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THE STUDENT*S DISTRIBUTION FOR A UNIVERSE
BOUNDED AT ONE OR BOTH SIDES (Continued)

By
Yoshikatsu WATANABE

(Received September 30, 1963)

In the present note the author treats the most general form for the
volume-element of the first half, i.e. one sided case of the proposed theme,
and has gained its general information, at least theoretically. Naturally to
get actual solutions for concrete cases of several sizes n =26, 7, -.., it requires
a vast bulk of computations which could be accomplished only by making
constant use of electronic computers, &c. Also the results reported in the
preceding notes' are now supplemented with possible improvement, sometimes
rebuilt to get a better insight, or to make more general and intelligible.
Lastly to reveal the general feature of its application, the T.N.D. is examplified
by the special case » = 4.

17. Volume-element in General, Preliminaries. We have to find the n-
dimensional volume element

(17.0) AV, =F, 2%, s)d(Wnz)d(Wns),

or, its main factor F,_,, which denotes the (n—2)-dimensional measure of the
product area ¢ = (SN K), where S =8,_; (%) is the (r—1)-dimensional simplex,
i.e. the points- aggregate
{P(x1, %2y -+, 2) | 2:>>0, Six; = nx — determinate}

in a n-dimensional space with centroid G(z, ---, %), while K=K, _,(s) is a (n—1)-
dimensional spherical surface with center G and radius Vns. Meanwhile we
are considering the (n—1)-dimensional whole space R,_., where >; = nx with
all x; irrespective to signs holds at all, so that S,_1, K,_i, F,_;, as well as the
prolonged S,_;, all CR,_,. However, the product surface F,_, is not a mere
compound function of z and s, but more precisely defined by the product of
(Vns)*~? and a certain function of ¢ =s/x with (n— 1) steps, what were described
in [I] but also become clear by (8) below: Namely, I: 0<r < 1/Vn—1, II:
1/Nn—1 <7t<N2/(n—2) ..., the (n—1)-th: Vz—2)/2 <r<vn—1. However
the n-th case Yn—1 <t < oo never takes place. In fact, given any universe

1) Although the author endeavored possiblly to make the present note understandable without
referring to his previous papers, yet these are, to be available when required, cited below as [I7]:
Some exceptional examples to Student’s distribution, this Jour. Vol. X (1959), p. 11-; [II]: the same
topic as the present, Sect. 1-7, ibid. Vol. XI (1960), p. 11-; [II1] and [IV]: its continuations, Sect.
8-12, ibid. Vol. XII (1961), p. 5- and Sect. 13-16, ibid. Vol. XIII (1962), p. 1-.
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with a non-negative argument, and its sample {x;}, such that >x; =nx, >)(x;
—x)? =ns?, we should have

0<?<<(n—Dx* ie. 0<r=s/2<vVn—L1

For, no x; can be greater than nz, because, if so, some other x; must become
negative against the presumption. If at most one x; =nz and all remaining
x; =0, then ns? = (x — x)° + (n — D% =n(n — 1)z, which yields s= Vn—1rx,
while, if all x;=% or 0, then s=0. Excepting these extreme cases, let x;=nze;,
0<e; < 1, so that S}e; =1 but 3e?< 1 and there are at least two ¢; >0, ¢, > 0.
Also by the known relation 33a? =nz® + ns’, we have nz*>)e? = x° + 5%, and
whence follows that 0 < > =z’ S)e? — 1) < (n — 1)z*, Q.E.D.

We may therefore subdivide the whole interval 0 <{c<vn—1, whose v-th
subinterval is

17.1) G =NO—1D/a—v+1) <c<c,=Vy/a—y), v=1,2, ... ,n—1,

where the sequence {r,} is monotonic
increasing, but the interval length

Q72) L=v,—7,.. (=1, ...,n—1)

becomes minimal at the midway and
L <1, (Fig. 1.). Really, under
assumption that » >3, 1<yv<<n—1,
inequalities I,=1,,, afford 0=(n—v)*

(n—4v)+ 4y, which shows that for v <{ \ I
n/4 the lower sign holds, but when
y=n—2, the upper. In the remaining
portion E n/d<y<n-— 2,'the upper /"_(]"\
or lower sign holds according as ¢(v) 0 7 5 ‘
= 4y° — 9? + (60 —4)y—n* =0, where
¢(n/4)< 0, »(n—2)>0. The roots of
¢'=0 are o, 8=8n+Vn?+16/3)/4 and
¢"(a)>0,9"(3)< 0. Thus ¢(x) becomes
minimum (< 0) at x = o >»n — 2, which however lies outside T and maximum
(>0) at x =@ inside . Therefore ¢(x) vanishes at a point 7 between n/4 and
B3 and becomes negative in 1<y <7 but positive in v <y<n—1. So that 1,
deereases up to x =7 or thereabout, but increases ever afterwards up to x =
n—1.

The purpose of the present note is to determine several forms of the
product surface F,_,(%, s) for the successive subcases in general. But before
going to those details, some concerned notions and magnitudes would be
preluded in order to shorten and easify somewhat of the subsequent
statement.

Fig. !
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First let the successive typical subsimplexes of the main simplex S be
written as
178) S=S,.1=A4145.. Ay, S=8"_,=A Ay Ay_1, S =S5t =A1 45 Ay,
...... , SO =§m b = A My Ay ey

where the number of dashes or bracketed ruby-figure put upperly, denotes
the suborder, that is, the number of vertices typically rejected from S, which
are detailed by the upperly written names of vertices and at the same time
the dimension lowerly. So, at length S” Y =8%#-1. 2 reduces to a vertex 4.
Clearly each of (3) being the base of the precedent, it holds

(17.4) SD8'D8"D...D8MD> ... D8V (=4y).
Next, let their centroids (typical subcentroids) be
(17.5) G, G,G", ...,G¥, ..., GV (=4));

or, more in detail, suffixed upperly and lowerly as in (3), but sometimes
abridged simply as G, Gy, Gy, ---, G,, ...G,_;, where G, € S, if #>p in (4). Their
original O-x;x;..-x, coordinates were G(%, .-, %), G' (&, .-, %, 0), .., GV E™, ...,
%, 0, ...0), where

(17.6) ) =nx/(n—v), ie. (- =nx, (@=12,...,2—1)

what follows from the fundamental relation >a; =nxz. Besides, the distance
of the subcentroid G, is given by

A77) GG, =g, =V@—v) G —x)2+vz’ = xVmw/(n—v) =Vnir, (=1, ..., n—1).
Hence, the v-th stage in regard to the radius r of the sphere K
(17.8) goa<r=vVns<g, (go=0,v=1,..,n—1)

just corresponds to the y-th subease t,_;1 <t =35/ <t,. In other words, the
subcentroid G,_; lies inside K but G, outside K at the y-th subcase. Moreover

(17.9) the distance GG, is L to S® (v=1,2, ...),

which is evident by symmetry; or else, if any point P(xy, ---, %5-., 0, .-, 0) € S,
we see that >(x; — ) (& — ) = @ — ") > (x; — ) = 0 by (6).

Here we may observe that the ordinary 3 1. rs theorem can be readily
generalized to the (n—1)-dimensional space: Let PQ be normal to S®(>S",
2> v) and besides if QR 1. S®, i.e. QR L to any straight line on S, then the
join PR is also I to S and inversely if PR 1 S®, then the join QR is L to S®.
Further the 8 i rs theorem holds for any 3 subcentroids G,, G,, G, (¢v<<#<4).

When v < #, G, € S* and by (9) GG, 1.G,G., so that we obtain the distance
between the two subcentroids
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(17.10)  d,.=G,G, =Vgi—g? =iVn(ti—1%) = n&xV (U —v)/(n— 1) (n—v) (4>v).

In particular, putting #=y+ 1, we get the distance between successive
subcentroids

(17.11) h,=6,G,.1=Vgi,—g2 =nz/N(@n—v)(n—yv—1) (v=0,1, ..., n—2).

Besides the subcentral distance is obtained from (10) and (6)

17.12)  k=6C, =¥ Va—1) 0— 1/ n—p), (=0, ky=hy, v=1, ..., n—1).

This may be more radically deduced from (11): The original O—x --.x,
co-ordinate system was transformed into the new G — £(=70)7%;...%,_» coordi-
nates system, which was so chosen that G is the new origin and the succeeding
G, lies at h,_, on the 7,_, parallel through G,_,, where 4,_; were taken positively,
except the first one 2y = —%Vn/(n—1). Really letting G(&, .-, )—>G(0, -.., 0)
and G'(&, ..., &) > G (h, 0, .., 0), it yields the distance |GG | =|h| =
Vin—1)(7—x )2+ 3% =%Vn/(n—1) by (6). But we have taken the &-axis along
the negative direction GG’, so that

(17.13) £=CGC=h=—3Vn/(a—1) (= —g1)

which denotes also the equation to the hyperplane S’, because, if P be any
point on S, GG’ 1.G'P after (9) and the Z-ordinate of P satisfies (13) always.
Consequently the new coordinates of G, are

(17.14) CyChoy By oy 1y 0y, 0)  »y=1,2 ... n—L.

Or, if the Z-ordinate (=7,) be ignored, i.e. if the whole G — 7,7,.-.7,_, axes be
projected on the hyperplane (18), we obtain the G’ — 7,7;-..7,_, coordinates
system, in which

(17.15) G,=G,(h, hgy -y B3, 0, .-, 0) y=2,8, ..,n—L
Hence the radius vector G'G, =%, is again obtained by
y 1 )___ n—1D -1 72

n—y n—1 n—y

v—1 v—1
1 =53 = St — b= g2 —gt =

in agreement with (12). The broken line G,G;...G,_, may be called G,-zigzag
when stopped at G,, and G, G,, ... their vertices; they are all L two by two.
They may be also expressed by polar coordinates of G,(v=2, ...,n—1, 0,=1):
hy =k, cos0, cosfy...cos0,_; ki =0, ko=0n

hy =k, sin 0, cosOy...cos0, ks =Nhi+hi =k, cosby . ..cos0,_;

(17.16)

hpgl = k, Sina,,Az k,,_l = k,, COS@V_Z.
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Further
a7.17) bk =8in0,1, k,/k,.1 =cos6,1, h,/k,=tano, i,
R4ki=k,, (=1,..,n—2 00=r/2).

More generally for the polar coordinates of any point P(0, 71, -, 7,_2), G1 as
origin,

(1718) P(w;=08in0;_1c080;.--co80,_3|i=1,2, ...,n—2, 0o =7/2),
we have the following relations
(1719) 7]2/771 = tan6,, ‘0,—+1/771-=tan01-/sin61-,1 (I,: 1, ey 7l—2>

and particularly for P=G,

(17.20) tan6, ,/sin0,_s=h,_1/h,_s =V (n—v+2)/(—v) by (11).

The subsimplexes’ centroids (5) become at the same time the centers of
typical subspheres, if exist, which are their intersections with the main sphere
Kn—l

1721 K, ,, K/, -, K®, 4, .., K# 2 = linear circle, K{ V= point sphere.

Since GG, is 1 to S, if r=vVns>g =|66,|=Vn/(a—1)z, i.e. when t>r;
(the second subcase and thereafter), K,_, intersects S’ and we get K,,_,of radius
r1 = Vns*—nx?/(n—1)=Vn—1 s/, on writing similarly as r =+vns. Similarly
when r =Vns>g,=Vn %r,, i.e. in the (v + 1)-th subcase and thereafter there
yields the intersection of K,_; and S¢?,_,, the subsphere K$?,_, with center G,.
Its radius becomes, in consequence that GG, | S® after (9)

(17.22) r,=vVn— s =+ ns? =V =Vn sV 1—12/c? = n(s?—vx2)/(n—v)

——— vl 5
=N = S =V A= =W ()
1

Particularly for v=n—1, we get r,_, =s* P =vVns¥1—(@m—1)/c?, which is
real only for the unavailable - >+vn—1, but vanishing at the end of available
T L Van—1.

To make the matter easily understandable, it may be metaphorized as
follows: Miss K, and Mr. S,_; made marriage. In the first ageI: 0 <r <g;
there was no child (no subsphere), but when Mrs. K’s body measure r reached
to g1 at =1, (the end of I or the epoch of II), she has borne the first daughter
K’; when r grew further to g, at r=rc, (epoch of III), the second child K" was
born, ..., however in the last age, when r became g,_1 at ¢ = vn—1 (the last
time), the last child K®V, but alass still born!

In consequence of (4) at the v-th subcase there exist spheres
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(17.28) K,.i1DK, ,DK._,>...DKy3P or DK, but no more,

according as the y-th subinterval is open or closed at right.

