribution of u=v"n (—m) /m, or u/\/g: (E—m) /o, is given by (30) with
yv=0:

o0 s B[] -G Ba) 50 B0
-/ B B ivo(1)
g—m __i—E®

(24.43) jg 217@: «7% s

being nothing but the standardized %, the C.L.T. concerned with the sample mean %
taken from a T.N.D. has alrcady been thereby reassured.

But

25. The Simplified Student Ratio z=2%/s (or t=s/%) as a Random Variable, and Its Proba-
bility Function. First we consider the truncated Laplace distribution f(x) =¢™°(x>0) as
universe. The Zs-joint sampling f.f. being

(25.1) €AV =1L 0, (s/R)dids = 1" 8 B, (v) T didr
with L=2y72"""2"/I"(n—1)/2), the total probability becomes
b=
@2 1=if e IR RO
<0

Thus # and 7 (or 2) being independent, we may integrate the first half about % or
&=n% and obtain a constant

n

I KAl e e e )]

which however may be approximated asymptotically as

:x/%_\/%nsx/gA“" say.
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However, the ratios of the true %, to the last approximation are e.g. 1.102, 1.019, 1.009,
-, 140 for n=10, 50, 100, ---c0, so that, unless 7z is quite large, rather the true
expression is to be recommended. We have therefore

@4 1=k Tn@e =k w(1)%

This indentity shows indeed that the simplified Student ratio r==Z%/s or 2=s/% conceived

quite apart from several concrete distributions, Laplace or T.N.D. and such like, may
be seen as an independent random variable with the f.f.
(25.5) J@) =kba ()" or  f(2) =kaba(1/2) /2"

(=) ba(2)
f(7) flz)

N

0 1 5 ° 01/b 1
Fig. 13

The depression in the first half interval 0<r<{l or the last half interval 1<{z<{co is
caused by the introduction of the factor «"* or z™, while in the other half, 1<{r=b%
=1/a—1 or 0<{1/b<2<(l the appearance of this factor influses so to speak the dying
frequency not to damp so suddenly; really there the amplitude falls into a strong
decay, as was seen in the end of Sect. 21. Consequently the whole fif. is reduced
to a usual bell-shaped configuration (Fig. 13).

Truly, if our asymptotic approximation for %,(1/z) be applied as in (24.1), the ex-
pectation E(z)” (v=0, 1, 2) should be

@6 B =[ @ik (100090) 2r0d=k

/b
In order to make Laplace method applicable here, we decompose the integrand to the
main and two subsidiary factors as follows:

(25.7) Jo= I i/b Fg (2)dz + j Tf"“‘h A T

(25.8) f=0°(R)qR) [z g=2"1R), h=1'Tr@2), v=0,1, 2
These factors are absolutely integrable’in the respective subinterval 1/6<(z<{1, 1<z<{co,
since, we have [=1/z0(z) (cf. (2241)), Q7' ()<l after Fig. 9 and r(z) =%1/SD_/2<1.2
by (2243) and Fig. 10. Writing as before
25.9) F=log{ =plogh (z) +log g (z) —log z,
we get the derivative about z
F=p2(z) -z
under assumption that p’, ¢" are negligibly small. Hence, making
F=pa(z) —1/z=0, iec. puR)=2@ma) =1,
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it is seen that the parameter a~—co and z=1 already. In consequence we get
(25.10) F'=0, z=1, 2(1)=4=p1=0.2876, p=1/1,=3477,
F=—pa(A+2) +1/2*] ;21 =—4,<0,
F,""=23*+32,—2=-0.9718,
F'V=8-32,(1+42,+21*) =6.002, &c.
Accordingly F becomes maximum at z=1, a~—oco. Take a small interval with center
at z=1 and breadth 26, and put

1-4§ 1+§ 00
(25.11) Jo=| w[ j — (&) -+ (id) + (i),
1/b 1-4 1+4
Now that in (i) and (iii) the inequalities 0<(j/f,<(e™*<{1, i.e. F(zg) —F(z,)<—e<<0 hold,
() <exp nf[exp nlFQ) ~ F)-gde<ite| gde=0(1ja")

and similarly (iii)=0(1/2"), so that they are all negligible for sufficiently large n. Hence
we have only to treat

@19 =1 exp n(F@~F) - gz

First to evaluate f, we remind formula (22.27). As z= hmm Ea; , we obtain

10 =07 == Zexp( — 5 4@ )= 2D exp( —52@ )
oot 3o G412
1,

~ Jef(y.1_ .
_\/2_7r<1+ a ")(1 a ) \/27r< 2a’ )
and consequently
(25.13) f,= lim T(z(a)):J§=.6577=A (cf. (3)).
a—>— o T
Further we require to calculate (i) up to 0(I/n). For this purpose we put
25.14) z=1+C=1+0/N with N= ¢—nzl_o 37921 %, »*=NC'= n/IlCZ

and expand every factor in the integrand of (12) up to I/N¥®. Now in view of (10)
we get

a3
(25.15) Jn:: (ii) :Anf 6exp[—%llcﬂ—l—%ﬁ'{"c3 +2£4F11vc4], (1+&) v-le de
whose main factor becomes

(25.16) ‘"2[1 + —zz o B Syt +—z) ] where

~FIII B
a="¢ \/l —2.970, 3_6“_12094

We should further compute subfactors Really the first subfactor becomes
(25.17) 1+0)'= l+(v—1)C+ =1 -2+

=1-3+¢&% 1, 1+¢, accordmg as v=0, 1, 2.
The second subfactor is after (22.44)
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(25.18) V?D(Z)/Z—Vz[(z +2(2) A +m*+6°) (1—-6*) —m* (1 ~30") — (1-0")"]"",
which is developable in ¢ as follows: Since in the vicinity of z=1 we have by (22.27)
15 1 17
1<z—mgzg—-1 Ao 8 well as 1>z= JEZ; 1—— ot

so that the deviation of z from 1 is to be seen as almost {===(1/a’~8/a") for z=1.
But the values of m* and ¢ corresponding to these z=1+¢ are obtained again by
(22.27) and those terms rearranged after power of ¢ yield

1 8 1 8V 1 8 .
mi= =it 4 ) +88(?+---> ~ || +42 4+ as well as
1 8,1 8Y ] s
62——?—?4-2(?—?) +82(F+) =[¢|+28%+
On the other hand
2@ =AU+ =h— AN CH(GaT a0 )

