ON A CRITERION FOR ANALYTICALLY UN-RAMIFICATION OF A LOCAL RING

By

Motoyoshi Sakuma and Hiroshi Окичама

(Received December 20, 1965)

1. Let $\mathfrak o$ be a local ring with maximal ideal $\mathfrak m$. $\mathfrak o$ is called analytically unramified in case the completion of $\mathfrak o$ has no nilpotent element. A criterion that $\mathfrak o$ is analytically unramified, obtained by D. Rees in [5], is stated in terms of the integral closures of ideals: $\mathfrak o$ is analytically unramified in case there is an integer k such that $\mathfrak q_n \subset \mathfrak q^{n-k}$ for all $n \ge k$ where $\mathfrak q_n$ is the integral closure of the n-th power of a zero dimensional ideal $\mathfrak q$. Moreover, if this condition is satisfied $\mathfrak q_n \subset \mathfrak q^{n-k}$ for all $n \ge k$, where $\mathfrak q$ is any ideal and k is an integer depending on $\mathfrak q$.

In this note we shall show that this result of Rees can be translated in the finiteness condition of the integral closure of the Rees' ring associated with \mathfrak{q} . In the course of proof we shall also show $l(\mathfrak{q}_n)$, the length of \mathfrak{q}_n , can be expressed as the Hilbert function $\mu(n)$ if n is large. This is a theorem due to Muhly. He discussed it under some additional restrictions placing on \mathfrak{o} [1].

2. Let \mathfrak{a} be an ideal in a commutative Noetherian ring \mathfrak{o} . An element $x \in \mathfrak{o}$ is called integral over \mathfrak{a} in case x satisfies the equation of the form, $x^{\rho} + c_1 x^{\rho-1} + ... + c_{\rho} = 0$, where $c_i \in \mathfrak{a}^i$. The set of elements which are integral over \mathfrak{a} forms an ideal [4]. We call it the integral closure of \mathfrak{a} , and is denoted by \mathfrak{a}_a . We write \mathfrak{a}_n in place of $(\mathfrak{a}^n)_a$. If the set $a_1, ..., a_r$ is a basis of \mathfrak{a} we associate with \mathfrak{a} the Ree's ring $\mathfrak{o}(\mathfrak{a})$ defined by $\mathfrak{o}(\mathfrak{a}) = \mathfrak{o}[a_1t, ..., a_rt, t^{-1}]$ where t is an indeterminate over \mathfrak{o} . Obviously, $\mathfrak{o}(\mathfrak{a})$ is a graded subring of $\mathfrak{o}[t, t^{-1}]$. Consider the integral closure $\mathfrak{o}^*(\mathfrak{a})$ of $\mathfrak{o}(\mathfrak{a})$ in $\mathfrak{o}[t, t^{-1}]$. Then, it is immediately seen that $\mathfrak{o}^*(\mathfrak{a})$ is a graded ring. Moreover, if $x \in \mathfrak{o}$, then $xt^n \in \mathfrak{o}^*(\mathfrak{a})$ if and only if $x \in \mathfrak{o}_n$.

LEMMA 1. Suppose there is an integer k such that $a_n \subset a^{n-k}$ for all $n \ge k$. Then $o^*(a)$ is a finite o(a)-module (Rees [6]).

PROOF. If $xt^n \in \mathfrak{o}^*(\mathfrak{a})$ and if $n \ge k$, then $xt^n \in \mathfrak{a}_n t^n \subset \mathfrak{a}^{n-k} t^n = (\mathfrak{a}^{n-k} t^{n-k}) t^k \subset t^k \mathfrak{o}(\mathfrak{a})$. If n < k, we also have $xt^n = x(t^{-1})^{k-n} t^k \in t^k \mathfrak{o}(\mathfrak{a})$. Hence in either case $xt^n \in t^k \mathfrak{o}^*(\mathfrak{a})$.

Since $v^*(a)$ is graded we can consider homogeneous ideals in $v^*(a)$. For such

ideal A, we associate ideals A_n in 0 defined by $A_n = \{x \in 0; xt^n \in A\}$. Then, as the converse of lemma 1, we get

LEMMA 2. If A is a homogeneous ideal in $\mathfrak{o}^*(\mathfrak{a})$ and if $\mathfrak{o}^*(\mathfrak{a})$ is finite over $\mathfrak{o}(\mathfrak{a})$, then there is an integer k such that $A_n = \mathfrak{a}^{n-k}A_k$ for all integer $n \ge k$. In particular, we have $A_n \subset \mathfrak{a}^{n-k}$.

PROOF. We show first $\mathfrak{a}^p A_q \subset A_{p+q}$. In fact, if $a \in \mathfrak{a}^p$ and $b \in A_q$, then $at^p \in \mathfrak{a}^*(\mathfrak{a})$ and $bt^q \in A$. Hence $abt^{p+q} \in A$. Therefore $ab \in A_{p+q}$. Now, since an $\mathfrak{o}(\mathfrak{a})$ -module $\mathfrak{o}^*(\mathfrak{a})$ is generated by homogeneous elements, A is also generated by homogeneous elements as an $\mathfrak{o}(\mathfrak{a})$ -module. Let

$$A = \mathfrak{o}(\mathfrak{a}) \omega_1 + \ldots + \mathfrak{o}(\mathfrak{a}) \omega_m,$$

with $\omega_i = x_i t^{\lambda_i}$ and $x_i \in A_{\lambda_i}$ (i=1, ..., m). If k is an integer such that $k \ge \text{Max } \lambda_i$ and if $x \in A_n$ $(n \ge k)$, then $xt^n \in A$ and can be written as