We write likewise to r = s/z, the successive ratios t®=s5“/z*), where z
= nx/(n—v) denotes the non-vanishing equal original coordinates of G,, which
however is of less use, except the first one

(17.24) U =5/% = ‘/W and conversely ¢ —= ‘/W/zill
-

Hence the y-th stage (1) is also designated just by

<v<l 1_/”—1 =23, ..., n—1).

n—Yy

17.25) 7l 2_]/71_”le

The comparison of two systems is tabulated as follows:

Subinterval I i | » the »-th [ the (n—1) th °
e 0~1/Vi—1| 1/Vi<i~ |..| Vo—D/a—rtD~ |..| vVa—2)/2~
V'2/(n—2) Vy/(n—») vn—1
v =s/x imaginary | 0~1/vn—2 |..| Vi—2/tn—rtD)~ |..| V@—8/)2~
Vip—1)/(n—») vn—2

When v > 1 writing ' = ¢'/# in (25) and multiplying by va—1 &/, we get
after (12)

(17.26) booa<iVn—1s=rn<k ©=238,..,2—1)

as the y-th substage: 7)_, <t <</_,. Thus the radius of K’ being in length
between G'G,_, and G'G,, the subcentroid G,_; lies inside K’, but G, outside K'.
To continue the before made metaphor about Mrs. K, now it is concerned with
her daughter K’, who got married Mr. S’, a son of S, and the latter’s body meas-
ure r;=vn—1s. Untill the end of I, K’ was not yet born. But at the end of II,
z =13, when r; became k,, the bride K’ has borne her child K” and hereafter
quite the same birth of children as described about the grandmother K’s.
Lastly to write the equations to S¢,_; and K%, ;, we remind that the
former are given as a hyperplane, linearly by the original coordinates x, =

W= . . .
Fpo1 = =%,_,11 =0 with 3] », = nx in which all summands are non-negative

in the proper S, but somé of them become negative in the prolonged S®.
Hence, in view of (18.6) in [IV], the new equations to S$”,_, are rendered as
the intersection of hyperplanes,

ar2n  S®: 9,=h, (#=0,1,...,v—1,all positive except 7, = = hy),

but the remaining (n—»—1) ordinates 7,’s remain variable, what hold for the
prolonged S® also. Therefore the equation to K$?,_, = (K n.S™)) are
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(17.28) RO,y 0,=h, (@=0,1, ..,y—1) and S72=r2,

where the radius r, = sVrn(1—<2/7%) by (22) and the center lies at distance &,
from G'. In particularr, when v =1, we have { = — Vn/(n—1) % for §', and in
addition

(17.29) k' ”zJ 7 =1} =(n— 1)s &.

Remark (17.80). If the first subsphere K’ be cut by the base of (27), ie.
\j (1, =h,), there yields the intersection Z 73— Z 72 =r%—k, ie. }_. 92 =712

after (22). Therefore K may be simply referred to that on K’ instead to
consider on K itself.

Summary. There are the following several monotonic sequences:
(17.31) Central distances {GG, = g, =3Vmv/(n —v) =vVn .},
namely g, = zVn/(n—1), g2=%V2n/(n—2), .., gu2= #Nnln—1) = G4,.

(17.82) Successive subcentroids’ distances {G,G,,1=h, = nx/N(z—»)(n—yv—1)},
ie. ho=gi, i =nx/N(@—1) @—2), hy=0z/N (n—2)(n—38), -,

hn_o = n%/N2 =a/2 (half side).

(17.33) Subcentral distances {¢'G, =k, =nzV (v—1)/(n—1) (n—v)

=#Vin—1) —1)/(n—y), ie. ki =0,k =h,k=nxV2/(n—1)(@n—-2), ..,

kno1 =13\ (n—2)/(n—1) = G A;}.

(17.34) Terminals of subintervals {r, =Vy/m—v)}, w0 =0, r;=1n—1,
Ty =V2/(—2), .-, Tpoy=Vn—1L.

However the following two are not monotonic:
(17.835) Subintervals’ sequence {r,—r7,_;} has a minimum, and

(17.36) the sequence of number of the y-th subsimplexes: {N,} has a max-
imum; namely, No=1, Ni=n, ..., N,=,C,, .-, N,_1=n, while their permutations
are again monotonic increasing:

17.37) =0, Po=nln—-1), -, P.=n—1---(n—y+1), ..., P, =n!

Naturally sizes of successive subsimplexes as well as subspheres form
both monotonic decreasing sequences. However, their measures are scarcely
directly treated for computations of the product surface F,_,. Yet the sub-
spheres play the following important roles: firstly, whenever they make their
first appearance, the stage changes, and secondly, in our determination of
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overlappingly calculated spaces, they constitute themselves wholly or partly
together with the foregoing of them, a gate or barrier, through which further
spreading vectors enter into the newly overlapping domain, as will be seen in
the subsequent section.

18. Continued, Establishment of the Product-Surfaces F,_,, (v=1,2, ...,
n—1). The product-surface F,_, =(S,.1N\K,_,) being really of different form
at every stage, let its expression corresponding to the y-th stage be denoted
by F,_.,, =F, and the correction necessary to be added to F,_, to obtain F, by
(—=1y¥"'F5, ;. Thus

F,=F,  + (=1, =F_+ (=1 .+ (=19 =, ie
8.1 F—F S(j(—l)"bi (B = 1),

where 0; is truly defined by r =s/z. It is clear that for ¢ =<t,_; =Vn—1 (the
final value) after (17.31) g, =G4, and K passes through all the vertices, so
that SNK reduces to null measure. Consequently we should have

(18.2) F,.= Fl’if (—1)'H;=0, so that ioz, (=1'5;Wr—1)=0.
The v-th volume element being simply

(18.3) av,=F,d(Vnz)d(Wns),

we have only to determine F, successively.

I >2,v=1): 0<c=s/2<t,=1Nn—1, ie. 0<Vns<Vnz/Nn—1=
|GG"|. Here |GG’| being the shortest distance from G to S, the s-sphere K lies
wholly inside the simplex S=3S,_;, so that the s-sphere’s surface-points all
bioccupy s and % and € 0 =(SNK). Hence, we have only to find the (z — 2)-
dimensional surface area F, , of K,.;. Now the 7,%,...7,_, rectangular coor-
dinates system being transformed into 00,...0,_s; polar system, we have the
(n—2)-dimensional space element

do=dn; .- dl,_s = 0"%c080,c08%04 ... cos” 0, 3d0db; -..dO,_s.

This being projected inversely on the upper half of the sphere K: &2 + 0% =72
= ns®, and integrated, we obtain as the required spherical surface

/2 w2

costdb;. - S COS”_40n_3d9n—3SrseCT'O”_sdD.
0

—7i2

(18.4) 3F, o, = S“dm S
0

—w/2
The 7,7,...7,_, coordinates axes form 272 multiplants, a generalized name of
quadrant (22=4), octant (2°=8), the first multiplant being that in which all
778>0. As there are 4 x 2"*=2"? quadrants, we may only consider the
first multiplant by symmetry. Yet in (4), multiplying by 2 due to £=0, the
power becomes 2"~ ! and we have

— zf f xf /2
(18.4.1) F,,,z,,zzn-l(x/ns)"~zg fwlg zcosﬁzdﬁz---g 2cos"—‘*a,,_Sd@HS Sin"2¢dg.
0 0 0 Q



The Student’s Distribution 9

Or, applying a known formula

Wi = m+1 m | . o
280 cos™6d0 =\ 7 r( . >/F<7+1>, m=0,1, . n—2
we obtain
(18.5) Fos(Wms)=2Va" W nsy?/T| ?”—‘-2‘_1),
which is the well known Fisher’s formula. Hereafter we shall call this

expression as Fisher’s areal function and denote it by F; or F;, while F, in (1)
as the generalized Fisher’s areal function. We get for F), e.g.

n}2‘3‘4)5 6 | 7 g

F, ‘ 2 ‘ 2v 3 ws [ 16ms? 101/’5&%3‘ 96 w2t {49v7n355 819273%%/15 &ec.

The volume-element are obtained on multiplying these by ndzds, respectively.
Naturally the above Fisher’s formula holds good equally for all t=s/z>1/yn—1
also, if the simplex S be prolonged, S say, i.e. if under condition >x; = nZx, the
restriction of x;’s non-negativity be released. But then the s-sphere’s radius
exceeds |GG'| and K protrudes outside the proper S, so that (5) should be
corrected to get the successive F, correctly.

First consider

II (n>8,v=2): 1/Nn—1<r=5/2<v2/(n—2). Here comes the first
subsphere K’ through which the radius-vectors of K go over outside the proper
S. In fact, after (17.7,8) g1 =Vn/(ai—1)3<r=vVns<g:=+V2n/(n—2) % and K
contains G’ in its inside but those points on the produced GG’ are outside S.
Thus K protrudes outward S over S'. But by (17.12,26) bk, =0<r, =Vn—1 ¢
<k, =V(@m—1)/(n—2) x (Fig. 2). So that K’ lies entirely inside the proper S’
and accordingly the protruding portion over every first subsimplex has no
common point with each other. The annexed Fig. 2¢ shows the configuration
schematically but rather generally. In fact, the hyperplane §': £ =vVn/(n—1)
z is a (n—2)-dimensional space of 7y, ..., 7,_; but it is denoted by a single thick
line in Fig 2q.

Now the solid sphere K/, _, being divided into concentric (n—2)-dimensional
spherical shells of radius ¢, where 0 <9 <r;, which is therefore ¢S, ,CS,
we get the elementary volume F,_;(0)de, where F,_; is obtained by replacing
nby n—1 and v s by 0 in (5). This being projected inversely on K,_,: &%+ 0?
=ns’, there yields the areal element dC,_, of the calotte protruding over S'.
Hence, this integrated, affords the required area of the protruding calotte

Cn_zzS“secr-2\/5”“20”’3d0/F<—72Z~—1>, where secy =\ n s/Vns?—0°.
0
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Fig. 2 Fig. 2a
That is
_ 2(mnsy® g"” P RS By o 3
(18.6) Coz= Fa/2=T ) sin*~%¢dy, where ¢ =seec 'Vn—1r.

Otherwise: If from the whole sphere F,_; the upper hemisphere as well
as the lower calotte be cut off (Fig. 2b), there remains a (n—2)-dimensional
spherical frustum with lateral surface v=%F, ,—C,_..

Dz

7y

&

a [|! small
sphere K,,_Z(’.l) 73

Fig. 26 Fig. 2¢
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The lateral surface » is bounded upperly by a sphere K,_;(r=vns)on &=0 and
lowerly by a parallel small sphere K, _,(r,=Vn—15) on { = — Yn/(n—1) . Con-
sequently, if this be projected on £ =0, the projected v* shall be bounded by
two concentric spheres K} ,(r) and K} ,(r;) (Fig. 2¢). Hence, if the latter be
projected on K inversely, yields just as in (4)

| /2 7 =
(18.7) p=2"" S db, S 2COS 02d0;- -- g co8" %0, _3db,_3 S -J— 0"=3do,
0 0 r1 o ns? — 02

whose innermost integral, when 0 =+n s sin¢, ¢; =sec 'vn—1r, reduces to
v w2 . w2 [
S = S (Wn )" ?sin®%pdg = g — g )
71 @1 0 0
Therefore

2(Wnm s)*2
I'(n/2—-1)

b=1F, 5, — S S gdp = 3F, o1 — Cos,

and whence (6) is delivered once more again.
Since there are n congruent calottes to be subtracted, we obtain

(18.8) Fn—z,]l - F1 -_ 7ZC7,42 = F1 (1 — fh), Where
_ nl'((n—1)/2) S P
(18.9) = TTZ_FWTﬁS sin"3¢d¢ (¢ =sec Wn—1 1),

which may be called Archimedes’ formula. E.g. for » =6 we get
5i(r) =8 —3(15:2—1)/10V5 <, H](c)=9(5c?—1)/10V5 %, §’(c) = 9(2—572)/bV5 5,
so that 5(W5)=2.112, B;(1//5)=0, but H(1/V5)=29/5.

In general, at the epoch of II: 7, =1/¥n—1, §, reduces to naught. Moreover,
since H7(r) = const-r?sin""*¢,, besides holds for large n,

5#’(c) = const - 2 (P) (—1)?-¢ 'pz_p qq+1 d:q (sin”"4¢1(z‘)),

where the summands reduce to 0 as r =¢y, ¢; =0, if n —4>p. Hence the p-th
derivative bi?’(r,) becomes zero for p=1,2, ..., up ton — 5.
Also, since C,_» =% F,_, — v, wherein (5) and (7) be substituted, yields

|2 &y
(18.10)  nCyp=n2"*(Vn sy 28 do, .. S /cosn‘4an,3d0n_sg sin”* gdg
Y 0
=n2" 2] (p; =secWn—11)=F b,

where the power 2" in (4.1) is halved, now that & is confined to be one sided,
while on the otherhand ,P; =» should be multiplied. And (10) denotes the



12 Yoshikatsu WATANABE

amount of correction to F; to obtain F;; but with factor —1, since it must be
subtracted. This form is quite of the same type as those for the subsequent
F[][, F[V, ... below.

I (n>4,v=23): V2/m—2)<t<V¥38/(n—38), V1/(n—2) <<’ < V2/(n—3).
By (17.8, 26) we have now g, <r < gs, kz <r < ks, so that ¢ inside K, K’, but
G outside. Thus here the second subsphere K" makes its appearance on S’
and plays its role as a new gate (K’ was the first gate in II). If Archimedes’
formula applied here, those calottes over neighbouring S,_, mutually overlap,
which needs further correction. Thus after III we ought to consider not only
the hitherto treated typical subsimplex S’ =S”_, but also another, say S773,
both of which have the same subsimplex S?% 1 =8"=1B, 3 (x, =x,_1=0) as
a common base, that is again schematically denoted by thick lines (Fig. 3).

Fig. 3 Fig. 3a

The join 4, .G, 4,G" being the respective axis of S?_,, S?~}, they are both
1 to B,.; and accordingly the plane A4,6"'4,_,is ! to B,_s;, as any straight
line drawn through ¢’ on B,_; becomes | to this plane. Hence, if 4 be any
point on A4,4,_;, then AG” is also 1 to B, ;. Therefore when 4 moves from
A, 1 to A,, the space (A4-B,_3) = H,_,(4) rotates about the common axial base
B,_;, the amount of rotation being measured by o« = ~4G"'4,_,. Moreover,
UH(A) is clearly convex and contains all faces of S, so that VH(4)22S. But,
if the point A4'==A4, then H(A), H(A") cannot have any common point except on
B,_s (ie. G"). TFor, putting 4, ,4: A4, =2, we get A(0, ---, 0, nz/(1 + 1), inx/
(1 +2) and similarly if 4, 4 A4,=2, 4, -, 0, nx/(A+21), Anx/(1+21")
with 22=2". Assuming that H(4), H(4) have a common point C(cy, ---, ¢p—1, €n)
with non-vanishing ¢,_1, ¢,. Produce 2 joins CA4, CA’ to meet B, ; at B, B’ both
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with coordinates x, ; =, =0. Writing AC: CB= # and A4'C: CB' = #/, we have
o1 =1x/(1+2) A+ 1) =nx/A+1) A+ ) and ¢, = inx/(1+2) (L + 4) = I'nx,
A+2) QA+ #), and whence 2=2" follows, which however contradicts the
presumption. Hence, every point of S is once and only once swept out by the
rotating H(A4), so that \ H(A)=3S.