#(2) =22(2) ’—“A—llzc~(xl—%ﬁ—x,3)C2+~--, 2=1+20+2%

All these substituted in (18), we obtain

(25.19) DA+ =ht @ k- (14— A2+ for 0,
2 3 2 2 2
— e+ (TS A+ A )= for £>0.
And in these expressions {=v/N being substituted, we get finally
]2 Mv 1
(25.20) VBUTOR=,/ ‘[1+ +Aro( D)) where
g 1—4, 2 9 11
L_/11 5 M=-— 2+2/I +8+8/11 for >0,
P , 7 3 A 3
L'= 2(I+/11), M = % +8+2+8/11 for v>>0.
Now we can compute E(z"): First for v=1, we get from (3) (6) (15)-(20)
_ =L (7, M Le o
(25.21) E(g) _‘kan—'_‘/ J [1+NU+1/*Z) +yrY +(1/nN+ . vt + v]dv

+1—/1Tr:”~_m// (L, Min » =~ replaced by L,M’),

in which however we need the identities:
0

jm.,:L v“’“e‘”’dv:-—J’ v =%I’([J+l), e.g. h=j=1/2;

—00

as well as
=3 0 g = P
].211=J-0 Uwe_mdv:'(_ Y :‘é‘l’(j)-ﬁ-—é—), €.g. j(,:l/—Ql j2= n', j4:%1/_7?, jSZIS%E'
Hence, executing integration (21), we obtain
_ L-L  M+M  3(L+L)a 26\ 15’
Sy EQ =gy + gy + 8( VAN T >+16 n
=14+A n +Bi/n, say.
Similarly we get for v=2 and 0
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L+L 3a A B2
(25.23) E(zz)—‘E(z)‘F iN? 4N1/n 1+.|/n
| o L¥L 8¢ 1 A By .
@2 Bey=Em=-LHE - 8%, LB,

However it should hold E(z%) =1. This apparent discrepancy arised because in our
previous approximation no negative power of z or N has been regarded. To take

those terms into account, it must be multiplied by

(25.25) Cozl——;?-k%é‘. And thus we get exactly up to 0(l/n)
(25.26) E(@z") =1 exactly; E(z) =1+ (B,—By) /n; E(Z*) =1+ (B,—B,)/n.

So that the variance and S.D. are

(25.27) D*(2) =E@) —E(2)*= (By+B;—2B,) /n=1/2N*=1/nk,,

(25.28) 0. =1/1/nd;.
Therefore the exact sample mean is

BBy LAl Sa_ |
(25:29) E@ =1+ =+ I TN
] R P 2,238
=+ (1—21—2 rgB)=1422

which is larger than 1, yet tends 1 for tolerably large n. Hence the standardized z is
-1 _
(25.30) x=f (=0 7).

But, after (21) the f.f. of v for large n being 171—(; ~, that of x tends V%e"“”, which

shows the existence of the C.L.T. for the variable z.

26. The Student’s Distribution for the Large Sample from T.N.D. The n-sized sampling
#s-joint distribution taken from a T.N.D. with the parent mean m and variance ¢* is
given in the domain 0<{z<{co, 0<s<(bx, b=1/n 1, by

Sol®, s)dEds= cnexp[ L G0 %2];’-%,, (s/%) dids,

where n being pretty large, b. is approximated by (24.1), and the coefficient

2 T2 =TI (n/2) ne"?
TR W 5@) e W @) e
in which the ratio of the last approximation to the true ¢, e.g. in case n=10, 50, 100,
- are .9917, .9983, .9992, ---, but it tends 1—0 for n—co. Or, replaced s by Student’s
t=b(%—m)/s in the #-domain 0<(#<(co, —co<i<(co yields

Julhy D dsdt= b exp] 5 (5—a)*— (“" . "”)] gn(f’—(%‘tﬂ)‘%’g—ifdxdt.

Lastly, when the argument of g, is transformed back into 1/z=b(¥—m)/%, namely
x=mbz/ (bz—1t), we obtain the zi-joint distribution :

Fole, Dadi=eamiesp] — G PG |0 1) e,

in the zt-domain 1/6<(z<(oo, —co<(¢<(bz, and Student’s £.f. by adopting (24.1)
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7 (Az+an) +mwp, \ a r(2)dz
(26.1) sa(t) di=cam dy[ exp[ i ]w (D" (&) 7 e
where p=1t/b (—~co< y<leo) is written for the sake of brevity, and finally the d.f.
ot [ 1 (Az+ay)?+m® ¢"(z)q(z) 7(2)
2 .2 n\la) = Cy Y
(26-2) S 82) ”mj_wdyL/b[eXp< 2 z-»° Iz—yl ] la—p%

The whole domain is G: 1/b<z<co, —co<y<(bz and as we are concerned with large
samples, the initial boundary z=1/b=1/1/n—1 is nearly zero. Hence on this boundary
also 8%(2)q(z) =@ (2) is almost vanishing (cf. (22.41) and Fig. 8, 9). Clearly our inte-
grand behaves continuous everywhere in G, since not only the negative exponential
is bounded under 1, but also 9*(z)¢(z) is a continuous positive fraction 1/Q (z), so that
the whole bracketed expression =f say, remains finite, and r(z) is so also.

We call conveniently the loci on which the integrand { tends to naught, the null
lines, and truly it occurs on the line y=z finitely, in virtue of exp[—A4/(»—2))/ (z—5)
=0”, for A>>0 and however great , besides on the lines at infinity z=co, y=—oco. Also
the initial boundary line z=1/b for large sample may be seen almost a null line as
said above. Noticing that the null line y=2z constitutes at the same time a boundary,
as —oo<t<(bz means —oco<p<(2, we see that the whole domain G is surrounded by
null lines. Therefore the continuous function | defined in it should have a maximum
inside G. We are interested to show that for z->co, ta—co, the total probability S (t.)
tends 1, which might be a matter of course, but to ascertain the validity of our
approximation (24.1), and further to obtain the expectation E(y") =E@#") /6" (v=0,1,2) :

(26.3) E(Y) =d,,j dyj 700 0 (0 Ddz=da i, where dy=cum® and
9 (2)q () _1 Gztay)’+m’ _r@)
@) =2 Ve G—p® b P il

so that g, is finitely integrable in the whole domain G, since it becomes at least 0* in
the vicinity of null lines (cf. (22.37)). Writing as before
(Az+ap)*+m?

(26.5) F(y, 2) =logi=plog @ () +log ¢ (2) —log |2~ | oGt

and differentiating about y, z, we get

(26.6) Fy=0y'= @+am) pz+6°2—m’)/ (z—»)*=H(y, 2)| k=),

and under assumption that p’, ¢’ are negligibly small,

(26.7) F=p(2) —['— @+ im) pz+ (1 —am) y* —m") ) (z — ) *=pA(2) —K(92) [ (z—2)".

Both H=0, K=0 denote ordinary hyperbola OH. As F, is = H divided by (¢z—y)?
the locus F,=0 coincides with the hyperbola H=0. However, the locus F;=0 being
somewhat deformed from the hyperbola K=0, call it a pseud-hyperbola PH.

