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L Let f(s) = Sa.e'™ be an entire function represented by Dirichlet series, where
n=1

0=2, < 4<--<{2,—c0 as n—co, and

(L. lim X__D; (1.2) llmT—d 0<<d<<D<co;
(1.3) llm(/l,,“—/l,,) =h; (1.4 I (Apy1—4a) =m, 0 <A< m<co;

n—oo

where & < D~ ‘, m<d.
I wish to prove certain results involving the coeflicients a, of f(s). Throughout,

it is supposed that 2,’s satisfy the above relations, unless specified.

2. Define:
_loglaa ™ o 10g|@w/0ns]
0 = Ao log s’ v @) = log 2.
and let
Imem="5; Gmle@"="7;
lim 6 (n) = B Lim(6 (n) ]} = é, :
Then we have the following
THEOREM 1: The following relations will hold :
(i) ad<A=—Al—; (ii) -(17=B<Dﬁ,
T T . _1
i) T<c<l; @ a=p
Further, if %,=10g|an_+/an|[ (An—An_y) is a non-decreasing function of n jfor n > ny, then
(v) BZ>=p/m; (vi) d=ho

PROOF: (i) We have:

log

—}\(a e)log 2., n >
But
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Any OGNy Gy  OGn

@ 1) IOgla“l_lzlog{an 1 Gy dyg1 O }+0(1)
> (a—e)[(N—np) log A, + {(d—¢) — (D+¢) Ayt log Ax]+0(1),

where N is larger than 7, Let

An=[2x(log 2x)*1+1,
then log 2,~log Ax as N—co. Hence for sufficiently large n,
logla.] ™ > (ee—¢) (d—e) (1 +0(1) Ay log An,
or, 4> ad.
The proofs of (i1) and (iii) are similar and so omitted; the proof of (iv) being
straight forward.
PROOF (v): Let 0 <{B<{co. Then

_ log|a,_,/a.| (B—2)1og Aa_,
Xao = ln_‘xn—l > (ln_xn_l) 3

for a sequence of n, say n=N,+1 (p=1, 2,--+), N\ >n,, Np->co as p—oco. Then asin (2.1),
loglaul"zlog“ 2 PE W, 7 5 S ”2;‘“ +0(1)

an, (/589

= (Ays—Aw,e1) X, oo+ Qo= Awpes) Bwp oo+ (da—2n_1) % +0 (1)
= (Np— N &, + (An—Axpma) Xx,+0 (1)

Let
Ancr=[2x, (log Au,) "]+ 1, 0.

Then log A,_;~log Ay, as n and p—co. Then

log|an] ™ > (Ny—Ny) s, + “"‘%“i%ﬁiﬁg Avs 401

(140()) (—¢) 2 log Ax,
> (m+¢) :

Therefore B > p/m. The proof of (vi) being on the same lines, is therefore omitted.

REMARK: It is to be noted that under some less strictly followed conditions on
Ax’s, 4 is equal to order (R) of f(s) (see for example [8], p. 217) and C is equal to the
lower order (R) of f(s) (see [6]).

3. Let 1/h=D=d. Then, if p denotes the order (R)p of f(s), we have from (i),

(iv) and (vi) of the previous theorem:

=D Gim #1084 _ 0 log i,
(5L 2= }zl—l;g logla,|™ e log|au/an:|

In the following theorem we suppose i,=n Then

THEOREM 2: If a, >0 for all n and
. a, A1
(3. 2) Wlbl—l:g n( an—l an+1 1> - P ’

then (1) f(s) :i;lane"’ is an entire function of order (R)p and (ii) log n (o) N%.



Estimation of Coefficients 43

PROOF: The proof follows from (3. 1) and from the method adopted by Pélya
and Szego ([9], p. 13).