The equation to H(1) or H(A4) can be deduced from those of its axis AG”,

which in original coordinates are x =...=x, s =[nzx — (1 + Dxy_1 /(2 — 2),
%, = Ax,_1. When these be transformed into new coordinates, ef. (13.6) in [IV ],
we obtain, besides trivial 7,=...=7%,_, =0,

(18.11) r—14+D¢=Vrm—1) QA—Dz— Nn(G—2) 7

which affords the required equation for H(2). In particular, we get
(18.12) if 2=0, ¢=—zVn/e—1) for HO)=S"_,=5,

if 1=o00, £=Vum—1)x—Vr®—2) 7 for H(co)=S"-1,

if 1=1, ¢=—V@—2)/n7 for H1)= (4s*B,_s), the equator E, ..

The intersection K, ; "\ H(4) yields a sphere K,_,(4). Every summand
of UK,_,(4) =0 intersects all with S along K on B,_; in common, but they
have no common point outward K. Especially the portion of ¢ extending
outward beyond the gate K, say v, belongs to Archimedes’ surface in II over
Sz_, as well as S2”} (rather their prolongations S7_,, §7-} toward x, , <0 as
‘well as x, < 0), that must have been subtracted twice, when F;; applied here.
Hence we ought to add this » to correct F;;. By symmetry we have only to
treat typically the portion extending outward over S”, and after remark
(17.30) to consider the portion beyond K" in K, so that 7, >>h; (Fig. 3a).

Since the equator E,_, divides S into 2 congruent parts, we have only to
compute the volume of canopy vyz(=v/2) bounded by K,_,(=KNS’) and KE_,
(=KNE, ;), whose latter has its equations 0*+¢? =r*=ns® and {= —V(n—2)/n
7, after (12), a great sphere, while the former’s are 02 +&¢>=r% and ¢ =—
Vn/(n—1) %, a small sphese. Hence, their projections on £ =0 become an oblate
ellipsoid whose 7,-semiaxes a, v =2, ..., n — 3) are all =r except the 7;-semi-
axis = a; = r\/n/2(n—1) <r:

(18.13) 00 =137 s/V1 + (n—2)/n) cos?6; ...c08%0,,_s,
and 0, =vn—1s =r,, a small sphere, respectively.

The canopy bounded by these 2 surfaces being projected inversely on K: ¢ =
ns® — 0%, as they C v C S, by virtue of $’s compactness, it yields the required
volume

— B 32 Brn—s
(18.14)  wvpr=v;7=2"Wns)*? g dé, S cosBydb; - S cos” 10, _3d0,_s
0 0 0

S:‘sinﬂ-wdg/; (2>4)
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that may be called the canopied formula. Its numerical coefficient denotes
the number of multiplant 272 divided by 2, because we are to take the positive
7, only. Therefore (yrs)" % x [the (» — 2)-ple integral in (14)7] expresses the
partial volume in the first multiplant. The limits of integrations are, as will
be seen from Fig. 3a,
(18.15) 81 = cos ki /r, = sec 'V n—2 ¢’ and generally

B; =cos !(cos B sech;...secl;_y), i=2,3, ..., n—3 and
¢, =sin " (0;/Nns)=sin"W1—1/(ai—1)? =cos '1/Nn—1c=sec Wn—1r,
$o=sin" (LN 1+ ((n—2)/n)cos?; .- cos%6,_; = tan~ (¥ n/(n—2)sech,...sech,_s).

We have found the above v;;; by conceiving A4, and 4,_, typically, but there are
+P2 of such v;;;. Hence we get the correction to F;;, or the second overlapping
space’s measure

(18.16) Orrr=n(m— Doy =nln—2)2" ], 2111 = 0o F1

and the product surface in the subcase III is

(18.17) Frip=Fr + 9 F, = F1 (1 — 5 + b).
Below it will be employed the abbreviation:
n—3 Bi . ¢ .
(18.18) 174 H cos"lﬁidﬁi] . S sin"2gdg =6,
i=j+1 0 &a
So that
_ B:
(18.19) vrrr =2 (Y7 syf—zg 0, (6,, T)dbr.
0

At the epoch r =1, ¢/ =<}, the upper and lower limits of 4, coincide, so that
B (r2) =0, §;, =0.

Also, to avoid somewhat mingled name 6y, 8, - --, we adopt the geographical
or astronomical nomenclature. We call 6y, 6, 03, ---, 6;,1, --- in succession, the
longitude, latitude, bilatitude, the i-th latitude. Thus, the free entrance K’ in
vrrr is confined between the lower meridian ¢, =0 and the upper meridian
0, = (8, = sec™ 'V n—2¢" and the latitude between 6,=0 and 0,=p,=cos ' (coss;
sec6;) =sec(Nn—2 ¢’ cosf,), respectively. The name ¢,-meridians &ec. are also
of use below in V &e., but not in ITI, IV.

IV (>5,v=4): ¥8/m—38) <r<2/Nn—4, V2/n—38) < <V38/(n—4),
ks <r, < ks and G5 inside K’ but G, outside. Hence, K"’ makes its new appear-
ance, as shown again schematically by a thick line in Fig. 4.

We have reckoned v;;; = the prolonged S-space over K"/ (= K7 1) as over-
lapping Archimedes’ subspace, because v;rr C S2_, N\ S22} =877l Similarly
vy = the prolonged S-space over K’/ = K77 -7~2 forms overlapping canopied
subspaces, because vy C S%% 1N S%% 2. Thus the entrance K in III is now
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Fig. 4

barricaded by meridian plane MLM containing ¢’ and the free passage K’
in III is now narrowed to MUG', where M denotes the point at which the
7s-parallel through G cuts K’. So that the lower meridian becomes instead
of 0 now

(1820)  ay =tan " (hy/h) =tan"Viu—1)/(n—3) = sec=V2Z(—2)/(n— 3),

while the upper meridian 8, and all other limits remain unchanged. Hence,
we get

. B1
(18.21) vy =2 (W s)yt2 Sw@2<01, ) d0,(=J 02, 1v),

which may be called the semi-lunette formula, since the typical »;- consists of
a semi-lunette MUL. The power of 2 in v;y is lowered by one than that in v,;,
because now for 0, the negative quadrant should be abandoned. Besides, as
vy is obtained from A, 4,_,, 4,_, taken in this order, there is the total number
Ps=nn—1)m—2) of congruent v;y by symmetry. Therefore the whole
overlapping space is now

(18.22) Orv =n(n—1) (n— 2)vrv = F1 b,

that is produced by the overaddition in III and ought to be subtracted from
Frpre

(18.23) Fry =Frr—Fis=Fi(1 =% + 5 —bs).

We call the space ¢'— MLU in K’ which contains v;y, to be its framework,
and the surface portion MLU on K’ to be its map. Further it would be conven-
iently cited as the principle of diminishing domain, that the domain of integra-
tion about any variable ¢; diminishes or at least remains unaltered but never
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augments, when the number of suborder v increases. This is truly a matter
of course, since the succeeding subecase concerns with the eorrection of the
precedent, i.e. the partial space of precedent. Thus it was in III: 0 < 6; <B4,
but in IV 0<a;<6,< 81, the remaining 6;’s limits being unchanged. Here we
ought to write 60,5 or 6;, in detail to denote that the i-th polar angle belongs
to the 3rd subcase: v2/(n—2) < r<V3/(m—3) or the 4-th subcase: v3/(n—3)
<t<V4/(n—4). But, when the domain of r is enlarged e.g. so as the 3rd to
V2/(n—2) <t <Vn—1 and the 4-th tov3/(n—3) < r < ¥rn—1, two angles 0;;
and 6;,, can take the same value of 6; yet {0;3} D {0;1}, so that for their lower
and upper bounds hold ¢;3<g: . and 8;3>>0;, in accordance with the principle
of diminishing domain.

It might seem doubtful to decide how the domain of v, should be outlined:
Since, for the points outside the gate K’ narrowed by K7, it appears super-
ficially to take simply 7, > A, %, > h; and the space vy may also comprise the
portion MLN (Fig. 4). However we are concerned with the radius vector
issuing from G’ and which entering the gate UMM cannot reach the domain
MLN without diffraction, say. Thus the initial meridian 6, = «; is no more
retrograded—the non-retrograde rule, which is also a corollary of the principle
of diminishing domain.

V 1>>6, y=5): v4/(n—4) <t <V5/(n—5), ¥v3/(n—4) <1t <V4(n—>5).
Hereafter subecentroids G, G”, ... shall be denoted exclusively by Gy, G, ---,
since G’ used below has another meaning. In this subcase k;<r;<ks; hold and

7,
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Gi(7; =hi, i =1, 2, 3) lies inside but Gs outside K’ (Fig. 5), so that the sphere
K'" appears and constitutes the fourth gate. Now vy = the prolonged S over
K" (=Kmztn=2.273) forms further overlapping semi-lunette subspaces, be-
cause vy C (S22 N\Spn-1n=3)y = §ra-l.a=2.2-3  Hence the a;-meridian and
K’ remain partly as are ML and MU (Fig. 5). But, now that only the portion
outside G, should be considered in vy, we draw the confining plane HG.G,=
H(Gy) = (G4-7-axis), which cuts out from K’ a quadrant Hg, (Fig.5). This
initial plane H(G,) intersects the «;-meridian at L and K”-arc at U, so that
there yields a spherical triangle MLU, which furnishes the map of the required
typical vy. '
Proof. The equation to the confining plane H(G,) is evidently

M1 M2 Wy ll=—1]7, 7 : =0, ie. 73/%=hs/hs.

0 0 01 hy hs| Or, in polar equation

rn 0 0 1 tan,/sinf, =v(n—2)/(n—4);
thi he hs 1 that is

(18.24) 6, = tan™' (¥ (z—2)/(n—4) sin6,) = tan ! ((hs/h2)sin0y),

which taken together with 0 =r; affords the equations to 6;-quadrant, Hg,, a
great circle of K’ cut out by H(G,). In particular, when 6, = a;, we get after
(24) and (20)

0; = tan (N hs/p sinay) =tan 'V (n—1)/2(n—4)

as the latitude for G, and also for all points on G,G,L. But, along the arc LU
the latitude 6, increases because of increasing 6;. Further the 7;-axis and a
moving point G’ on GG, produced, such that GsG' =7’ > h; = G5G,, determine a
plane H(G") = {(G’'-7,-axis), whose equation is similarly to (24)

(18.24Y 6, =tan " (Vi /hy 8in6y)  (hs < i < h = GsM).

Thus when G’ moves from G, to M, the plane H(G") revolves about the 7,-axis
and sweeps all the points lying outward the gate but inside K’. Let H(G)
intersect with the «;-meridian and K at I’ and U’ respectively. Along the
arc I'U the latitude 6, again increases, because of increasing 6,. And along
LM also 6, increases, now that #’ increases. Consequently the latitude 6, of
every point in the triangle MLU except L being greater than 0,(G,), this
triangle lies outside the gate K’V. It can be readily seen that if % < 4; the
latitude becomes less than 6;(G4) and that portion remains inside the gate.
Hence the required map is certainly MLU, Q.E.D.

Consequently, if any 6,-meridian meets with UL and UM at P and Q, the
limits of integration about 6, are given by

(18.25) oz =tan"*(V (n—2)/(n—4) sin8,) = sec V1 +(n—2/n—4)sin0;.

But 3; = cos~}(h secl/r;) = sec™'(Vn—2 ' cos6,) remains the same as in III, IV.
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Also a; = cos 'V (n—3)/2(n—2) as in IV, but the upper limit of longitude 6, is
now reformed to 8; < B, (Fig. 5). For, at the point U(6:, = 6,), it becomes P =
Q =T, so that we must have

sec IV 14 ((n—2)/(n—4))sin26, =sec '(Nn—2 'cosd,)
and whence follows

(18.26) B, =sec V-2 1+ @—D7?]/2@m—3),

which is < 8;, what is evident geometrically, or else analytically because of

' >1/Vn—2 eversince III. The other limits however remain the same as
before. But, now that the negative quadrant of @, must be rejected, the index
of power of 2 shall be again reduced by one. Thus we obtain

— a1 82
(1827) vy = 2”‘5(\/n S)n—Z ggdﬁl S OB (02, Z') CcoS 02d02,

which may be called 6,0,-triangled formula, a particular one of the general
0,_s0,_s-triangled formula described later on. Since there are ,P; of the con-
gruent vy, the whole overlapping at the stage V is

(18.28) Oy=nn~1)(n—2)@n— 3y =Fh.
Accordingly the fifth product surface is

s A
(18.29) FV=F1V+F1EJ4=F1Z;(“1)’EM-

At the epoch of V (z'=V38/(n—4)), 8, of (26) reduces to cos 'V (n—38)/2(n—2)
= a3, 80 that vy = 0, §;, = 0 there.