Now to obtain the maximum point of F in G, we have to solve #,=0, F,=0, which
for y=0, reduce to
(26.8) Fy=(0"2"—m") [2#=0, F,=pAz) —(&"—m)/z*=0.
The first equation gives z=mj/o, so that pu(z) =2m by (22.38) and pi(z) =40. These

03

substituted in the second equation, yields XJ~% +72 = % (Am—1+4%) =0. Hence the
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point Py{y=0, z==m/6=z,) may afford the required maximum. But, then it holds

_ 29— (2+am)z 3H | _ ¢ 2, 8y —
@69  Faf =F ST T = St g?) =~ A(<0),
_26°%2— Q4am)y 3H | _2+'_
e R P L ) L A

F,

_ 27— (2+2m)y 3K | 4 . _
0~—[M(z)(l(z) +z)_ (Z'ﬁ)’)s +(z_‘y)‘i/o__ﬁz[lm(ﬂo"{‘&))+2_31m]:_c’ say,

and whose determinant becomes

(26.10) D=A4AC-B'= 724 [(2+am)im (po+2,") +m* (2—32m—2%) ]

E%@ @0y @) >0 (cf. (2244)),

So that F(0, zo=m/s) furnishes certainly maximum at P,. It remains only to repeat
the process before done: We describe a small open quadrate O with center P, and side
20, 0 being small enough (Fig. 14), and rewrite the integral of (3)

,::_ﬁéiPﬁO,m/U)

Fig. 14
@610 J=| [ exp-y—DF(3,0) - 83 dady

=exp(n—y—1) F(0, z,) ”GCXP(n—V—l)[F(y, ) —F0,20)] g dedy(=]s).

We decompose the integral as

o[ Mt e 0 @

The max. F(»z) in the remainder-domain R exists on its closed boundary (Q’s open
boundary) at which satisfies exp{max F(y,2) in R—F(0, z,)}<e™ with finite positive
¢, and much more exp{any F(y,2) in R—F(0,z,)}<le "<l stands. Hence it holds

(11) <exp (— (n—u—l)a”}zgu dydz=0(n""), howsoever great » may be.

Therefore (ii) is negligibly small compared with (i), and (i) is only to be treated.
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Now we transform the coordinates so as z=z,+{=z+v/N, y=y9p=u/N, N=1"7, and
expand the integrand in powers of N, neglecting those with negative indices, as a
first approximation. First for y=0 we obtain

(26.12) E(") =du Jy=da1" (0, 20) r%ﬂ) quxp n[F(y,2) —F(0, 20) Jdpds = K, jo,

where the coefficient K, is the product of the factors put out beforehand from §*~'g,
and obtained after neglection of negative powered terms. But, after formulas in Sect.
22 we get

@19 (0 5="1)= 10 g exp(—y U +e) )=y yexp—g (1 m)

:%e—#(a)/z exp(_ é (1— l)) w(a) —1/2
and by (22.43) and (10)
@) L) = VD@E=VIE

So that the adjoined coeflicient becomes

_ N T(Zo) — neﬂﬂm’n (m (a) -1/2 D
(26.15) Kun=eam™t" (0, 20) = “ =Ty )«/ =g,V D.

As to the main integral, we obtain in view of (8) and (9)
a 0

(26.16) =] [ expn [—i(AquBncwc*)]dndc
~5) -5

= J'I_V;J’f;exp[ = (Au? +2Buv + Cv?) ]dua’v.

Now that N=1/» is sufficiently large, this integral may be approximated after Lap-
lace method by the infinite integral:

(26.17) jo:%ro exp( L) 5 ot >dufwwexp[—%<v+gu)2]du

~v/e)_oe(—g o)
and we get at length

by .
2618)  Su(e0) = lim [ 5.() di=E(N) =dufo=Knjo=1.

By the way, if the upper limit Z be made 0, we have the lower half plane as the
domain of integration G_. Yet the max. F in G_ being still the same as before, we
have only to take the lower half of the quadrate Q chosen above, so that the domain
of integration is now —NI<u<{0, ~Nd<wv<{Nd. Consequently the results becomes
just the half of the preceding, and we obtain

26.19) 5.0 = i () dt = =53 (0) :[?s,, () dt.

Next, upon computing similarly for v=1, we get

E(yp) =duJi=K.ji,  where

. s (8 LIS 1 ududy
f= J-J _oxp n(F(p, 20 +€) — F(0, z0))pdyds = J_J_ooexp[ —5 (du* +2Buv+Cv*) ] N3
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=) oxe g g | wan G =g Bl ey )] =0

and therefore

(26.20) E(_y):JW W Ndy=0 as well as  E() = r’ t5, (1) de=0.

Lastly for v=2 we obtain

i oo D) S fE L

Thus

(26.21) E(D :Jm y{f(y)dy:ig: le(tz), E@) =4
o nD b

Hence the variance and S.D. are

(26.22) D' =E{) —E®**=C/D, as well as

(26.23) a:=1/C/D.

We wish thereby to prove that our Student’s ratio would also satisfy the central
limit theorem : Standardizing Student ratio ¢ after (20) and (23), we have

_t—E® _ C _c
@2 =200 [T, or i=/S.
But y=i/b=u/N, so that t~u and

©6.25)  u=ylox
This being substituted in (17) and multiplied by ¢*“, we obtain

(26.26) Jj= %J%fifo( - —é—xﬁe””i/%dxz mQ/nD“ Jice GRS j% = mQ/nD_ e,

after Cramér®. The coefficient 27/nm/D (=j,) multiplied by the adjoined coefficient
K, reduces to 1, as shown in (18). Hence E(¢™) =¢ 7% holds and the central limit

theorem concerning Student’s ff. s,(¢) made from T.N.D. has been thus proved.

Further, it is very desirous to treat the problem concerning lower and upper cri-
tical points of the exact sampling distribution with sizes, which are neither so small
nor so large, say #=5~25 &c. Yet, to obtain somewhat reliable results in these inter-
mediate cases, it becomes necessary to compute several figures at least up to O(l/4Y),
or desirably to O(1/n*), which work however is a pretty cumbersome one. So that

those investigations are postponed as a future task.

1) H. Cramér, loc. cit. p. 100, (10. 5. 4).



ON A CRITERION FOR ANALYTICALLY UN-
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1. Let o be a local ring with maximal ideal m. o is called analytically unrami-
fied in case the completion of o has no nilpotent element. A criterion that o is ana-
lytically unramified, obtained by D. Rees in [5], is stated in terms of the integral
closures of ideals: » is analytically unramified in case there is an integer £ such that
0.C0"* for all » = & where 0, is the integral closure of the #n-th power of a zero
dimensional ideal .  Moreover, if this condition is satisfied a,ca*™* for all n = %,
where a is any ideal and % is an integer depending on a.