$$xt^n = (y_1t^{n-\lambda_1})(x_1t^{\lambda_1}) + \dots + (y_mt^{n-\lambda_m})(x_mt^{\lambda_m})$$

with $y_i \in \mathfrak{a}^{n-\lambda_i}$. Therefore we have

$$x \in \mathfrak{a}^{n-\lambda_1} A_{\lambda_1} + \dots + \mathfrak{a}^{n-\lambda_m} A_{\lambda_m} = \mathfrak{a}^{n-k} \mathfrak{a}^{k-\lambda_1} A_{\lambda_1} + \dots + \mathfrak{a}^{n-k} \mathfrak{a}^{k-\lambda_m} A_{\lambda_m}$$
$$\subset \mathfrak{a}^{n-k} A_{(k-\lambda_1)+\lambda_1} + \dots + \mathfrak{a}^{n-k} A_{(k-\lambda_m)+\lambda_m} = \mathfrak{a}^{n-k} A_k.$$

In case $A=0^*(a)$, we have $A_n=a_n$. Hence

COROLLARY. The converse of lemma 1 is true. Moreover we have $a_n = a^{n-k}a_k$ for all $n \ge k$.

Now, recall that an ideal \mathfrak{b} in \mathfrak{o} is called normal in case $\mathfrak{b}^n = \mathfrak{b}_n$ for all integers n [2]. Then, summarizing lemma 1 and 2, we have the following

THEOREM 1. $\mathfrak{o}^*(\mathfrak{a})$ is a finite module over $\mathfrak{o}(\mathfrak{a})$ if and only if there exists an integer k such that $\mathfrak{a}_n \subset \mathfrak{a}^{n-k}$ for all $n \geq k$ and when this is so \mathfrak{a}_k is a normal ideal.

PROOF. Put $\mathfrak{b}=\mathfrak{a}_k$. Then the last part of the theorem follows from the relation; $\mathfrak{b}_n=\mathfrak{a}_{nk}=\mathfrak{a}^{nk-k}\mathfrak{a}_k=(\mathfrak{a}^k)^{n-1}\mathfrak{a}_k\subset \mathfrak{b}^{n-1}\mathfrak{b}=\mathfrak{b}^n$.

3. In this section we put the restriction on v and v is assumed to be a semi-local ring with maximal ideals $v_1, ..., v_r$. Then the theorem of Rees can be stated as follows:

LEMMA 3. Let v be a defining ideal in o. Then o is analytically unramified if and only if we can find an integer k such that $v_n \subset v^{n-k}$ for $n \ge k$. If this condition is satisfied we have $a_n \subset a^{n-k}$ for any ideal a where k is an integer depending on a.

PROOF. Let $\hat{\mathfrak{o}}$ be the completion of \mathfrak{o} . Then $\hat{\mathfrak{o}}$ is a direct sum of complete local

rings \mathfrak{o}_i (i=1, ..., r) and \mathfrak{o}_i is isomorphic to the completion $\mathfrak{o}_{p_i}[3]$. Hence if $\hat{\mathfrak{o}}$ has no nilpotent element, then each \mathfrak{o}_{p_i} is analytically unramified and we can apply the Rees' result to the pair of rings \mathfrak{o}_{p_i} and \mathfrak{o}_i . Whence we can find an integer k such that $(\mathfrak{oo}_{p_i})_n \subset (\mathfrak{oo}_{p_i})^{n-k}$ for $n \geq k$ (i=1, ..., r). Since $\mathfrak{b}_a \mathfrak{o}_s = (\mathfrak{bo}_s)_a$ for any multiplicatively closed set S, $0 \notin S$, and since $\mathfrak{b} = \bigcap_{i=1}^r (\mathfrak{bo}_{p_i} \cap \mathfrak{o})$ holds for any ideal $\mathfrak{b}[3]$, we get $\mathfrak{a}_n \subset \mathfrak{a}^{n-k}$ if we contract the above relation back to \mathfrak{o} . As for the converse, it is enough to mention that the proof of lemma 1 of [5] is still true without any change.

Now, from theorem 1 and lemma 3, we obtain immediately our main theorem:

THEOREM 2. In a semi-local ring the following three conditions are equivalent.

- (1) o is analytically unramified.
- (2) o*(v) is finite over o(v) for some defining ideal v.
- (3) Existence of a normal defining ideal.

Moreover, when this is so, for any ideal a, (2) is still true and a_k is normal for some k.

If E is a finite module over $\mathfrak o$ and $\mathfrak o$ is a defining ideal of $\mathfrak o$, then it is well known that the length of $E/\mathfrak o^n E$ is expressed as a polynomial if n is large [3]. Therefore from corollary of lemma 2, jointly with theorem 2, we have the following.

COROLLARY If v is a defining ideal of an analytically unramified semi-local ring, then $l(v_n)$, the length of the integral closure of v^n , is represented as a Hilbert function $\mu(n)$ if n is sufficiently large.

References

- [1] H.T. Muhly, Complete ideals in local rings, Proc. Amer. Math. Soc. 11 (1960), 361-367.
- [2] _____, Local varieties and asymptotic equivalence, Proc. Amer. Math. Soc. 13 (1962), 555-561.
- [3] M. Nagata, Local rings, Interscience (New York), 1962.
- [4] _____, Note on a paper of Samuel cocerning asymptotic properties of ideals, Mem. Coll. Sci. Univ. Kycto 30 (1957), 165-175.
- [5] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36(1961), 24-28.
- [6] _____, Degree functions in local rings, Proc. Cambridge Phil. Soc. 57 (1961), 1-7.