As a check for the preceding results, let us ascertain the identity (2)
(18.30) S (= 1)'8:(c) = 0 for the case n—86, r = V5, ¢/ =2.
0

It is readily obtained by the foregoing that §, =1, §;, =2.112, b, = 90J;;,/7%,
Hs = 1807 1y/%%, Yy = 270], /%%, where

]

Usindgdp, (N=IIL IV, V),

[t

P

1 &, W1
JN:S d(ﬂgecosﬁdﬁg coszxdxg
0 0 0

9)
where the limits of integrations are ¢, =sec™'5, ¢o=tan"'(V3/2 sec¢¥sechsecx)
= cos W1 —£2/Vp2—£% with & =sinx, > =1+ £a%, a = sec¢ sec =4c/V1—u?,
u = sinf, ¢ = (seep)/4 and x; = cos~'a/4 for all N, while the remaining limits
differ as follows:

‘ @y ' @1 l 8, or 7, = sin 6 i 6, or u; =siné,

Jrir 0 | cos™11/4 ; 0 0 cos~ic V1-—c?
Jrv | cos 1V'8/8 » | 0 0 » »
Jr » o= ;cos“l/V’§=B tan~!(v' 2 sing) V{16c2—1)/(24c*—1) =7

29 2 =8
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After having performed two inner integrations, common to all cases, we
get

g 1—ct—u?

1= —u? 87

. P w1 1 o
(18.31) J—Lod(ﬂgm{ - < 3T tan 2
' 588¢ 1922 N1 g2yt }
e 5(1+22162—u2)> T |

Executing further integrations about » = sing and ¢ = (sec¢)/4, we obtain
b, =157 '(tan~'v 15 /5 — 0.296 tan~'v’5 + 0.0006 15 ) = 1.394841,
s =29, + 8071(0.296 tan"v 15 /3 — 0.002v 15 ) — 5 = 0.292825.
Consequently, in view of (30), it should hold exactly
s =— 1+ 5 — bz + h; = 0.009984.

Now to compute 9, directly, we must evaluate Ji. First to integrate about
u: the first half of the inner integral of (31) integrated by parts, reduces to-

O R . LU ) S il
|5 tan Be 375" An o,
n Sa 5 . 37 N cutdu
vy 3(1+24c%—»?) 875(1—u?) / y1—c2—u?

22 2”2

T N1=—=7F 8T, 1=—77 SB
3 tan Be + 975 tan . + ,
whose last integral considered together with the before remaining last half

in (81) on putting v =V 1—c2—u? /u, vi=cV9—24¢? /v 16c2—1, yields

LS”‘ [ 5% - 37¢—12¢° ]d

3 ), lO72407 1252 ~ 1252 1 ¢
_ 1 ~1 \/i+2462 37 — 1262 -1 U
RN e Be 75 AN

Hence we get

Jy= L SB{ 1 tan_l%]/(1+24c2)(9—2402)

8 JalyT+24c7 16¢7 — 1
1 /5(9 —24c%)
—(0.296 — 0.096¢") tan~! /29— 240
16 —1 (4 1 /924 _ 1 /9 =247 }
]/ STy \tan 5V o0z -1 0.296 tan -74&——1> dy

n ) when ¢ transformed into sec '4ec.

V614 dc
Syf’s‘/les( ) cy16c2—1°
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Finally writing 1 + 24¢® = x, we attain at length

o= 27, = 850 L (gmgtan/ 10 _ans L /02 )

Vo —2 x—2 5 x—2
_ 310—w) _ -1 1 /3(10—x) -
/zx—' (0.3~ 0.004) tan )/ 310=2) \/x ——tan /810 ]} =

which is enough complicate to integrate directly. However, on applying Gauss’
method of numerical integration by 5 ordinates, the author has obtained its
value 0.009986, which almost coincides with the expected value 0.009984, the
error being only 0.02%, that is probably due to having rounded figures at the
Jast place in the computing ways.

Superficially it seems that the map of », shall be bounded by the «;-
meridian and some arc of K” and thirdly a parallel small circular arc of K’
cut by the plane 7; = h; through G,. However, the map thus obtained makes
the value (380) far much deviate from zero.

We can proceed to the succeeding subcases quite similarly as in V.. But
to save the repetition, we would rather treat generally and partly inductively.

VI The general v-th subcase (z>7, 6 <<y <n—1): ,/ ;

n—y+ n—y

/ —2 <t <L / , where k,_1<r,<k, and G,, Gz, ---, G,_; all lie inside
n—y+1 n—y

K but G, G,.4, --- outside K. The (v—1)-th subsphere K{'~’ makes its appear-
ance as the (v —1)-th gate with center G, (A, -, h,_2, 0, ---, 0) and radius
ro_r = \nsVI—7Z_ /72 after (17.24), which accordingly disappears at the epoch
7,_1. Here we contrive the &,_,7,_37,_, octant, where the &,_;-axis being the

Ty

B,
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join G1G,_s produced (= Gia,_s, Fig. 6). Now the 6,_, meridian is constructed
by the intersection of K’ with the plane determined by a point in the octant
and the 7,_, axis, the values of 6, , being entered on the £,_,7, s;-quadrant, e.g.
0,_1=cos 'k, _3/k,_» for G,_,. Let the 7,_, ordinate of G,_,(=G,_,G,_,) be pro-
duced to cut K’ at M, where G, ;M= h=+r? —k%_.,. Also K" passes through M
as will be seen later on. Take further G’ on G, .M, so as G,_,G' = &', where
h,_2<h <h. Since G'G,_, is 1 to the space R,_; determined by 7;...7,_; axes and
G, .G, 3 L to R, , determined by 7,...%,_, axes = B,_, by reason of the 3 | rs
theorem, G'G,_; is normal to B, 4. Accordingly, when G’ moves on G,_,M, the
space R, 5(G'-B,_s) = hyperplane H, ;(G") revolves about the base B,_, as axis,
and in particular H, ;(G, ;) becomes the confining space of vy; =v,, the y-th
typical correction volume. The equation to this hyperplane H, ;(G,_)=R,_;
(G._1+B,_y) is

P M2 Mg Moz M2 1 =—} s Tz | _ o
— ¥

0 0..0 0 0 1 ho_s hy_»
n 0.0 0 0 1
0 r--0 0 0 1

that iS 77;}—2/7711—3 - hv~2/hu—3'

Or, in polar coordinates

0 0 ... 0 0 1 tan6,_; :/n—p+3 ie
hi hy - Ro_gh, 5h, 1 SIn 0,4 n—y+1’
(18.32) 0, = tan‘l(% sin oH).
y—3

Quite similarly for the hyperplane H,_;(G")
(18.82) 0;_y = tan='((#'/h,-3)sinb,_4), where h,_, <W <h.

The planes (G,_1+¢, 4 axis) C H,_3(G,_,) and (G’ -&,_s~axis) C H,_;(G") intersect
K’ along quadrants «,_sq,_; and «, _sq/_; which by turns cut 0,_,-meridian at L
and I’ as well as K”-arc at U and U, respectively. But K" also passes through
M, because it holds for M(ry, 01, ---, 0,5, 0, ..., 0) that cos 6, s =k,_,/r; (Fig. 6)
and k, ;= hy/cosf,...cosf,_, after (17.16), so that M lies on K”: 7, =r; cosb;...
c0s0,_3 =Hh. Thus we get the apparent map LMU for »,, since every point in
LMU has 0, 3>>9,.3(G,_;) after (32), (82). Hence, if a 0,_,-meridian cut LU
and UM at P and Q, the 0,_;-limits of integrations are given by

(18.33) e,_3<P)=a,_3,,=tan~1/ n—v+38 g a,_4=sec-1/ 14+ 22+ ginzg
n—y-+1 n—y+1

(18.34) 0,_5(Q)=B,_3, =sec *Vn—2 ¢’ cosb;...cos,_s.

Particularly when P, Q coincide at U(d,_,), on equating the expressions (33),
(84), we have
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(18.35) 8,_s,=sec W[n—v+3+@m—r+1)(m—2)c'2c08%0;...cos20,_s5 |/2(n—y+2).

Furthermore, this value (35) in conformity with the principle of diminishing
domain lies between the old limits «,_4,_; and B,_4,_1, both of which are
obtainable by replacing v by v — 1 in (33) (34) as follows:

18.36 Qy_y4,_1 = Sec™! 1y n—vt4 o 2 ,
( ) 4lv-1 y 1+ S~y Sin 6, s
(18.37) B,_s,_1=sec '(Wn—2¢ cosb;...cosl, s).

For, on writing those inequalities (36) < (85) < (387) in details, they reduce to
consistent inequalities:

0, s < sec !(Wn—11¢ cosb;...cos0, ) and 0, ¢ < sec ' (Vn—2 ¢ cosf;...cos0,_).

On the otherhand the lower bound g, 4, is found from Fig. 6 to be

(18.38) 0. s =8€C 'k, o/k, 3 == sec V-8 a—v+3)/(v—4) (n—r+2),

and which is really <<«,_4,,_1. For, writing this inequality in detail by using
(88) (36), we obtain 0, 5, , >sec W(v—4) (n—v+4)/(v—b) (n—v+3). But, since
this last expression just denotes g,_s.,_., the inequality hold quite correctly.
However by reason of the non-retrograde rule the new lower limit for 6,_,,,
should still remain to be «,_4,_: as it stands, and the new interval of the
integration about 6,_, ought to be

(18.39) ay—4|p—-1 < 0xa—4|u < 6»-4]u-

Thus the before found LMU being merely a supermap, it reduces to the true
map ImU bounded lowerly by the «,_s,-meridian, as shown in Fig. 6.

Just similarly as for 8,_, in (35) we can find f,_;, on equating the 2
members bounding inequalities (89) by use of (35) (36), as

(18.40)
0, 5, =sec N[ 2m—y+d)+n—v+1)n—2)r"2cos?0;...cos%0, ¢ | /3(n—v+3).

More generally with reference to (85) (40), we get inductively
(18.41) 6,_,, =sec!
V(=3 m—rv+u—1)+n—y+1)(n—2)c"2cos’0,...cos®0,_, 1]/ (#—2)(n—yv+#—2)

for u=4,5, ...,v—1. Or, writing v — ¢4 =mu =y —m), we get
(18.42) 6,,, =sec!
Vm—m—1)y—m—3)+(n—v+1) (n—2)"2c0820,...08%0,,_, | /(n—m—2) y —m—2)

form=1,2,...,v—4. Thus in the v-th subcase, the upper limits of integration
about 8,,, (n=1, 2, ...) are found to be
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(18.43)

61, =sec  V[(@—20—D+@—v+D®m—2)c2]/(r—3) (»—3),
(Cf. 61[5 in (26))

B2, = sec 'V [(1—8) 0—5) + (n—v+1) (n—2)7"2c08%0, ]/ (n—4) (v— 4,

83, =see W[ (n—4) v—6) + (n—v+1) (n—2)7"2cos26, cos?0; | / (n—5) (v—b),
.................. up to (40) and (35).
The remaining upper limits are generally (but 8, =sec"Wrn—2 ¢’ as in III, IV)
(18.44) B = seC’l(\/anr’mll_Il cos0)  for m=v—3,v—2, ..., n—3.
Lastly, the lower limits are

(18.45) an=tan"Wn—1/(n—3) for m=1,

=tan'(V (n—m)/(n—m—2) Sin 0,,_1) for m=2, ..., v—3,
=0 for m=v—2, ..., n—3,

which contain neither ¢ nor v explicitly, so that independent of the suborder.
It is well to be remarked that all upper limits depend on z (¢’ being also
the funcition of r), while the lower limits are all free from r, <'.
Accordingly we obtain the 0,_30,_s-triangled formula

(18.46) v, =2~ Vnw~?| VI?S

1

i R Bus
eicos“lﬁidﬂi]g 0,_5(0,_3, v)cos* 0, _qdb,_s(=71,)

@ @y 3

where
‘n—3(Bi . ¢, .
(18.47) 6, = ( I S cos’”lﬁidﬁi>g sin*~%¢d¢ with
v—2J0 do
(18.48) ¢, =sin"1(0,/Nns) =sec 'Yn—1¢ and

¢o = sin (0N s) = tan' (Vn/(n—2) secb,...secd,_s).
In particular, for the final subcase y = n — 1, (46) reduces to

— n— e . {Brn—s
(1849)  v,1=2(n s)n—Z[zf ¥ cos“lﬁidﬁih €08"%6,_4d6,_4

1 Jai

Bt 1 . )
S €os" 40, _1d0, 3 S sin"~* ¢dg.
¢

0
Although there was the factor 2*~' as the number of quadrants in (4),
now that up to the »-th subcases, there are (v—1) gates which confine their
one sided portion only to be adopted and thus their negative quadrants entirely
rejected, the power 2”7! is to be divided by 2°~! and it reduces to 2"*. The
volume », has been computed about the typical one, i.e. that portion lying
outward K’, K", ..., K®V typically chosen, and forms (v— 1)-ple overlapping.
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Really there being ,P,_; of such portions, the whole overlapping volume O,
shall be obtained by multiplying this number to v,:

(18.50) 0,=,P, w,=Fb, , with Fy=2Vr"""Wns)?/I(n—1)/2).
So that

(1851) b =2 Wenp L (25,

where the (n—2)-ple integrl J, in (46) is really a function of ¢ alone, because,
among its limits of integrations the upper limits solely contain ¢ though the
lower as well as integrands are all free from r. Consequently the product
surface as well as the volume element at the y-th stage become

(18.52) F,=Fy s (=171 () = Fy (Vn ) §Oj (—1) (),

(18.53) av,=F,d0Nnzm)dWns), v=1,2,..,0—1

Thus our problem is completely resolved, at least theoretically, so far con-
cerned with the volume element, although there remains still to contemplate
thoroughly how to manipulate the integral with so enormously large multi-
plicity and also to investigate its behaviour toward the central limit theorem.