In this note we shall show that this result of Rees can be translated in the finite-
ness condition of the integral closure of the Rees’ ring associated with g. In the
course of proof we shall also show [(q.), the length of @., can be expressed as the
Hilbert function u(n) if n is large. This is a theorem due to Muhly.  He discussed

it under some additional restrictions placing on o [1].

2. Let a be an ideal in a commutative Noetherian ring 0.  An element x € o is
called integral over a in case x satisfies the equation of the form, x"+¢x" 7 +...+¢,=0,
where ¢; € a®.  The set of eclements which are integral over a forms an ideal [4].
We call it the integral closure of a, and is denoted by a,. ~ We write a, in place of
(a")q If the set a,, ..., a. is a basis of a we associate with a the Ree’s ring o(a) de-
fined by o(a) =o [ait, ..., a.f, {7'] where ¢ is an indeterminate over 0.  Obviously, o(a)
is a graded subring of o[t, t*]. Consider the integral closure 0*(a) of o(a) in o[z, #'].
Then, it is immediately seen that 0*(a) is a graded ring.  Moreover, if x <o, then
x" € 0¥ (a) if and only if x € a,.

LEMMA 1. Suppose there is an integer k such that a, C a®™* for all n = k. Then o*(a)
is a finite o(a)-module (Rees [61]).

PROOF. If x* € 0o*(a) and if n =k, then xt" € 0,4" C a2 = (@ *" %) t* C t*0(a).
If n<Ck, we also have x"=x({"")*"t* € t*o(a). Hence in either case x" € t*0* (a).

Since v*(a) is graded we can consider homogeneous ideals in o*(a). For such



On a Criterion for Analytically Unramification 37

ideal 4, we associate ideals 4, in o defined by Ad,={x=0; 2" & 4}. Then, as the
converse of lemma 1, we get

LEMMA 2. If A is a homogeneous ideal in v*(a) and if v*(a) is finite over 0(a), then
there is an integer k such that A,=a""*A, for all integer n = k. In particular, we have A, C a*%,

PROOF. We show first a4, C A,.e. In fact, if a € o® and b € 4,, then a® 0*(a)
and b € A. Hence abt’*? € A. Therefore ab € A,,,. Now, since an o0(a)-module
o* (a) is generated by homogeneous elements, 4 is also generated by homogeneous ele-
ments as an 0(a)-module. Let

A=0(@w;,+ ... +0(0) Wy,
with w;=x¢* and x € 4, ¢=1, ..., m). If k is an integer such that & = Max 1; and
if x€ 4, (n = k), then x" € 4 and can be written as
®= (") (™) 4+ e+ (Pl (Kt
with y; € a»*, Therefore we have
xe a4+ . a4 =arTReE R AL L FarTEaR A
C 0" * A et o FOFAG sy wm =0""*A,.

In case A=o*(a), we have A,=a,. Hence
COROLLARY. T%e converse of lemma 1 is true. Moreover we have 0,=a"*a, for all n=k.

Now, recall that an ideal b in o is called normal in case =0, for all integers
n [2]. Then, summarizing lemma 1 and 2, we have the following

THEOREM 1. o*(a) is a finite module over 0(a) if and only if there exists an integer k such
that 0, C 0™ for all n = k and when this is so 0 is a normal ideal.

PROOF. Put b=q,. Then the last part of the theorem follows from the relation;
b, =, =0 o, = (0*) ", < IH=B"

3. In this scction we put the restriction on o and o is assumed to be a semi-local
ring with maximal ideals p,, ..., ..  Then the theorem of Rees can be stated as
follows :

LEMMA 3. Let v be a defining ideal in o. Then o is analytically unramified if and only
if we can find an integer k such thai v, Cv"™* for n = k. If this condition is satisfied we have

A, C a*" for any ideal a where k is an integer depending on a.

PROOF. Let b be the completion of 0. Then © is a direct sum of complete local
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rings o; (i=1, ..., 7) and o; is isomorphic to the completion oy, [3]. Hence if 5 has no
nilpotent clement, then each 0, is analytically unramified and we can apply the Rees’
result to the pair of rings 05, and 0,  Whence we can find an integer % such that
(a0p.)n C (a0p)*™* for n = &k (=1, ..., r). Since Bao,=(bo,), for any multiplicatively closed
set S, 0 & S, and since b= 7=, (boy, No) holds for any ideal b [3], we get a, < a** if
we contract the above relation back to 0. As for the converse, it is enough to men-
tion that the proof of lemma 1 of [5] is still true without any change.

Now, from theorem 1 and lemma 3, we obtain immediately our main theorem:

THEOREM 2. In a semi-local ring the following three conditions are equivalent.
(1) o is analytically unramified.
(2) 0o*(v) is finite over v(v) for some defining ideal v.
(3) Existence of a normal defining ideal.
Moreover, when this is so, for any ideal a, (2) is still true and o is normal for some k.

If E is a finite module over o and v is a defining ideal of o, then it is well known
that the length of E/v"E is expressed as a polynomial if n is large [3]. Therefore
from corollary of lemma 2, jointly with theorem 2, we have the following.

COROLLARY If v is a defining ideal of an analytically unramified semi-local ring, then
L(vs), the length of the integral closure of ", is represented as a Hilbert function p(n) if nis
sufficiently large.
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1. STATEMENT.

Let R be a regular local ring with maximal ideal m and § be an over ring of R
such that (i) § is a finite R-module and (ii) no non-zero element in R is a zero
divisor in 8. Such a pair of rings sometimes occurs in the theory of rings so that it
might be interesting, under this situation, to find a condition that the ideal mS coin-
cides with the jJ-radical® of S.

Our theorem will be stated as:
The ideal mS coincides with the J-radical of S if and only if the equality
(@ [S: R]=S[S/P : Rjm]
holds, where [S: R] is the maximum number of linearly independent elements of S over R® and the

sum runs over all maximal ideals B of S.

And as a corollary we have :
If (a) holds, then the quotient ring Sy is a regular local ring for any maximal ideal B of S.

2. PROOF OF THE THEOREM.

Let R be a (commutative Noetherian) semi-local ring and S be an over ring of R.
And assume the pair of rings (R, §) satisfies the conditions (i) and (ii). Then it is
well known that § is a semi-local ring and dim S=dim R. Moreover, if R is a normal
local ring (i.e. integrally closed in its quotient field), then dim Sp=dim S for any maxi-
mal ideal P of S (cf. [1] and [2]).

We say that a semi-local ring R is unmixed if dim Rjp=dim R for any prime divisor

p of the zero ideal in R where R is the completion of R (cf. [1]).
PROPOSITION. If R is unmixed, then S is also unmixed.