The converse of the theorem is not necessarily true. Consider

F(s) =exp (¢*") +exp (&) = :2:5”‘{,# (212) !} ppa

nem nl’

where E is the sct of all positive odd integeres except 1. This is an entire function
of order (R) equal to 2. Here the limit in (3. 2) does not exist (see for example [10]).
Also

log p(o) ~e*" 5 Aviy~2¢*".
Thus (i) follows.

We can construct examples to show that the above theorem holds good, in its

converse sensc; for example we have ([11, p. 27-28).

oo e .
S :né exp (® 4 +x,)

x,.=%logn+&,, n = nys %=0, 1<y, @Sn=—%log7,

n—o0

MSF—%log 3, (0<0<7<00) s (Sup—S) =0(1/logn) ;
<Sn—S"—+'7;'~+f&‘>=0(1/log 5.

Then we have ([5], p. 76-77) omitting the details:

lim 10840 _ 1
600 Xu(o) o

b

and clearly (3. 2) holds.

4. Here I prove a theorem furnishing a systematic study of the results obtained
in the preceding two theorems. A.’s satisfy (I. 1)-(I. 4). Let us introduce the follow-
ing notation :

kn+1, n) = (Angr— 4n) Xngr— (An—An_s) %n

THEOREN 3: Let f(s) in the usual series form be an entire function of order (R)p <co

and if
Tim 2 <_|£d2_~_1>_ L
N0 " |an——1an+1| - l’
then
@ 1 ld<mllgll—aﬁm<LD;
= 08 n
and if A.=n, then
4. 2) limn k(n+1, n) =max (o, I} ;

00

and further
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4. 3) lim 2, k(n+1,n) < L.

N—roo

PROOF: It is quite clear that if
@hlog{—mnl }—Ll ;

n—0e ]an—l an+1| - ll ?

then L=L,; I=l,. We now prove the results. Let —oco <I<{oo, then

a,’ l~a]
- P > R
Anyy Gno > CXp{ i )’ deid
Now
n || e
an+1 aN+2 an an+1 a'n—l '
Therefore
Qy L
log] > loglk|+ (—¢) 3 2,
Anyy p=N+1

~(l—¢) (d—e)log A,
and (4. 1) follows.
To prove (4. 2), we take A, =n. Either log|an/an..| >logla._,/a.| for all n>ny, in which
case for all large #,

a,’

3
Ayt Qnoy

n k(n+1, n) =nlog

hence

“4. 4 lzlimn k(n+l, m> 1, 1 >0,

or, we shall have log aa" < log % for an infinity of » say n=m,, m,, ---. Then
T L n

la.|ee*™ (n=my, ms,+) does not become the maximum term for any ¢, and x,,., <x,
infinitely often, which is eontrary to our hypothesis. Therefore
4. 5) limn k(n+1, n)=0> |,
=
and so (4. 2) follows.

We now prove (4. 3). We may suppose that L<{co. Let |anle’™, |a:le’™ and
|ay|e”* be three consecutive maximum terms (m < n—1 < p—2). Now if |ax|e®* is to
become the maximum term, then #x, < ¢ <%, (for exhaustive arguments see [5], Ch.
I, Part I). Similarly |dn..|e”™*, |@nesle”™?, <, |@a_i]|e®™* are all maximum terms if

Kmpr S 0 < Kmgsy

Koy < 0 < e
Thus % < Xmpr = &me2 =" =%_1=0 < x,. But by hypothesis |a,]e’* is a maximum term,
hence x, < 6 <#p,:. Therefore
(4" 6) Xl = Xmgg = *** = Xn.