N. B. The above method of consideration VI may also be applied to V or
IV, by making the axial space B,_, degenerate into 7;-or 7s-axis, and taking
the moving point ¢’ on the 7s;-or 7,-parallel through G, or G;, respectively,
although the conjecture may be naturally done in the order of IV, V, VL

The y-th correction factor §,_; is essentially defined by the repeated
integral J,, where its integrands as well as limits of integrations behave
regular about r, in 0 <r<Wn—1 <oo, 0<{t' <Vn—2 < co. Besides at the
epoch r=7,_1,J, and §,_; do vanish, because the domain of integration reduces
to naught as —>r7,_;. This fact might be seen as a matter of course, since
the correction at any stage vanishes at its epoch. But we can say a little
more):

»
(18.54) Fdﬁfh_l@_g:o, sofar p=0,1, ..., v —4.

For, at the epoch r=17,_1, ¢’ =, , = }/__”— 2

n—y+1
limit of the first (v — 4) factor-integrals in (46) coincides with the respective
lower: typically the m-th become both sec™* vV (m+1) (n—m—1)/m(n—m—2) ¥
oo, while every of them as well as the partial integrals of J, all possess
successive derivatives that remain finite at c =17¢,_1.

, n=7, v=6, every upper

1) These facts are similar to those phenomena illustrated about the fr. fs. fi, /2 ... in
Cramér’s Mathematical Methods of Statistics, p. 245-.
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We may write the whole correction factor to be multiplied to F; as
(1855)  HEO=S1(—1F"6; in o1 <r<r, »=1,2 .,n—1,
1

that has at least the first derivative continuous throughout the whole interval
v—1
0<r<n—1. The partial sum > is thus well continued without any jump
1 v
not only in its value but also in its direction by the following 37, since even

at the point of continuation r,_, not only these two sums themsellves, but also
their first few derivatives just coincide.

Summarizing all the above, the general Fisher’s function (product surface)
can be defined as a certain continuation of the proper Fisher’s function I} by

(18.56) F,=F1(Yns)h(r)

which is derivable continuously through the whole interval 0<<r<vn—1,
although Y, §;, -.. are apparently stepwise defined. Whence we can further-
more conclude that the Student’s function with any truncated originally reg-
ular parent fr. f. is likewise stepwise smooth in its whole intrval throughout.
However a more general treatment for §(z) shall be postponed for a future.

19. Student’s Function for the T.N.D. as Universe. In general, let any
universe truncated negatively® be f(x) (x> 0) and from which a n(>2)-sized
sample {x;, ..., x,+ be drawn with sample mean z and S.D.s. So that the
elementary probabilities are

dp = f(x1)- - f(x)dy- - -dx, = g (%, s)dv, dP=g(&, s)dV,
where the volume element dV (= Sdu taken as %, s determinate) is given by
(17.0). Hence, the joint probability for %, s is
dP = f(&, s)ndxds = g (%, $) Fu_2(%, s)ndxds.
Or, denoted by Student’s ratio : =vn—1 (&—m)/s,
dP=g(& Vn—1&—m)/t) Fu_2(® Vn—1&@—m)/)) nNn—1 |Z—m|dads/s’

= f(x, t)dxdz.
Therefore the Student’s fr. £. s(¢) is obtained as

s(t) = gf(ic, 1)dx,

where the integration is taken in the xs-space so far vn—1(z —m)/s=¢ (as-
signed value) holds. Whenever the universe f(x) is known, g(%, s) can be
caleulated, while F, , is decided most generally after the foregoing section.

1) The author used before to call it as a ‘positively’ truncated one, but it seems rather
suitable to say ‘negatively’.
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As an example to adequate application of the foregoing theory, we would
discuss the said theme in outline. If the original complete normal distribution
1
¢(x—a)= v—z—-’exp[ ix—a)], a=0, —co<x< oo,
assumed the variance ¢? =1 for simplicity, be truncated negatively, i.e. its
negative side be rejected out, there remains the truncated normal distribution®

(19.1) fG >‘M 7\}5 exp[—3(x—a)], x>0,
where

19.2 D—Sm dex= @ _4,1_ “ —zz!Zd 0
(19.2) = 0¢(x—a) x = (a)_ \/.2‘7?84“,6 2>

with the parent mean
(19.3) m=a+2>0, A=¢(a)/D >0, besides >—a, if a<0.

If a sample {x;, -, x,} be drawn from (1) with the sample mean x and
S.D. s, we get the partial zs-joint probability due to the y-th subinterval I,:

(19.4) dP, =f(x) - fx)dV, = g (&, s)F1(Nn )H(©)d(Yn ®)d(Yn's), ~ where
(195) g )= exp { — 2+ (ic—a)z)} /(2x DY,

Fi(Wns)=2r " Wnsy?/I'(n—1)/2),

B =3- DM@, t=s/5€L: 1 <r<r,=Vo/a—)

Or, transforming s into Student’s ratio : = vVr—1(z—m)/s which is = 0 accord-
ing as x=m, we obtain the y-th partial &:-joint probability

(196) dP, =g, s= Vn—1 (&—m)/t) Fy (Vn(n—1)(z —m)/1)h(c =vVn—1(x—m)/)
x nVn—1|% — m|dxdt/s*
=c|®—m|" e D Ydzdi/ |1]", where

1971 Q(x,0) = 3n(n—1) @—m)* /& + tn(x—a)® = tn{R(x—m)* + 22 (x—m)+ 2%},

n— 1 _ "aln—1)" / oz 'n;l-*1_> _An—=1E—m)
R=1425%, o= ey 2e D’ [/ B r("5), e= 2=,

Hence, the y-th partial Student fr. f. is defined by

(19.8) s, @)= =55\ 13— m|" e ?hdz,

1) H. Cramér, loc. cit., pp. 247-8, 381-.
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the integration being taken so far r belongs to the yv-th subinterval for the
given . We write, for the sake of convenience, when (5=0) is assigned,

(1991 GG, 0= Sf(m, —x)y e dn(>0)  for 0<x<m, :<0 and
(19.9.2) - S}(x — Yl 0dn(< 0)  for m< < oo, 1< 0,

whose z-derivatives yield both GG

(19.10) GG, 0 =% —m|" % (Fig. 7).

Making use of this ¢’ we may express
the partial fr. f.

191D 5 O=— 7| 6@ HhEx

| n

= i £ (%, )dx

=y

S 1 S ¢ (5, )Y, (0)di

Itl”

Fig. 7

=3S(— 1! Smflf),hld?c, where f1=cG'/|¢]".
1 Xo
It remains to decide limits of integrations. Since in the v-th subcase

fo =V O D=+ D <r=Vn—1G—m)/z <e. = /@)

hold, we have
(19.12) 21 —c/Vn—1)Zm=Zx(1 —1,_1/Vn—1),

where the double signs take the upper or lower according as :=0. Besides
for ¢ < 0 the bracketed expressions become both positive and we get

(19.13) m/(A—zt/Vn—1)<z<m/(1—7, 1t/Vn—1),

while, for > 0 if the two expressions be both positive, alike inequalities but
with the reversed sense. We take further the positive constants

(19.14) Vo—1/t, =V (@m—-1) (n—v)/v =tn_,,

ie. (to=0), =1, t=V2(—1)/0—2), .-, t, =Va—Dp/(a—), ---, t.y=n—1,
tn = co, which correspond to (r= o), ¢, =Vn—1, V@—2)/2, ..., \v/(a—v), --.,
1/Vrn—1, 0, respectively. The whole sinterval (—oco < ¢ < o) is thus divided
into z+1 subintervals: 1° —co<{r<C0, 2°0<<t<C1, 8°1 <t<tz, -, m—p+1)°
by 1 <t <ty_yy -, (n+1)°n—1<t<oo. Further putting
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2]
20
P,

X3 X ooy X n—v X

/ /

{é/é/

|

— T,=m
op (n—v+1) n° (n+1)
1° P, P, Prvia P, P,y
Z
0 b= Iy th—v Ly —y U tn -1 ’
Fig. 8
(19.15) x, =m/(A—1t/t,) =m/A—tc,_,/Nn—1),

Xp—y = m/(l_t/tﬂ—u) = m/(l'_tf,,/\/ﬁ-:-j:),

that is x = m/(1—10), xe = m/(L—1/t2), -y %y_1=m/L—1/tn1) = m/(1—t/(n—1)),
%, =m, we obtain a bundle of hyperbolas (however their upper positive
branches only considered, Fig. 8), all passing through (: =0, x =m). Since on
the hyperbola x,_, =m/(1 —i,/Vn—1) the r-ratio (=s/z =Vn—1 (& — m)/x)
becomes t,, every hyperhola x,_, is characterized by r,, that is

(19.16) Z=x,, means r=rc, and vice versa.

Now returning to inequalities (12) (13) relating to the v-th subcase, we
rewrite them

19.17) %y, <E<xy_,.1, sOthat %=, , and % ==x,.,,1 for <0,
while, on the contrary,
(19.18) Kpyi1 < X< 2y, ANA Xy=1x,_,.1, X =x,_, for :>0.

However, the latter is only permissible when 0 <x, ,,1 <<sx,_,, i.e. so far as
0<:<t, , and thus ¢ lies within 2°... up to m—v+1)°. If x,_,.1 >0, but x,_,
<0, namely if z,_, <t <t,_,.1 0r ¢ € (n—y-+2)°, then we should take

(19.19) %o = %uoyr1 DUt & = oco.

Lastly, if x,_, < 0 also, i.e. : >, ,.1, then the y-th subcase must be abandoned.
Accordingly the full Student’s fr. f. is obtained by combining (11) as

(19.20) () ="S5,() = zlgiz £, Odz,
1 1 Jxoev

where the limits of integrations are determined after the foregoing as follows:
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1°¢ — oo <t < 0: In view of (11) and (17) we get

=5 g‘ @ 0ds =3 (-1 1S Hflf),b,ld?c.

v=1 p=

n—1 n—1
But, since the double summations become > Z we obtain

n—ptl

(19.21) 5= 155 S—1p S €5, 1dx.

&

2°0<t<t; =1: Quite similarly as in 1° but now after (18), we get

(19.22) s(z)z”z?fgz"‘” £,

n—yv+1

S Y Gy, dR.
Xn— a1

3°1 <t <t;: Now that the upper limit x; becomes negative, we must replace
it by o< after (19)

(19.23) s(t)z”ilfr fo@ ode=-5 S (- 1)“1§ '8, dx.

4° 1, <t <t3: Here x, =m/(1—t/t;) becomes also negative, so that the sum-
mand for yv=n—1 is to be rejected and

n—2 e
1920  s@=3 S e S 65,1 dx.
1 J% v Fn—p+1
In general (7 + 1)° ¢, <<t<t;: Because here xi, x,, --- up to x;_; become
negative, so the summand ends at v=n—i 4 1:

19.25)  s@="3 S” FGdE= 53T (1 IS '8, dx.
1 Fp-¥Y41 & Fn—pt1
The uttermost case (n+1)°: ¢,.1=n—1<t<co. Here all x;’s except
x, = m become negative and only y =1 is alone to be adopted. Hence, putting
i=nin (25)

1928) 5@ =| i@ ndz= 5| Gdo= L [6()— G == 5 Cm, 1> 0)

Since this form (26) not only gives the full Student’s fr. f. in (z+1)°, but also
comes in the other positive i-interval, so we specify it by denoting by s,() and

calling the first (principal) constituent in the positive s-interval. Thus

19.27)

G =——5Glm, i) = __S (% — m)'~le9dn > 0.

The before last n°: #,_,=Vn—1)®n—2)/2 <t<n—1. We have by (25)
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(19.28) s() =

;[SZG’dz—Sw G’f)ldo‘c]

fn—1

I

-6 i>0+ | 6Gon Ea(<0)]

n—1

since, when the last integral is integrated by parts, the integrated parts
vanish because of G(=)=0 and %,(c;)=0. Or, if the integration variable x be

transformed into r by the relation z = m/(1—ir/Vn—1), we obtain

0t 0x

(19.29) " =m0 I O e

va—1/ Wad
=50 — % S ' tf){dz‘}_(y——m)”‘le“g(y”)dy by (19.9.2).

Similarly for the case once more before last: (n—1)°t,_s =V(n—1)(n—3)/3
<t <t =V—1) 8—2)/2,

(19.30) s =

‘| caonla- o\ caona
Zpq 0% 14 Tp_y

c vn—1/t , L2
& bzdf ”
T2 3

and so on. Similar consideration may still be applied to the negative interval:
1° — oo <t << 0: Integrating (21) by parts we obtain

va—1/ o0
19301  =s@— -S| de| Gomyie

19.81) 5@ =31 (=166, 08 | = |76, 08,02 da

I |n %y
Since the integrated parts together reduce to G(m, ¢), because the upper limit
%1 Means t =rt,_; by (16) and 9, _;(r,_;) = 0 except b, = 1, while, the lower

limit x = x; yields v =1r,_; and ni‘?(— 17719, _1(r,_1) =0. Therefore
1

(19.32)  s()— IEW[G(m, ) +”§;j(_1)u S:”‘”*‘G(g-c, o g_; )

Here the first term may be again denoted by s,(z) which has a similar shape
as (27)

1933)  so@®)=-°_C(m,8) = S (m — 5" exp(—Q(, ) dx.

B
|2]”
Or else, if the integration variable  be replaced by r =vVrn—1 (z — m) /&,

we obtain

Itl”

- m !
1938  s@=50— 5 z( 1)g - ¢(= S z> ! Ldr.
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So also for 2° 0 <t <1

(19.35.1) s(8) = 50(8) — —;;S}l(—l)” g G )b, g% i
[4 ”_,;l _ N Trn—1 _ 7754—-“?# , -~ :
(19.35.2) — 50— 5 S0 "6 (3= By )8, e

We have described so far Student’s fr. f. s(z). Accordingly Student’s d. f.
is given by

(19.36) S(t) = St"‘ s@)dt

which in case 7, < 0 by (84) becomes on putting z=m/(1—w/Nn—1)

(19.37) Sta) =c St G (m, t)%

dt
Tel™

e G B A

= So(ta) + 2(— 1)*-18, 1 (ta),

whose first term is again called the main value, while the following terms
being the first, second, ... corrections.
In case ¢, > 0, we may otherwise conceive the complementary d. f.