PROOF. Let R and S be completions of R and S respectively. Then § is an over
ring of R and is a finite R-module. Let $ be any prime divisor of the zero ideal in
3. Putting p:IAiﬂ‘fB, then p is a prime ideal of R and any element of p is a zero
divisor in S. Therefore any element of p i3 a zero divisor in R (cf. [2]). Hence pis

A
contained in some prime divisor of the zero ideal in R. Since R is unmixed, the zero

1) We mean by the J-radical the intersection of all maximal ideals of §.
2) It is equal to the dimension of the total quotient ring of S considered as a vector space over the
quotient field of R.
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ideal of R has no imbeded prime divisor. Whence p is a prime divisor of the zero
ideal in Ié, and we have dim IA{/pzdim R. On the otherhand, 3‘/5’)3 is an over ring of
JAE/p and is a finite RA/p-module. This shows that dim .§/‘B=dim fE/p. Therefore we have
dim SR =dim S, and the proof is complete.

LEMMA. If R is a regular local ring with maximal ideal m and if mS coincides with the
J-radical of S, then Sy is a regular local ring for any maximal ideal P of S.
The proof is easy and we omit it.

Now, assume that R is a regular local ring with maximal ideal m, and we prove
the theorem stated in the paragraph 1. Let P, ..., . be the set of all maximal ideals
of § and put M=P,N...NPx,.  Let mS=q,N-+-Na. be the irredundant primary decom-
position of mS. Then we have
(b) [S: RY=2>3_|[S/%: : R/m]e(as),
where ¢(q;) is the multiplicity of the primary ideal .5y, (cf. [2]). Now we assume
that (a) is satisfied. Then, from (b) we have e(q;) =1, and hence ¢(B;) =1. Therefore
we have ¢(M) =¢, that is, the multiplicity of the semi-local ring § is equal to the
number of maximal ideals of S. On the otherhand, since a regular local ring is un-
mixed (cf. [1]), S is unmixed by virtue of the preceding proposition. Therefore Sy,
is a regular local ring (cf. [3]). Recall that in a regular local ring the maximal ideal
is the only primary ideal (belonging to the maximal ideal) whose multiplicity is equal
to 1. This shows that q;=%; and consequently mS=I. The only if part is an easy
consequence of the preceding lemma and the equality (b).
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L Let f(s) = Sa.e'™ be an entire function represented by Dirichlet series, where
n=1

0=2, < 4<--<{2,—c0 as n—co, and

(L. lim X__D; (1.2) llmT—d 0<<d<<D<co;
(1.3) llm(/l,,“—/l,,) =h; (1.4 I (Apy1—4a) =m, 0 <A< m<co;

n—oo

where & < D~ ‘, m<d.
I wish to prove certain results involving the coeflicients a, of f(s). Throughout,

it is supposed that 2,’s satisfy the above relations, unless specified.

2. Define:
_loglaa ™ o 10g|@w/0ns]
0 = Ao log s’ v @) = log 2.
and let
Imem="5; Gmle@"="7;
lim 6 (n) = B Lim(6 (n) ]} = é, :
Then we have the following
THEOREM 1: The following relations will hold :
(i) ad<A=—Al—; (ii) -(17=B<Dﬁ,
T T . _1
i) T<c<l; @ a=p
Further, if %,=10g|an_+/an|[ (An—An_y) is a non-decreasing function of n jfor n > ny, then
(v) BZ>=p/m; (vi) d=ho

PROOF: (i) We have:

log

—}\(a e)log 2., n >
But
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Any OGNy Gy  OGn

@ 1) IOgla“l_lzlog{an 1 Gy dyg1 O }+0(1)
> (a—e)[(N—np) log A, + {(d—¢) — (D+¢) Ayt log Ax]+0(1),

where N is larger than 7, Let

An=[2x(log 2x)*1+1,
then log 2,~log Ax as N—co. Hence for sufficiently large n,
logla.] ™ > (ee—¢) (d—e) (1 +0(1) Ay log An,
or, 4> ad.
The proofs of (i1) and (iii) are similar and so omitted; the proof of (iv) being
straight forward.
PROOF (v): Let 0 <{B<{co. Then

_ log|a,_,/a.| (B—2)1og Aa_,
Xao = ln_‘xn—l > (ln_xn_l) 3

for a sequence of n, say n=N,+1 (p=1, 2,--+), N\ >n,, Np->co as p—oco. Then asin (2.1),
loglaul"zlog“ 2 PE W, 7 5 S ”2;‘“ +0(1)

an, (/589

= (Ays—Aw,e1) X, oo+ Qo= Awpes) Bwp oo+ (da—2n_1) % +0 (1)
= (Np— N &, + (An—Axpma) Xx,+0 (1)

Let
Ancr=[2x, (log Au,) "]+ 1, 0.

Then log A,_;~log Ay, as n and p—co. Then

log|an] ™ > (Ny—Ny) s, + “"‘%“i%ﬁiﬁg Avs 401

(140()) (—¢) 2 log Ax,
> (m+¢) :

Therefore B > p/m. The proof of (vi) being on the same lines, is therefore omitted.

REMARK: It is to be noted that under some less strictly followed conditions on
Ax’s, 4 is equal to order (R) of f(s) (see for example [8], p. 217) and C is equal to the
lower order (R) of f(s) (see [6]).

3. Let 1/h=D=d. Then, if p denotes the order (R)p of f(s), we have from (i),

(iv) and (vi) of the previous theorem:

=D Gim #1084 _ 0 log i,
(5L 2= }zl—l;g logla,|™ e log|au/an:|

In the following theorem we suppose i,=n Then

THEOREM 2: If a, >0 for all n and
. a, A1
(3. 2) Wlbl—l:g n( an—l an+1 1> - P ’

then (1) f(s) :i;lane"’ is an entire function of order (R)p and (ii) log n (o) N%.



Estimation of Coefficients 43

PROOF: The proof follows from (3. 1) and from the method adopted by Pélya
and Szego ([9], p. 13).

The converse of the theorem is not necessarily true. Consider

F(s) =exp (¢*") +exp (&) = :2:5”‘{,# (212) !} ppa

nem nl’

where E is the sct of all positive odd integeres except 1. This is an entire function
of order (R) equal to 2. Here the limit in (3. 2) does not exist (see for example [10]).
Also

log p(o) ~e*" 5 Aviy~2¢*".
Thus (i) follows.

We can construct examples to show that the above theorem holds good, in its

converse sensc; for example we have ([11, p. 27-28).

oo e .
S :né exp (® 4 +x,)

x,.=%logn+&,, n = nys %=0, 1<y, @Sn=—%log7,

n—o0

MSF—%log 3, (0<0<7<00) s (Sup—S) =0(1/logn) ;
<Sn—S"—+'7;'~+f&‘>=0(1/log 5.

Then we have ([5], p. 76-77) omitting the details:

lim 10840 _ 1
600 Xu(o) o

b

and clearly (3. 2) holds.