Similarly we have:
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(4- 7) Knal = Xnga = *** = Xp.
We require a

LEMMA : Let m be a positive integer such that 2n=2vs Am > Aucoys then

& 4 -1
X :max( log Am log ’ =3 . log m )
=20 An— A Am—Amey )

PROOF OF THE LEMMA: With the smallest value of ¢ if all the following inequa-
lities hold, viz.,
lao] < lamle™, lale™ < lamle™™se, |ans]e <|an]e™,
then |a,|e"» becomes the maximum term. This value of ¢ is, therefore, equal to x.
Then if we refer to the convex polygon construction for the maximum term (see for
instance [5], fig. 1), it is clear that
—log|an| +logla)| —loglan|+logla| —logla,| +10g|an_,|

Xm—lo ’ x'm,_xl > lm_zm—l

are all < the slope x, and therefore the lemma follows.

From the lemma, it follows that

@n-1 Om
x,.:max{log an | ... log a, }
I
tog |
. 8) K= M
since the maximum term goes from |a,|e’* to |a.le’*. Similarly
log | Z2=1 log | 2=
xp=max{ 8| a, 814 }
Ao—Rpr 0 Ap—Aan
g &
4. 9 :—p p>n.
( ) zp__ln 4

Hence from (4. 6) and (4. 7), we have:
An k (n+ 13 n) =2 { (Xn+1 _ln) Xp— (ln"‘xn—l) xm-l-l}

p— An

On
ap

am,
an

From (4. 8), we have:

4. 1D log

2

A, An—Am N Gny
a—n > <1n_ln—1> logl an

and from (4. 7) and (4. 9) we have:
A Ap—ln .
—<Xﬂ:1_xn> log

Combining (4. 10), (4. 11) and (4. 12) we obtain

an

(4. 12) log

an
dp

an+ 1
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anl

lakln+1, ) < /L, log ‘ il —log

2

|

= s log

a,ma,._

Lk+1, ny < (L+¢€), n> ny,
and so (4. 3) follows.

5. If f(s) is an entire function of order (R)p and lower order (R)A, 0 <CA<p
< oo, then I have shown ([3], p. 45; equa. (5))
m log 1(s) e 1 1

a0 lu(q) log Zv(ﬂ') = A 4
I wish to prove now a result of the above type in terms of the coefficient .. We

have then the following.

THEOREM 4: If f(s) = éla,‘e"‘" is an entire function of finite order (R)p <o, p >0
Sfinite lower order (RY2, A>>0 "and finite type T (T >0), where (i) lUm (Auy;—A) =h and
(i) loglan—i/anl]/ (An—2An_r) is a non-decreasing function af n for n>ny, then

log | @a/Gny | 1
Ii g +1 N
n{—»% Anlog An N /1 o’

PROOF: If order (R)p of f(s) is finite and A.’s satisfy (i), then we have from a
result on type ([4], p. 276), (taking p(¢) =p in particular):

6.1 laal < (LTEDE s s e >0,
Again, as p is finite and (i) holds good, we have ([2], Th. 2):
log m (¢) ~log 21 (a),
and so ([6], following after (1.6)), for all n>>n, and >0,
6. 2) [ @ | 7 << Hlpn} #1579,
Combining (5. 1) and (5. 2)
log | -2 ’ < L log (T +¢)ep) —-'Ii‘ log Xn+ﬁ—x”“ 10g Ansy
Gngr [/ A—e
. 3) <%log((T+e)ep) "logl 2t og (Rt hte),

for arbitrarily large n and the result follows.

REMARK : In case we restrict 4,’s further, that is if in addition to (i), 4.’s also satis-

fy : lim (Ang1—4a) =m, we get a stronger result:

N->00
1og [an/any:] 1
2081an/Gnir| - L 1
ql'zl—»co Alogd, /1 o’
but it is weker in the sense that 2,’s are subject to more stringent conditions.  The

proof is almost the same, except in (5. 3) we get on the right-hand side m+¢ in place
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of 2+¢ and this being true for all # > n,.

NOTE: Theorem 1 can be applied to provide numerous results involving orders (R)

and lower orders (R) for two and more entire functions, for instance results of the
type of Theorems 3, 4 & 5 in [7].

The author thanks Dr. S.C. Mitra for his encouraging criticism and interest in

this work.
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