(19.38) SGta) = g:’ s(di(=1— S ().
First, if ¢, =n— 1<z, <t,= oo, we may evaluate after (26) (27)

1939 3)=c| €D gi=8,G, 3G =—c| cm o L.

Next, if ¢, » <t, <1, 1, availing (29)

(19.40)  SGo)= So(ta)'l‘cgn 1;‘#—8”6@ T=w/iad s 8)bide

_ ., \rtde ey L Nael Q5. 1) <— __)
N CSta & Sn bide Si(y m)' e dy R - tf/\/n—
Further if ¢,_; <t, <t,_, we have after (30)

194) 86 =S@o+e| " TEmD gy [ ‘”S e, e

24 o

th—2 va—1lt
— cg d S G, )Gyde
i

3 T2

- = [ — va—1/
=5+ e o opae— o[ o e,

‘ 72
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where G(%, r) may be expressed by r(y —m)"'e"%dy and the first term being

the main value and the second, third integrals are the first, second correction,
and so on.

The d. f. thus obtained being equated to «/2 (the level o = 0.1, 0.05, 0.01
&e.) and solved for z,, we can seek the significant lower or upper critical point
by interpolation. Or, when « is small so that |z,| is pretty great, we may
expand S(z,) or S(¢,) in power series of 1/z, to certain term, neglecting the
remainder. Thus obtained equations solved by Horner, we can find the
approximate critical values z,. The detailes would be described by numerical
example in the following section.

20. Continued, Numerical Examples for the T.N.D. We investigate this
special case in order to examplify the foregoing general results, since the
general feature can be seen therefrom. We take only 3 typical T.N.D,, i.e
those truncated at (i) the centroid (¢ =0), (ii) the left quartile and (iii) the
right quartile (¢ = 0.674489750V) and for simplicity confining the sample size
to be n =4 (the cases » =2, 3 had been already outlined in [II] Sect. 3). The
below requisite constants are calculated after (19.2, 3, 7) as follows:

species I D ‘ c ‘ a 1 A m=A+ta t =2 ‘ co= =g’
6] 1/2 423.4206 0 ‘ .797885 | =v2/m |.279923 | 118.525
(ii) 3/4 83.6386 | +.674490, .423702] 1.098192 | .698342 58.4083
(iii) 1/4 6774.73 | — 674490‘ 1.271106 0.596616‘ .0395013| 267.611

Let us begin with the negative subinterval 1° — oo << 0. Employing
(19.34) we have the fr. f.

(20.1) 5(8) = —;—[c(m, £ — SG(E& )9, de + SG(x £ f)gde

= s50(2) + 51 (&) + 5:(¢), where &=m/(1—it/V3).

First consider the main term in (19.33)

1) It used to take 0.6745 roughly but roundly, as the so-called probable error in the clas-
sical theory of errors. However, after E. Czuber, Wahrsheinlichkeitsrechnung, I, S. 124, for

the quartile of the probability curve pi, such that IFJ —:2dt=1/4, the detailed value p, =
0.47693 62762 is computed by H. Opitz. Hence, the quartile for the normal d. f. @ (x;) = Van

jx" e~ ity is 2,=1"3 p,=1.414213562% 0.4769362762=0.674489750. Also this classical

e . e 2 (¢

book contains a table for the probability integral 17?,‘0 e~t2dt= @0*(&), say, with seven-eleven

decimal figures. The recent books treat the normal integral @ (x), but only with five or six
decimal figures, which is theoretically somewhat lacking. The author has below availed to
convert @*(¢) into @(x) in the following way: Given any x=0, we put [x|/v'2 =& and find
0*(¢) from Czuber, half of which being added to or subtracted from 0.5 according as x= 0,
yields just the seven or eleven decimal placed values of @ (x).
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(20.2) so(t) = _tffr(;(m, )= *54“ S:’(m — %) 9D gy,
where Q(x) = Q(x, £)
=6(@—m)’/i*+ 2(x—a)’ = 2R(x—m)* + 42(¥*—m) + 24*, R=1+38/.

To make the integral explicit, we prepare an easy
Lemma A. Let

Bt
I, = S (m—x)e"9¥dx and K, = (m—Db)e *® — (n—a)e 9@,

alt)
where limits of integration are constant or some function of z, and naturally
the lower limit does not mean the constant ¢ =m — 4, although m, 4, Q, R are
those used before. By integrating by parts, we obtain a recurrence formula

4RI, ., =4M, +vI, 1+ K,, v=0,1,2, ...

and whence
(20.3) I, = (41, + Ko)/AR, I, =[(1 + #®)RI, + 1K, + RK,]/AR?,

Is = {8+ )4, + (2 + #*) K, + 42K + 4RK,} /16R?, &e.,
where

£=21/yR and 42l = e 402 — 2(m—b)YR) — O(# — 2(m—a)yR)]/ @ (4).
First, on putting ¢=0, b=m, v=3 in (8), we obtain an explicit form for (2)
(204)  s50(8) = (ce ' /16R%Y)+ {(8 + 1) [ () — O (1t — 2mR )]/ ¢ (1)
+ 2+ 12— (24 #° + 44m + 4Rm?) exp (42m — 2Rm*)}.

Thus, e.g. when : =0, R = o but R#— 3, and we have for the 3 species
(204.0)  s50(—0)=ce " /72 = /72 = ¢, say

= 1.64618, 0.81123, 3.71682, respectively.

Next, the first corrections s;(¢) is
given by (19.32) or (19.34). But here

y

,_ 2 _3GE—m) i
because of B = T3 T= Y -
O _V8m 4t polds gy 0f — _ 2me

A 9% 3(m—=x)?’
so that (19.32) is more advantageous.
Also, in view of (19.9.1) we obtain &

c {* 2med & _
s1(2) = — gxISM(x—g)Z So(m—y)se gy,

Or, interchanging the order of integra- 0 A & x
tion (Fig. 9), Fig. 9
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s1(t) = 2cm g ‘(m y)e Qdyg s dx i sz . ‘xa )
Jy

(x—m)? %,
S C*[:2J+(1— I+ mtl
34 ) Is + mitly ],

in which ~ J= g(m ~yYe%dy, and I,= S’”on — yyeQdy.
0 £1

Hence, upon employing Lemma A, we get

@05) 50 = g 26+ 20+ [A—0 G+ + MR+,

~[E-0@+m+ ﬂtﬁ(l +)| 05+ 2@ + 4 + dim + ARmD E

b A—D @+ DE— G-+ u%Es},

where D, = 1o <A¢ -+ 2"M\/R>

/ _ _ 4mt  2Rm’?
/ @(ﬂ), Eu exp[ y—i (V—t)z ]’

for vy=0, 1, 3. And consequently
(20.5.0)
s1(—0)=¢ V/ 1258 {co(z V3)— (f_’;_i)—m\/ﬂm(zm\/’é)— m(vzz”i—)]}

Further, as to the second correction, adopting (19.34), we have

s (1) = 2‘/?;6 S T( )13(‘[') , Wwhere
E@ =\ (n—yre Oy, == g, T=tan -,

which requires a numerical integration. However it need not treat as a double
integral, rather it can solely be dealt with the ordinary Gauss method: For,
given 7 and selected abscissas r,, in order to ecompute the inner integral I;, we
may still appeal to Lemma A. Thus, we have

(206) () = (38“%2325% ~T{<3+u2) W)[ (2+ f_g”i"‘f \/R) 0(n—2miR)|

Az, ARm’*t’c? _ Admir,  2Rm*t
[2+ﬂ V3 ]ex ( V38—, (x/??—tn):’)

Vs—iw, | WB—rm.)
— @+ 42 + 4m + 4Rn?) exp (4 — 2RmD)},

where ¢, =3 (V3 + 1)+ (Y3 — 1)¢, and 4,, &, denote Gaussian constants. Also

(20.6.0) s2(—0)= W3 — 1) /6V 6r S04, T,(2m* + 1/c2) 9 (2mz,).
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Otherwise. In order to see how the fr. f. s(z) behaves in the vicinity of
the origin, we conceive another expression for s(z): If the integration variable
2 OF ¥ in so(z) &e. be replaced by u = (x—m)/t or (y—m)/t, we obtain
—-m/
(20.7) so(®) = CS tuse_Qdu, where Q= 6u®+ 2(ut + 1),
0
which for :— 0 furnishes a second proof of (4.0):

s0(0)=¢ Swuse_(s”zdu, = /T2 = c,.
0

Further, differentiating (7) about ¢, yields

208) @)= ——exp [- 6;" — 20| - S_m”u,ae“@él(ut + Dudu.
0
When ¢ — 0, the first term— 0 and the integral tends
(20.8.0)  s,(0)=—4i gwu“e’ﬁ”zdu = — 3coV7 /6 = — 0.030150 Ac’.
0

Thus s,(z) decreasing at origin. But, to see whether the same holds for the
full fr. f. or not, we must still investigate the whole derivative s’ = s} +s] +s}.

We have similarly for the first correction s, (t) by replacing its inner
integration-variable y by v = (y—m)/s

(20.9) 51(t) = — ‘3— {2 S_m/tlfe_gdu + Sul [A—du—m] uze_Qdu} ,

where u; =m/(1—12), us =m/(8—1t). So that

(20.9.0) 20 = — 2" gue-otau " @ = ma?)eos'aul
mi3

3 ml3

B (vo) ]+ ¢(v1) — 3¢ (vo)},

where and below vy =2m/V3, v;=2mV3. And the derivative is

20.10) 50— 4?'” exp( s

—m!
— 2a2> -4 1§c S tu4 (ut + e “du

+ % Smu3 [t + 2 (T = tu — m) + 1/4]e%u,

(2010.0)  s/(0)= \/524;? ,{4 8202+ 0(v) — 30wy

o+ (G + m?/3 + 1/2) @ (w0) — (i + 3m? + 1/2)40(1;1)}‘.
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Lastly, for the second correction, we get

@011 50— \/3C S T_df_g' ey, where uo— %
1 uo \/ 3 —1it

(20.11.0)  5,(0) = — o W (2m*+ 1 ) T@)0(@mo)de

CE) é”\/ 61>C SVAL (2 +1/2) T(e,) ¢ (2miz.),

which agrees with (6.0). The derivative becomes

, 2y3c ({*® m*t 6m*t? + 2(atr + 3 Tdr
20.12 =— = — =
( ) 5@ T “1 W3 —w) exp[ (W3 —ur)? ] T2

6m”
2

4 —m!
n _’tlg_exp<— - 2a2> - S W exp[ — 6u? — 2(ut + )27 4 ut -+ l)udu} :

(20.12.0) 55(0 —“—’I—C-/--S T{ Tt am e+ tp(@2me) + 2 [1- 0(@mo)fdr
A (\/ 3-1
927

VAT, {(i;”_ <8 4 dme, + n::’; >nz2 ¢ (2mz,) + % [1—0 (2mz‘,,):|}.

Evaluating all of them about : =0, we obtain the following

(20.13) values of s(0), and s'(0)

species 55(0) 51(0) | 5(0) I 0)
i) +1.6462 ~0.8216 | 40.1987 | +1.0233
(i) +0.8112 —0.2856 £0.0262 | ~0.5518
(ii) +3.7168 ~1.9053 | +0.8219 | +2.6352
species s"0(0) s71(0) s75(0) H s7(0)
@ —0.6567 +3.2617 ~1.5930 ~1.0120
(ii) ~0.1719 10.9638 | —0.2386 £0.5533
(iif) ~2.362 +17.926 —6.207 ~9.357

From this table we may conclude that the Student’s fr. f. for T.N.D. distributes
skew against the ordinarv symmetrical N.D. and the mode deviates toward
the positive side. Although it is desirous to find the exact values of their
modes, i.e. where s'(z) does vanish, we are hastening to obtain the critical
points, so that these investigations are postponed.

We should discuss the Student’s d.f. that with the argument ¢, is

(20.14) S(te) = S " s dt = Sota) + S1 (1) + S,
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whose 3 components correspond to s, s;, s; in (1). They can be somehow com-
puted by integrating (4) (5) (6) or (7) (9) (11) in turns. But, most of them are
not eapable to be elementarily integrated; they require numerical computa-
tions by Gauss, Simpson &c. So that we may rather proceed straightforwardly
to evaluate the triple integrals of (19.37). Thus

(2015)  So(t) = CSZ% Sj(m — ) exp [~ ﬁ_(’i‘t;_x)z — 2(m— % — 2] dx,

— = E) . ._.g»dz-— : » | x= "——’“’n_‘h
(20.16) —8:() = CS Swg e So (x_ 1— n-/\/*S*)’

(2017) sz(ta) = cg ”» g:’3 2i3‘ tan“l /%Q-Z _—1—)de 99 23

nr?