4. Here I prove a theorem furnishing a systematic study of the results obtained
in the preceding two theorems. A.’s satisfy (I. 1)-(I. 4). Let us introduce the follow-
ing notation :

kn+1, n) = (Angr— 4n) Xngr— (An—An_s) %n

THEOREN 3: Let f(s) in the usual series form be an entire function of order (R)p <co

and if
Tim 2 <_|£d2_~_1>_ L
N0 " |an——1an+1| - l’
then
@ 1 ld<mllgll—aﬁm<LD;
= 08 n
and if A.=n, then
4. 2) limn k(n+1, n) =max (o, I} ;

00

and further
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4. 3) lim 2, k(n+1,n) < L.

N—roo

PROOF: It is quite clear that if
@hlog{—mnl }—Ll ;

n—0e ]an—l an+1| - ll ?

then L=L,; I=l,. We now prove the results. Let —oco <I<{oo, then

a,’ l~a]
- P > R
Anyy Gno > CXp{ i )’ deid
Now
n || e
an+1 aN+2 an an+1 a'n—l '
Therefore
Qy L
log] > loglk|+ (—¢) 3 2,
Anyy p=N+1

~(l—¢) (d—e)log A,
and (4. 1) follows.
To prove (4. 2), we take A, =n. Either log|an/an..| >logla._,/a.| for all n>ny, in which
case for all large #,

a,’

3
Ayt Qnoy

n k(n+1, n) =nlog

hence

“4. 4 lzlimn k(n+l, m> 1, 1 >0,

or, we shall have log aa" < log % for an infinity of » say n=m,, m,, ---. Then
T L n

la.|ee*™ (n=my, ms,+) does not become the maximum term for any ¢, and x,,., <x,
infinitely often, which is eontrary to our hypothesis. Therefore
4. 5) limn k(n+1, n)=0> |,
=
and so (4. 2) follows.

We now prove (4. 3). We may suppose that L<{co. Let |anle’™, |a:le’™ and
|ay|e”* be three consecutive maximum terms (m < n—1 < p—2). Now if |ax|e®* is to
become the maximum term, then #x, < ¢ <%, (for exhaustive arguments see [5], Ch.
I, Part I). Similarly |dn..|e”™*, |@nesle”™?, <, |@a_i]|e®™* are all maximum terms if

Kmpr S 0 < Kmgsy

Koy < 0 < e
Thus % < Xmpr = &me2 =" =%_1=0 < x,. But by hypothesis |a,]e’* is a maximum term,
hence x, < 6 <#p,:. Therefore
(4" 6) Xl = Xmgg = *** = Xn.

Similarly we have:
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(4- 7) Knal = Xnga = *** = Xp.
We require a

LEMMA : Let m be a positive integer such that 2n=2vs Am > Aucoys then

& 4 -1
X :max( log Am log ’ =3 . log m )
=20 An— A Am—Amey )

PROOF OF THE LEMMA: With the smallest value of ¢ if all the following inequa-
lities hold, viz.,
lao] < lamle™, lale™ < lamle™™se, |ans]e <|an]e™,
then |a,|e"» becomes the maximum term. This value of ¢ is, therefore, equal to x.
Then if we refer to the convex polygon construction for the maximum term (see for
instance [5], fig. 1), it is clear that
—log|an| +logla)| —loglan|+logla| —logla,| +10g|an_,|

Xm—lo ’ x'm,_xl > lm_zm—l

are all < the slope x, and therefore the lemma follows.

From the lemma, it follows that

@n-1 Om
x,.:max{log an | ... log a, }
I
tog |
. 8) K= M
since the maximum term goes from |a,|e’* to |a.le’*. Similarly
log | Z2=1 log | 2=
xp=max{ 8| a, 814 }
Ao—Rpr 0 Ap—Aan
g &
4. 9 :—p p>n.
( ) zp__ln 4

Hence from (4. 6) and (4. 7), we have:
An k (n+ 13 n) =2 { (Xn+1 _ln) Xp— (ln"‘xn—l) xm-l-l}

p— An

On
ap

am,
an

From (4. 8), we have:

4. 1D log

2

A, An—Am N Gny
a—n > <1n_ln—1> logl an

and from (4. 7) and (4. 9) we have:
A Ap—ln .
—<Xﬂ:1_xn> log

Combining (4. 10), (4. 11) and (4. 12) we obtain

an

(4. 12) log

an
dp

an+ 1
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anl

lakln+1, ) < /L, log ‘ il —log

2

|

= s log

a,ma,._

Lk+1, ny < (L+¢€), n> ny,
and so (4. 3) follows.

5. If f(s) is an entire function of order (R)p and lower order (R)A, 0 <CA<p
< oo, then I have shown ([3], p. 45; equa. (5))
m log 1(s) e 1 1

a0 lu(q) log Zv(ﬂ') = A 4
I wish to prove now a result of the above type in terms of the coefficient .. We

have then the following.

THEOREM 4: If f(s) = éla,‘e"‘" is an entire function of finite order (R)p <o, p >0
Sfinite lower order (RY2, A>>0 "and finite type T (T >0), where (i) lUm (Auy;—A) =h and
(i) loglan—i/anl]/ (An—2An_r) is a non-decreasing function af n for n>ny, then

log | @a/Gny | 1
Ii g +1 N
n{—»% Anlog An N /1 o’

PROOF: If order (R)p of f(s) is finite and A.’s satisfy (i), then we have from a
result on type ([4], p. 276), (taking p(¢) =p in particular):

6.1 laal < (LTEDE s s e >0,
Again, as p is finite and (i) holds good, we have ([2], Th. 2):
log m (¢) ~log 21 (a),
and so ([6], following after (1.6)), for all n>>n, and >0,
6. 2) [ @ | 7 << Hlpn} #1579,
Combining (5. 1) and (5. 2)
log | -2 ’ < L log (T +¢)ep) —-'Ii‘ log Xn+ﬁ—x”“ 10g Ansy
Gngr [/ A—e
. 3) <%log((T+e)ep) "logl 2t og (Rt hte),

for arbitrarily large n and the result follows.

REMARK : In case we restrict 4,’s further, that is if in addition to (i), 4.’s also satis-

fy : lim (Ang1—4a) =m, we get a stronger result:

N->00
1og [an/any:] 1
2081an/Gnir| - L 1
ql'zl—»co Alogd, /1 o’
but it is weker in the sense that 2,’s are subject to more stringent conditions.  The

proof is almost the same, except in (5. 3) we get on the right-hand side m+¢ in place
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of 2+¢ and this being true for all # > n,.

NOTE: Theorem 1 can be applied to provide numerous results involving orders (R)

and lower orders (R) for two and more entire functions, for instance results of the
type of Theorems 3, 4 & 5 in [7].

