NOTE ON RING EXTENSIONS OF REGULAR LOCAL RINGS

By

Tadayuki Matsuoka

(Received December 20, 1965)

1. STATEMENT.

Let R be a regular local ring with maximal ideal m and S be an over ring of R such that (i) S is a finite R-module and (ii) no non-zero element in R is a zero divisor in S. Such a pair of rings sometimes occurs in the theory of rings so that it might be interesting, under this situation, to find a condition that the ideal mS coincides with the J-radical¹⁾ of S.

Our theorem will be stated as:

The ideal mS coincides with the J-radical of S if and only if the equality

(a) $[S:R] = \sum [S/\mathfrak{P}:R/\mathfrak{m}]$

holds, where [S:R] is the maximum number of linearly independent elements of S over R^2 and the sum runs over all maximal ideals \mathfrak{P} of S.

And as a corollary we have:

If (a) holds, then the quotient ring $S_{\mathfrak{P}}$ is a regular local ring for any maximal ideal \mathfrak{P} of S.

2. PROOF OF THE THEOREM.

Let R be a (commutative Noetherian) semi-local ring and S be an over ring of R. And assume the pair of rings (R, S) satisfies the conditions (i) and (ii). Then it is well known that S is a semi-local ring and $\dim S = \dim R$. Moreover, if R is a normal local ring (i.e. integrally closed in its quotient field), then $\dim S_{\mathfrak{P}} = \dim S$ for any maximal ideal \mathfrak{P} of S (cf. [1] and [2]).

We say that a semi-local ring R is unmixed if $\dim \hat{R}/\mathfrak{p} = \dim R$ for any prime divisor \mathfrak{p} of the zero ideal in \hat{R} where \hat{R} is the completion of R (cf. [1]).

PROPOSITION. If R is unmixed, then S is also unmixed.

PROOF. Let \hat{R} and \hat{S} be completions of R and S respectively. Then \hat{S} is an over ring of \hat{R} and is a finite \hat{R} -module. Let \mathfrak{P} be any prime divisor of the zero ideal in \hat{S} . Putting $\mathfrak{p}=\hat{R}\cap\mathfrak{P}$, then \mathfrak{p} is a prime ideal of \hat{R} and any element of \mathfrak{p} is a zero divisor in \hat{S} . Therefore any element of \mathfrak{p} is a zero divisor in \hat{R} (cf. [2]). Hence \mathfrak{p} is contained in some prime divisor of the zero ideal in \hat{R} . Since R is unmixed, the zero

¹⁾ We mean by the J-radical the intersection of all maximal ideals of S.

²⁾ It is equal to the dimension of the total quotient ring of S considered as a vector space over the quotient field of R.

ideal of \hat{R} has no imbeded prime divisor. Whence \mathfrak{p} is a prime divisor of the zero ideal in \hat{R} , and we have $\dim \hat{R}/\mathfrak{p} = \dim R$. On the otherhand, \hat{S}/\mathfrak{P} is an over ring of \hat{R}/\mathfrak{p} and is a finite \hat{R}/\mathfrak{p} -module. This shows that $\dim \hat{S}/\mathfrak{P} = \dim \hat{R}/\mathfrak{p}$. Therefore we have $\dim \hat{S}/\mathfrak{P} = \dim S$, and the proof is complete.

LEMMA. If R is a regular local ring with maximal ideal \mathfrak{m} and if $\mathfrak{m}S$ coincides with the J-radical of S, then $S_{\mathfrak{P}}$ is a regular local ring for any maximal ideal \mathfrak{P} of S.

The proof is easy and we omit it.

Now, assume that R is a regular local ring with maximal ideal \mathfrak{m} , and we prove the theorem stated in the paragraph 1. Let $\mathfrak{P}_1, ..., \mathfrak{P}_t$ be the set of all maximal ideals of S and put $\mathfrak{M} = \mathfrak{P}_1 \cap ... \cap \mathfrak{P}_t$. Let $\mathfrak{m}S = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_t$ be the irredundant primary decomposition of $\mathfrak{m}S$. Then we have

(b)
$$[S:R] = \sum_{i=1}^{i} [S/\mathfrak{P}_i: R/\mathfrak{m}] e(\mathfrak{q}_i),$$

where $e(\mathfrak{q}_i)$ is the multiplicity of the primary ideal $\mathfrak{q}_i S_{\mathfrak{P}_i}$ (cf. [2]). Now we assume that (a) is satisfied. Then, from (b) we have $e(\mathfrak{q}_i) = 1$, and hence $e(\mathfrak{P}_i) = 1$. Therefore we have $e(\mathfrak{M}) = t$, that is, the multiplicity of the semi-local ring S is equal to the number of maximal ideals of S. On the otherhand, since a regular local ring is unmixed (cf. [1]), S is unmixed by virtue of the preceding proposition. Therefore $S_{\mathfrak{P}_i}$ is a regular local ring (cf. [3]). Recall that in a regular local ring the maximal ideal is the only primary ideal (belonging to the maximal ideal) whose multiplicity is equal to 1. This shows that $\mathfrak{q}_i = \mathfrak{P}_i$ and consequently $\mathfrak{m} S = \mathfrak{M}$. The only if part is an easy consequence of the preceding lemma and the equality (b).

References

- [1] M. Nagata, Local Rings, Interscience Tracts, New York (1962).
- [2] O. Zariski and P. Samuel, Commutative Algebra Vol. II, Van Nostrand, Princeton (1960).
- [3] T. Matsuoka, Note on semi-local rings, J. of Gakugei, Tokushima Univ. Vol. XII (1962) pp. 51-55.