However, to facilitate the mechanical quadrature after Gauss, it needs some
rewriting: To avoid oo as integration limits and to lighten calculations, we
write —1/t=u, —1/ty =ta, V3 /t=v, m —x=w, so that

2015)  So(t) =« S:auzdu S"’ws exp [ —6uw? — 2w — D] (= W) duw,
0
= cmug >, A;u? D \C Wi,

Ug 3 m
(20167 —S; () = —gvcgo u?’dugldv Serde _ %cmuaEA,-u?ZBj(l—— Vi) S Gl i,

’ _ 2 (. _1,8/3 _ Sm
@017 .00 == S Sl tany/ 3( 3 _1)=na|" waw

= 2(\/?'— 1)cmua/7rEA,-u‘fZB,- (1 e Vl]) T(Uj)ZCkW,’jk
in which u;=3Q + %)ue, wr=3md +z,) in (15),
v;=2—y; or 3[V3+ 1+ (38—1)y;] in (16) or (17),
Vij=1/Q +uwy), wp=3m1+z)+3m(—2z)V; in (16) and (17,

where and below «x;, y; 2, 4;, B;, C; denote Gaussian abscissas and coefficients.
In particular, when ¢,— 0, we replace u by tan 6, u, by 7/2 and obtain

20.15)"  So(0)
- cS:/tZanzﬁ(l—f—tanzﬁ) (EU)daS;”wsexp[—Gw%anza —2(w— ] (=) duw
= §nem D A;U; SN CilWa, U; = tan?0,(1+tan?6,), 6;=+n(1+x;),
(20.16)" —S(0) = %cSZ/ZUdﬁgjdvg:Vde = 2% e SIATSIB, (A~ Vi) S3CoW i
Vi; = 1/(1+v;tandy),
2017 S,(0)= 26 SmUdﬁ Sﬁm S’” Weduw

T Jo 1 my

= W8 —DemnS AU B;T;A— V) SCiWi,
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It is true that Gauss’ n determinate ordinates method is theoretically so
excellent and exhaustive even for a highly ordered multiple integral by itera-
tions, but its application already for the triple integral needs »® ordinates,
thus 125 if n=>5 and 1000 if »=10, which is almost a sheer impossibility to do
with a small handy calculator only. Therefore it is practically very desirous
to lessen the order of multiplicity. The above last three, i.e. S;, Si, S; being
somewhat important and besides apt to have rather simple forms, let us try
to lower their multiplicities of integral possibly. First, considering (15), the
main part So(0), we interchange the order of m-integrations, in which Fubini’s
rule is allowable, since our integrals are absolutely convergent, and write
(x—m)/t = u, then we get immediately

(20.15.0) So(—0)=¢ S:idt/t4 g:l(m —x)’exp[ —6(m — x)*/F* — 2(x — a)*]dx

_ A" 2w 6uty T
cSOe dxgoue du 48\/3 [0(20) — 0(—2a)].

Secondly, for the first correction S;, we have because of b{fgi— = 2mit/3 (x— m)*

"0 Cas x
Sl(—0)=2—63m~\ Ly Ssty

& lo (s—m)?
Q(y) _ m A m
x v A’ _—
T T 1—/37

whose inner double integral becomes, when the order of xy-integrations inter-
changed and integrated about x,

. i x3 . L__t st . st
S Ygdy "t Y3dy dey

me Jo

where Y, =(m—y)e

Further, changinging the order of :y-integrations and puttlng (y—m)/t =,
we obtain

(20.16.0) Sl (O) = — _z_c_gme—z(y—d)zdy [2&” 'Uze*GUZd'U + S‘y (v_y>ve~602dv:l
3 Jo »!3 ¥I3

_ 16_8]/ % S;"Egz +0(29V3) — 30(2y/V3)1dy,

where and below E = ¢ 20~9° which however seems yet to need Gauss method.
Thirdly, the second correction is

0 4] x2
SO=—c|" &\ 6won Lo 2 L™ Lo Vi yyecay,
where
—tant/8 (2 _ 1y = tan-1,/ 9 (m—=x)\* 3 Go— o m
T =tan }/7(1 1) = tan 1/”2“<7xt7> iand M= Ay S
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Interchanging the order of the inner double integral about x, y, yields
Sx‘(m—y)ge_o(”dy S“de/(m —x)? 4+ S“ » Sm » =S + Sy say.
0 X1 %1 ¥

Executing the innerst integral indefinitely, we have

_ Tdx _ T 1
1= =L~ LG94+ 6+ 95
Lz
where E—}/\Mﬁ A= tan"“/3+1 & B —tan‘lﬁ/gj:l ,
V3 (n—x)—xt’ V2 V2

T=tan™ */652 —A+B, and U=tan i/f{_i =A—B,
Hence, for the innerst upper limit of Sz, x =%, =m/(1—t/y3), it hold £§=10
and consequently 4=B=T= U=0, so that I(0) =0, while, the lower limit
wx=m=m/(1—z)yilelds =3 —-1)/V2 =w, A=n/4, B=n/12, T=r/8, so that
I(w)=mn/6mt. Therefore the innerst integral of S;; reduces to —x/6mz. To
perform its whole integration, we proceed likewise as in S,, S;, and attain

2017.01)  Su(-0)= & " % | n—yyetay = £ SmEdy | wesran
3 —w [ 0 3 Q y

&ngw+/”a—mwwﬂ@

= ﬁ;[e—am — W= L B(dm — @) — o (—a)]

< —Z(y )t
whose last integral S;; say, combined with that in S; of (16.0) yields
Si+SH=—2/ %SOE[I +0@EW3) —20(2yN3)] dy.

Lastly, S;; may probably become relatively small, yet enough intricate.
Treating in a similar way, we get

— 2m (° dt (% s o . B 3 m— )+
522(0) = *ﬁ—fg_mt—ggm(m ¥ ®[—I(n)]dy with 7= \V/?%Ztgj%
2em

= —0)e” % [(m — v, » — JV3v—
T SOEdySyly §( )e [( y)1<77)]d ’ 7 \/35"{“}’
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Or, writing v = yz, we get

S (0) = 2. g yPe - ")2dygll (~2)e " (m—y)[(©)dz with ¢=,/¥32—1
1/+3

J3z+1~
6 142
where  (m—)IQ)=-2(I'~3:V), T=tan™ ~/ é . U=tan lliJr“C%'

Hence, we reach at length
@017.02) 82 =2 "y cort@iU—aryds
0 1173

Thus S.; can be ecomputed by aid of an iterated Gauss’ »’ ordinates method,
e.g. taking n =8 and making use of the matrix ¢ ®+"*"] the labour is not so
much heavy.

By the way, the d.f. components in 2° being alike in form as those in 1°,
we can quite similarly evaluate

Sls(t)dt — S(1) — S(0) = 5(1),
0
which is outlined as follows: First
S0 (0) = Sl so(H)dt = cSl de/t gm(x — m)’e~Ydy.
0 0 m

Interchanging the order of integrations and replacing ¢ by (x—m)/t=u and
% by y=x—m, we get

$0(0) =

1 f - 3e B (] c 78” —2(yaen2 (1 53
iy (¢ — e tVBx (1 - 0(0) + Tz!/—a— K (1—0@yV3)dy .
Next, just as in (16.0), we obtain

5 _ 2em (Y de (7 dx (%, e
R P -

S V/%“ {Smm E[1+ 0(2yy3) — 20(2y/N3)]dy + S:/sz[z +0@W3)

—80(2(y —m)V3)]dy — [e 1m0 _ (Bm — a)V 27 (1 — @Bm — a))].

14
Further

SO =22 S | Tl = o] e )
=851+ S,

whose innerst integral is as found above,

=2 U(®) &), &= /x/3(x——m)—xt

1= mmp = VO mo=my T V V86 —m) +

b

S( Tdx 3
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which reduces to 0 and I1(0)=0 for the lower limit x=x;=m/(1—¢/y3)
butto é=W3—-1D/N2=0, I(0)=1/6mt for x=x =m/(1 —1¢). So that

So1 = 203 —t—g Ysdy= “3_8 Edys 265

on changing the order and replacing ¢ by (y—m)/t=v. Hence we obtain

Sp1 = 5'%6 [c'e”e’"2 +cay 2r (1 — O (4m — @) + 16 ]/_77_ S ~2-ar(] — (2y\/3))dy]

Lastly

S = 2| A\ v [300) — Lo r ] ay

= % S: dy gy 7346”2 (BvU(1) — yT(1))vdv,

ylv3

3 b

_ N3G —m—y . fVBo—7 L, ¥m . om
where 1= ) T Vi = =1
J3z—1

Or, writing v=yz, {= ‘/ 1/,3} AAAAA , we get

G c
Spp = 57—
T

mi 2 1 2,2
[[Tore o 2ray) o300 — 7@Jsds

o g ye 20 dyg e %" (82U — T)zdz].

1-mly

By virtue of all the above formulas we have evaluated®

(20.18) S(0) i.e. the area under the fr. f. s@) in 1°

species | 5,0) SO0 | Sw@ | S« | SO
(6] 7.1156 —17.55562 0.7285 0.2489 0.5378
(i) 2.2532 —1.9758 0.1510 0.1070 0.5354
(iii) 2.1292 —23.3348 2.1723 0.4219 0.5508

Therefore, the medians all lie on the negative side, while the modes were
oppositely on the positive side. These phenomena were really the case for
the truncated Laplace distribution (cf. [II] sect. 2).

1) The author is grateful to M. Watanabe, Institute of Industrial Science, Tokyo University,
for his endeavor with which many intricate integrations were carried out by electronic
computer.
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We now consider the ordinary representation by series in ¢! for S(@) to
get its approximate values. Although this can be done directly by expanding
the foregoing several expressions, the following way may be conveniently
utilized. Interchanging the order of x-integrations in (15) and expanding
the integrand in a power series of ;7! from the starts, we have for the main
term in (14)

(20.19)
|7 m m . s Y
So(ta) = CS* %go (m—x)e “dx = cSo (m—x)’e 2059 dxggwexp [—6(7%2732] %
m o to
— CZ (_ l)u 6p/y! S e—2(a—x)~(m_x>2u+3dx S dt/t2v+4
0 -
o o v—-10v 4
=5y G s — oL Ju/Bik + 6/518 — 181/T+ )
Since here

o= oty >
JO

are clearly positive, the series for S;(z.) becomes alternate. Further, expand-
ing the binomial, we get

(20.20) Tovss = 2§3<2” i’ 3)/12”3*’7,3 where
[}
(20.21) jir=\"(a— o exp[ —2(a — %7]dx.
s 0

By integrating by parts we obtain a recurrence formula
4ik = (l{: o 1)jk—2 + (_l)k—le—zhz = ak~1e—2a2

and whence the following formulas, according as % is odd or even,

. 1 & lvﬂp (202,222 2p-2q -2a
(20.22) ivr = 3 gy (e — e,
20.23 S i Y Yoy o(—2
( . ) J2r — 231;[;?— 2 [ ( ‘>_ - a’)]
p—1 2 — . 1 2
-y Zz*lﬁg-lgqu SeldaRRO S

For examples we get few even or odd-numbered j,:

@028 jo=/ .?[af @)~ 0(=20], 1= 4

)2 _2a2
eZ)u —e a),

. . _oyz g2 . 1 1 _one 1 1 g2
= a i G b aet), o= (g )e ™ — (@),
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]5———}l—</14+22 ; >e 2 ——1—<a4+a2+‘;_)e_202,
5

o ___Eg. __l_ 4 75A 2 ;]7.757 —232 a 9 2 15 —2a2
Jo=ggl0 4(’““4’“%6) 4<+4 +16> )
(e, 8 a8 ey B\ e L e 8 o, 8 o 8 ue
]7_4“+21+21+4>e 4<a+2——a+2a—|—4>e

and so on. So that

@025) 7y =(2+ %) 2 / __725 [0@1) — 0(—24)]

+p (B ) - (3R sa e,

4 2 o,

=y B g E / = _ 1 9 ey 1N o
Jo= (M52 ) y _.A~[a)(2/1) O(—2a)] + (/1 T )
_ 1 ren 3 2, 1 Y52 {2, 8 1 ~2at

+ | 52+ 1042 +1o(a +5 )2+ Befat+ )/H-a +att 5 |e®, e

Thus, the first few terms of Sy(z,) can be found. Next, as to the first correction

@20) S =e|” G Slggg = 1=hs ) oo
where GCE) = Sj(m —a)? exp[ 6(x t——m)—— 2(x — a)z] ,

in which however ¢, is not given, we should somehow estimate the integrand
G(&). When |t,| is a pretty large, those terms in the integrand which are e.g.
of higher order than :~? may be neglected and it can be approximated by

2027 G@Ez= g:(m3 — 3m?x + 3ma?) (1 + 6m?/P)e~2*" {1 + 4ax + (8a® — 2)a°} dx

_2_771,46_2“2<1—-~2 )( I ) {1—}— V3 B— 4am)+ft—zﬁz—}

e/

where M= 15— 24am — (2 — 8a®)m*. This being substituted in (26) and inte-
grated, yields

(20.28) S1(te) = em*[2/t4 + 26 (1 — 0.8am)/915 + (20M — T2m)/2745].

Similarly treated about the second correction, we obtain
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(20.29) Sy (1) =2 S (ta) — cme~2" {8M/4nts + (1 — 0.8am) (8 + 4V 37) /243
+(2/V6tanV2 + 2v3) - M —72V6 tan V2 - m*] /24m8} .

Consequently S(z,) is approximately determined in the form

(20.30) S(ta) =80 — 81+ S: =2 A/t3 + B/tl + C/i3 + D/tS,

which equated to «/2 (e.g. @ =0.1, 0.05, 0.01) and putting x=—1/z,, we get

(20.31) F®) = a3%® + aus® + a5’ + agx® — /2 =0.

And really

(1) 13.2313x* — 95.867«" + 425.705° — 1399.6%° — /2 = 0,
(i) 6.52244° — 27.3824" + 34.87x° + 15.954° — /2 = 0,
(iii) 20.876x° — 193.04x* + 1169.2x° — 5811x° — /2 = 0.