The author thanks Dr. S.C. Mitra for his encouraging criticism and interest in

this work.
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1. Let f=f(2) ZEC,.Z" be an entire function, then lim|g,|7*"=co, The order p,
n=40 n—sc0
lower order 4; type T and lower type ¢ of f(z) are well-known in terms of the Lu.b.

of | f(z)] when arg z ranges over the circle |z| = Their respective analogues in
terms of the coefficients ¢, are also well-known and so we write

(1) p=Tim 1y Bl s eoT=Timnlan] 7, i 0 <o < oo,

Further, if x=x(n) = |c./easz| is a non-decreasing function of #, at least for n > ny, n,
being some large but fixed positive integer, then

(2) A= llm%‘%%; eot=1im g, |7, if 0 < p < co.

My main aim in this paper is to find out certain relationships between p, 4, T and
¢t for two or more entire functions. For the sake of brevity I introduce the following
abbreviations :

F=f@=Fas fi=fi@d) =5 0,

x =8, (1) = | tnftnsr| 5 %= 22 () = | bafbusa |
2. I state and prove the following theorems*:
THEOREM 1: Let (i) fi and f: be two entire functions of orders p, (0<Cp,<loo) and p,(0

< py<{oo); lower types t; (0 <t <o), 150 <t <o) respectively, and x, and x, be non-
decreasing functions of n jor n > n,; and that

(i1) loglea] 7'~ (logla.] ™) “(log b ™% 0 <a <1, 0BT, a+p=1
Then f is also an entire funciion of order p and lower type t, such that

@1 0 < 010,

@2 i >4

PROOF: First we show that f is an entire function; since f; and f, are entire
functions, we have:

* Most of the results cited and proved in this paper were prepared in 1961-62 and submitted
in the form of a thesis to Raj. Uni. (1963). The author thanks Dr. §.C. Mitra for his kind en-
couragement and encouraging criticism.
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@ 3) lim [, =co0
2 4 lim|,| =" =co.

Therefore for every ¢ >0 and every arbitrarily large R,

(2. 5) (loglax| ™) > (nlog (R—e)", n>m;
(2. 6) (log|b.| 7Y > (nlog (R—e)) ¢, n> n..

Making use of (ii) of the theorem, we get for sufficiently large n:
loglen]l ™t >nlog (R—¢),

which means that f is an entire function.
Using (i) for f,, we have for every ¢ >0,
LBl > vy, >

or, we have:

(logla.|™ " > {(p1+¢) 'nlogn}®, n>n,.
Similarly for f;, we get:

(loglba| ™) 2 > {(p;+¢) 'nlogn}f, n>n,.
Therefore for n>max (n,, n,) and & >0,

G - logn

28 logla.|™") “(log|b,] ) # > — 11082

@7 (logla. ™" log 1| ™)" > 0 ey (o ey?

Hence making use of (ii) of the theorem and (2. 7), we find for sufficiently large n
log|ec,|™? 1
n log n (p.+8) " (02 +€) 7

and so taking limit inferior of the preceding inequality, we get (2. 1).
We next prove (2. 2). Using (i) for f; and f;, we have:

2. 8) n|a.| """ > (t—e)epy, n>mnmy, € >0;

2.9 n| b 7" > (t,—€)eps, n>nyy € >0,

Inequalities (2. 8) and (2. 9) lead to

loglan| )" <[ 2 Lo ol (a—)eoi} | s n> s
(loglba| ™) << [% log {n/ (¢,—¢) eps} ]ﬁ, n>n,

which when combined yield

@ 10) (log|aa| ™) “(log | bx] ) * < plfpzs{lf’g (% >}a[1°g<1% >}ﬁ

where
A= (t,—e)ep,; B= (t;—¢)ep..

So in accordance with (ii), we find from (2.10) for sufficiently large n,

@ 11) logleal ™ < is{log()] 108 (3))

and as o, %p,”" < p7! from (2. 1), we see that for sufficiently large n,

49
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log|ea| 1< % (log n—log 4)*(log n—log B) #

_nf{, «logd [y _BlogB
_;[1 oL +0((logn) n {18 o +O(log ™ ) Jlog n
log (A" Bf

:%[1 208 (g P ) +0O ((og m)™?) ]log .

Therefore for large n,
log A" B# s
PARLES n[l —Tgn—JrO((log n)™)] :

o pen|ec.| ™" ~ n[log (4°B?) [log n+O ((log n)™*) ]’

pe
and as the power of n on the right-hand side of the preceding inequality tends to
A°Bi#, Ai=ep.t:, Bi=epyt, we find pet > e**#4,°1,%0,"p,%, and using (2.1) again we finally
have (2.2).

THEOREM 2:* If f, and f, betwo entire funciions having the same order p (0 < p < o),
lower type &, (0<t,<[co) ; 8, (0<t,<lco) respectively and if x, and x, be non-decreasing jfunctions
of n for n>n,, then f, where (i) |ca]l~|aa}"|0:\?, @ and B satisfying the condition of Th. 1, is
also an entire function of order* p and lower type t such that
2. 12) [N AN
Further, if T1(0<T,<{o0) and T,(0<T,< o) are types of f1 and f, then the type T of

S is given by
2. 13) T < T T,

PROOF: We have: for every ¢ >0,
@. 14) (ﬁ) laa ™™ > (t,—¢€)%, n>ny;

8
2. 15) (Z) 18177 > (=82, >
On multiplying (2. 14) and (2. 15) and then using (i) of the theorem, we find for n>>
max {(m, 1)
ooloal > (=) (t—e)?,

and so (2. 12) follows. Similarly, making use of (i) we can prove (2.13). The proof
that f is an entire function can be obtained on making an appeal to the proof of Th. 1.

CoR. If t,=T,, t,=T,, then t=T=T,°T,*

* We are interested in those f(2)’s for which the order, under the condition (i), is p. Even if the
order of f is < p, (2. 12) will hold ; but for (2. 13) only such f’s are to be considered for which

the order is equal to p.
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REMARK : We can obtained a result similar to Theorem 1 relating to types 7’; and
T; and connecting them to the type T of f, provided we assume that the order of o
under the conditions of Theorem ! is given as: p=2p,"p,® (which has to be considered
as hypothesis in case we wish to obtain such results); in fact we have:

THEOREM 1°: If fi and f; be two entire functions satisfving all the conditions of Th. 1, ex-
cluding that imposed on x, and x, then [ is also an entire function of order p. If T\, To T
are types of fi, fas S respectively and if p=p,"p.%, then T < T\"T,%, the types being non-zero
finite.

PROOF: We omit the proof as it is based on the proof of Theorem 1. We also omit
numerous obvious corollaries.

3. THEOREM 3: Let (i) fi and f: be two entire functions of orders p, (0<p,<co), p. (0T
02 < o) ; lower orders 2,(0 < 2, <l o0), 2,0 <2, <o) respectively and that x, and x. are
non-decreasing functions of n for n>ny. (i) loglcu/ener|~ (og|aun/an|) " Qoglba/buei]),
where 1 <8< ooy 1 <r<loo; 0 '+r*=1. Then fis also an entire function of order p and
lower order A, such that
3. 1) 0 <p.Mp,'7, 3. 2) Az LA,

PROOF: Shah [2] has proved if F(z) = 5‘; A,,.z" is an entire function then

@) Order of F= }g,gm

and if |A4./dny] is non-decreasing then

logn
lim . logn
(B) Lower order of F= n‘ffj log| A/ Anyr |

Hence making use of (B) and (A), since x, is non-decreasing, we get:

1 nf Any

(3.3 Ogil—‘;g/an 1 <y te n>m;
]- ¢y 1

3. 4) roglgg/y Ll o a>n

for every ¢ >0. Similarly for f;, we have, for e>0:

3. 5) I—Og’l%ﬂ\x—ken\n“
@. 6) log{(fgf;“' > o

From (3. 3) and (3. 5) we have for n > max (nl, n')

(108 @nftns1]) " (108 | ba/bnyr )’ 1\l e
log n <<21+8> <22+6> ’

and as |cafcay:| 1s non-decreasing, find from (i)

Iim ,,ligllm < A"V,
n—00 ogn
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which implies 47! < 2,772,744, Similarly from (3. 4) and (3. 6) we obtain o' >
0.7p,7*" and this proves the theorem.

Cor. If fi(2) =§]0 @, P, (j=1, 2, «+, 5) be s entire functions of orders p;(0 < p; < o),
(j=1,2, -, 5) respectively and each of the function |a,"}a,, |, (j=1, 2, -+, 5) be non-decreasing
Jor n > ny, then the function f(z) = 200,@" where

log |ea/6nsr [~ (0g|an®/anss @)V oo (lOg|an™/an, @ ]) ™,
where 1< a;<oo(j=1, 2, -, 8); jZ:lacj“=1, is also an entire jfunction of order p, such that

o <o e pt
and a similar type of result in case of lower orders.

4. Here I prove the following theorems:

THEOREM 4: Let (i) f, and f, be two eniire functions oorders p, and ..
(i) 2(loglen] ™" '~ (ogla.| ™) "'+ (log|ba| ") 71
Then f is also an entire function of order o, such that
4. 1 20 < 01+ 03
(iil) Further, let 2, and 2, be the lower orders of fi and fi, and x, and x, be non-decreasing
Sunctions of n for n >n, and that (i) holds. Then f is of lower order A, such that
4. 2) 20 = A+,

COR. If fi and f, are of regular growths, then f is also of regular growth and
4. 3) 20=p01+ 01

REMARK : The result (4. 3) can also be obtained even if f; and f; are not of regular
growths. But in that case we will have to make some other supposition as the follow-

ing theorem shows:

THEOREM 5: Let (i) f and f; be two entire functions of orders p, (0<Cp,<lo0), 05 (0<Tpy<lc0);
types Ty, (0T <Too), T2 (0T, < o0); lower types 1, (0 <4, < 00), {0t <o), and
x; and x, are non-decreasing jfunctions of n for n > n,.

(i) 2(loglea|™) '~ (loglas|™) 7+ (log|ba| ™) 7.
Then f is also an entire funciion of order p, such that
CA) 20=p:+p,

PROOF OF THEOREM 4: First we show that fis an entire function. Since f; is
an entire function, hence for every ¢ >>0 and arbitrily large R,

(logb,| =)= < {log(R—e)} ™!, n > my.
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Similarly for f;, we have:
(logla.| 7™~ < {log (R—&)} ™", n> n,.
Hence using (ii), we have for sufficiently large »,
2(loglea| ™M) 7 < 2{log (R—&)} 7,
and so f is an entire function.
Further, as f; and f; are of orders p, and p,, we find for every >0 and large 7,

nlogn nlogn
log|as|™ + log|b,]™ < prt+ps+2,

and (4. 1) follows. The proof of (4. 2) is similar and so omitted.

PROOF OF THEOREM 5: Using (i) for f;, we have for every ¢ >0,

nlogn n _
4. 5 Togla. " < Toala log{eo, (T +e)} +0. = pi+o(L).
Similarly, for f;, we have for n>n,,
nlogn
(4’. 6) log]an] <p2+0(1)

Inequalities (4. 5) and (4. 6) yield on making use of (ii), for sufficiently large #,

2nlogn
W < pi+o:+0(l).

Therefore
@& 7 20 < p1+ 0.
Again, using (2) for f;, we have for every ¢ >0,

nlogn

n p—
Togla ™ > Toglaal™ log {ep, (t—8)} +or=p+0(1), n>>n,

and a similar expression for f;.. Therefore for sufficiently large #,

2nlogn
i H g
4. 8) 22 niITml wlogl ] > 0, +0s.

But as 1 < p always, we find from (4. 8)
4.9 20> p1t+ 0,
Therefore (4. 4) follows from (4. 7) and 4. 9).

5. Let n(x) denote the number of zeros of an entire function f(z) in |z|< «
I prove:

THEOREM 6: If f(z) is an entire function of order zero and not a constant, then

G. 1 lim M _

>
r—0 al\l

where

Mo =+ K8 s Qu) = [ 28 gur0, @ > 0.

PROOF: Suppose (5. 1) does not hold good. Then
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m N (r)

P Q (r) ﬂl, 771 & o,

Hence for r > R,
Nﬂ (7') < 7]Qﬁ (T) ]
Let 0 a<<é<a+(l+np ™' Then Jmn (x)x7~%dx is convergent and so

[ Q. ()t 4dt= J - Edtf ”(fzd

J’ el xJR 14t

3
Rx+2

_ 1 © n{x)
< g1

and so J Q. (xyx7*"%dx is convergent. Now

r" Q@ 4y o 1 waa_fd[zv;_(ax)]

e a—&+1
< 1é—a) Qq (%) dx.

S a- 5+1J Ers

But »(é—a)/(@—&+1) <1, and so a contradiction.

Note: The author has obtained this result alternatively [1, p. 11].

REFERENCES

[1] Kamthan, P.K. On the order, type and the zeros of an entire function ; Proc. Raj. Acad. Sci,,

9, (1962), 7-16.
[2] Shah, S.M. On the lower order of integral functions; Bull.

1046-52.

Amer. Math. Soc., 52, (1946),

Post-Graduate Studies (Eve.)
Delhi University,
Delhi-6, India



ETE
EREE

R R
EUI Iy

fEF4lE3F 200 HIM
T4l E3 F30 0 T

BB REEBRFMBERE
B B O E #

FETH X 2 L ARTI0
WAt B AT EO IR

L} H B W