They solved by Horner, the lower critical values z, = — 1/x may be found.
However, in case that a;<<0 with relatively large absolute value, f(x) becomes
decreasing after all, though increasing at the start because of a3 =cJ3/3> 0.
So that if |as| be large and max f(x)<0, the equation cannot have any positive
root. Surely, since asx® > 0, if this term alone taken, the equation gives some
rough root, but we wish a little more. Really among 3 cases the coefficient
@s >0 in (ii) and it provides all roots for 3 values of «. However, in cases of
(i) and (iii) it is a5 << 0 and their equations have no positive root for « = 0.1 or
0.05, though they will do still for = 0.01. Hence, in these cases we have
rejected the term esx® and began with asa® and contented with the less exact
roots. Of course, if we had calculated some more terms, say up to a;ex'’, we
should have obtained still adequate roots, instead of which, however, it might
be corrected by a manner described later on about upper critical points. At
any rate, the following results were obtained:

(20.82) the lower critical values for T.N.D. (n=4)

species | term taken upto | level «=0.1 } a=0.05 | a=0.01
as /S S —11.28
(i) truncated at the centroid ; .
as . —5.739 —6.909  —11.77
(i) »  Left quartile | a5 . —4.322 | —5.422 | —9.436
a 1 ) / ~12.62
(iii) 2 right quartile |
as . —17.035 —8.346 | —18.76

untruncated N.D. ' | —2.352 1—3.182 —5.841
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We now proceed to the case : >0, x >m. Firstly considering the main
constituent s,(z) which serves the full fr. f. in 5° 3 <1< oo, it is after (19.27)

(20.33) solt) =—cG(m, t)=c Sm(x —m)’e 9 dx /e,

where Q(x) =Q(w, t) =6(x —m)*/t* + 2(x — a)* = 2R(x — m)* + 42 (x — m)* + 24%,
R=1+3/ as before. We retake Lemma A, however somewhat modified
Lemma B. If forv=0,1,2, ...

J, = Sw (x —m)'e*dx and K, = (a(t) — m)'e 9,

alt)

we obtain again a recurrence formula
(20.34) AR], .1 =K, +v],_1 — 4],
and whence

Ji= (Ko — 44J0)/AR, J,=[RKi— 1Ky + (1 + #*)RJ,] /AR?,

=[4RK, — 42K, + (2+ ) K, — (84 #*) 41 J,] /16R?, &e.,

where

42Jo=e ' ul1—0(¢+2(@—m)VR)] /o), #=22/VR.
Here putting ¢ =m, y=238, we have
(20.35) so@=c {24+ 42— @B+ 1Hull—0)]/¢()}/16R%,

so that s,(+0) = ¢'/72, coincident with s,(—0) = ¢, of (4.0).
Secondly, when <3, there comes the first correction s,(¢) for which (19.28)
is fitting in the combined intervals 3°,4°: 1 < <3, so that, as in (5),

—a@)= A "B | mpe ey = B @ — - mari),
where J, = Sw(y —m)’ e *Pdy, x3=m/(1 —1/3). Here Lemma B twice applied,
yields |

2,2
(20.36) )= Lhmi _ 2Rm’s ]

@@+ mexp| - g7 — LT

24:12254 {
~[B— B+ )+ 2mNRA + £5][1 — 01+ 2mty R /(8 — b))] /fﬂ(ﬂ)}.

However, when 2° 0<:<1, we must after (19.85) take x, instead of oo, as the
upper limit:
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()= 2em \T dx 3,-Q0) _m L m
51(2) 3,5 Sm o m)zg (y —m)’e “Vdy, = {5 % 1—0/3° so that

= g; 8 ](y m)’e “dy — mtS (y — m)’e "Qdy+2mg (y——m)se_Qdy.

Hence, we require the third

1)
Lemma C. When H, ES t(x—m)”e”Q(”)dx, K, =0b—m)ye Y —(a—m)’e %,

altd
we have 4RH, ,=— K, +vH,_; — 41H,

just alike B, except that K,’s signs in (34) shall be here changed; naturally
the expression for K, itself is alike that in Lemma A, however whose m — b,
m —a are now taken as b—m, a—m, but 42H, is just the same with 44l,
as it stands, namely

AHy = ul0U+20—m)YR)—0(¢+2@a—mR)]/ o).

However, on making use of Lemma B and C to above —s;(z), we get quite
the same expression as (5), so that s;(+0) = s;(—0) holds also.

Thirdly, in the subinterval 8° 1< <43, there comes the second correc-
tion s, (z) that is after (19.30.1)

&, (V3 9,
52(8) = 2V3¢ Sl t%z'tangl]/‘g "= 1) Js(0)dr,

it

where the inner factor is

Nl — Y@ ith x=_ ™
Js Sz(y m)’e”“Ydy with x T=%/Vs

Hence, applying Lemma C, B into J; and consulting Gauss, we obtain

(20.37)

_B/t=8) A o1 /B, _ Admiz, 4Rm*c?
20) =g pra 2 2 tan/ (c?— 1){(2+,u T T WE—w tr)2>><

xexp[—\/féf’ft_f;n—ﬁg’”_zfﬁ)z]—@Jruz)u[ a)(ﬂ 2’””‘“{“ /(ﬁ(u)}

where ¢, =3 (V3 /t+1) + (3 /t—1)&, and 4,, & denote Gaussian constants.

Finally, when 2° 0<:< 1, in view of (19.85.1), the above upper limit of
« must be replaced by '3 instead of '8 /7, sothat in (87) also r, by 3(¥38 +1)
+3(J3 —1)¢, and the heading factor (8/t —+y3) by (8—43), and accordingly
s:(¢) is continuous at :=1. Besides, when ¢ — + 0, (37) tends

s2(+0) = &E\/‘T?& 4, tan—l/ 2 (@ —1) <2m2 + ?]'87>¢(2m‘€,,) = 55(—0), (cf. (6.0).
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Consequently the full fr. f. s(¢) is continuous and truly derivable at the
origin t= 0.

Evaluating s, s1, s> when t =3,y 3, 1 and s =5, + s, + s, for 3 species, we
get

(20.38) the values of s(z) :>>0)

apecies { 5(3) 5 s(V8) \ s(1)
@) ‘ 0.0113 0.0644 0.2074
(i) 0.0144 0.0695 0.2052
) 0.0093 0.0596 0.2085

Finally the complementary distribution function (e.d.f.):

o oo 3 Vi

(20.39) S = S s@dt=1—8(t) = St sodt + St sidt + gt ? sodt
tD: a [24

o

= S (ta) + 51 (ta) + 82 (ta)

can be evaluated by integrating (85) (36) (87) in turns. However, these for-
mulas being somewhat heavy, we try to make a new start.

The full e.d.f. S(z,) in 5° 8 <1, < oo, which also composes the principal
part S, (z,) in 2°-4° is after (19.39) (19.9.2)

(2040)  So() = cr Gl 2Cm) g, CS” %2§2<x—m)36-0<f>dx.

t[l ta
The double integral can readily be reduced to a single one: On writing 21/y R
=4 and 2 R(x—m)+ # =z the inner integral becomes
Sw(rg; — m)se"de = 7£>iv J: Sw<z — Ia)”e_zz/zdz
m 16R2¢(ﬂ) \/271' # '
_ e
16y 2r R?
Further the variable : replaced by R =1+ 3/% or its reciprocal 1/R = ¢ gives

(20.41)

{24+ 42—~ @+ 1Hu[1— o) ] /e()}.

S0(ee) = g, 1L+2EE—AVE @+ 470 [1—0@IE )] /e W T 8/E ds
= So1 — Sp2 say, where &, = 1/R, = 1/(1+38/:2).

The first part So; can immediately be integrated: Since

! 2ay J1—§ g0 _ g 1 22—1 22
Sga(l_'_m S)/ng_z 0 ( 1+u? +(1+u2)2 (1+u2)3)du’

if u= LEE, Uy = 3/7:—)’—, when the integration performed, yields

L
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g - ¢ B \yan-1¥8 _ 2 3-8 43;_}
@0411)  Su=pg55 {<1+7>tan v3 (1+A2_ )il

As to the second part

. N
(20.41.2) soz_-l&/—ggia@ﬂz o 1o0CHE) . i,

we need Gauss’ method of numerical computation. Thus we obtain

(20.42) the values of S,(z,)

species S0(8) S (v'3) So(1)
(i) 0.0128 0.0498 0.1453
(ii) 0.0168 0.0602 0.1547
(iii) 0.0103 0.0432 0.1422

However, for 0 < <3, it requires corrections: In the combined intervals
3°4°: 1< <3 after (19.28) and (19.1) there comes the first correction

G o S di gw ,»67: _ 2em SS dt,gm dx Sw . 3_-Q()

S1(ta) = Cgta it st(x)f)l %dx— 3 ta? xg (x—m)? x<y m)e dy-
To simplify the triple integral, interchange the order of integrations, first
about x and y (and integrate about x) then about y and ¢ (Fig. 10) and lastly
replacing ¢ by z = (y —m)/, the triple integral becomes a double one

_ 2 Sw e 2D gy S ZI(3z — y)ze % dz,
3 Js 2,
where ¥, =3m/(B—ta), z20=yv/3, z1=(y—m)/ta.

x :'y 1

Y= 1—ta/§

=3(1—2
or t=3(1 = )

X3
m 2° 3° 4°

—

1

wm
o

0 & 0 1 J3 ta 3]
Fig. 10

But the new inner integral after integrating by parts reduces to

1—12(y —3(y—m)/t.) exp [ —6(y—m)*/t3] + % SZIG‘Gzde.

Zp

So that S; (z,) reduces to a difference of two components as follows:
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(20.43) S, = ”16?3" g N (w — m> exp [ —Q(y, t,) 1dy

Ya a

— Sme_z(y““)zdy S ZIe_szzdz
6 Jy

29
= Su e S12, say.

Firstly, integrating S;; by parts, we get

(2043.1) S = Tﬂc)gm {8 — 1) ¢ (we) — [(8 — ta) & + 2mitN Ry J (1 — B (wo))}
where w°:ﬂ+%nvi%’ﬂ:\/21§a'

Next, for S;; transforming y, z into 7=2(y—a), £ =243z and putting 7,=
2(ys — @)= (6A+2at,)/(B—12), Lo=2y/V8 =1+ 2a)/V3, & =2{8(y —m)/ta=
V8 (1—22)/t,, we obtain

o L4 ;‘1
(20.43.2) SIZ _— S e_llzflzd?? S eallzg‘zdc

70 o

- C Sel”do re*ﬂ”zdw Xgl » r »

9 fo 0112 P1

=575 | | 5 XD (chézza_‘o@)d” + :,ze"p (ma;z%?a))d"] ’
where

B> =1222/(8 +¢2), 6p=m/6, 01, =tan"'y3m/(BA+at,), 0, =tan V3 /ta.

¢
€ =/3ay /(1—t,/3)

6,=7/6
P _[_?;m_
b 34 3
3—— +ai, | &,=2/3m/(3—1i,)
6,=73/t.
/K b, P& b ”

—2a 0 274 7o



50 Yoshikatsu WATANABE

Thus S, being numerically integrated and subtracted from S;;, we find S, and
then S by taking account of Table (42) and also (45) below:

(20.44) the values of the first correction S; (z,) as well as S(t.)

PN TN - s = -

species | 5u(v'3)| 5.(v) | 5.0:8) 308 || Su | Su@ | M | S(D | 30
@ [ 0.0 —0.01] —0 |.0498 | .0079 | —.0123 7.0044} +0 | .1409
(i) ‘ 0.0°3 . —0.0%4 —0 .0602 || .0015 | —.0026 | —.0011 +0 t .1536
G | 0.0 —0.09 -0 | .0431 | .0234 | ~.0329| —.0095| +0 | .1327

Lastly for 3° 1 <:< 4/ '8 we must still compute the second correction, that
is after (19.41)

= ¥'3 v3it )
S, (Ifa:) = CS dlj/t’ig bg dTS (y . m)Se—Q(y,t)dy’
ta 1 o

el

where yo=m/(1—ir/y3), and by =- 2] §~ tan~! %:(7;72_71)

Interchanging the order of integration about ¢, r (Fig. 12), and replacing y and
yo by z=(y—m)/t, and z,=mr/(y3 —), then again interchanging the order
about ¢, z, we obtain

" I v3lta ty ;
Sz(za)zy;’_cglw tan~! /,,3( 2 -1 g 3¢=62° dzg exp [ —2(z + ) ]dt

where 2e =mr/(N8 —t.7), t1 =38/t —m/z.

T z
3
tr =B
B3/t
D e
1 1 ak- ~/§—’7ta
T 7
T
or t=/3/7 —m/z
0 Tt B t
“ 0 te J3/7 )3
Fig. 12

Or, to facilitate Gaussian integration, making u =3 /7, v =1/z, va=1/24,
we get
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X S”ae_swz [q) (3% —2a) ) <2ﬁ + 21)] %1{

ws1 B85 (:_,6___ (ﬁ_”a 9y — @l 2o |
3130 exp( S ) o e 2a) o S+ 2,1>J,
where ui=3(W3 4+ 1)+ W3 —1a)&i, vi;=3%@wi—t)/m[1+ 1],

and &, 7;, 4;, B; are Gaussian constants.

In this way we may compute S,(z,) in general. However, for the present
case with such small value as » = 4, @’s in the above expression approach to 1
sufficiently, so that the values of S;(1) become extremely small and the second
corrections are really negligible Therefore, summing up all the above, we get

(20.46) the area under s(;) in each subinterval

. e = - \
species | Py=S(3) | Pi=3(v'8)=P: | Pi=3()~P,—P; | Pi=1-P,=P—P=P; | P,
) ‘ 0.0128 - 0.0370 0.0911 | 0.3213 0.5378
Gi) | 0.0168 ‘ 0.0434 0.0934 | 0.3110 0.5354
Gi) | 0.0103 0.0328 | 00896 | 0.3165 0.5508

Before closing this note we wish still to find the upper critical points z,.
These points with the significant level « (e.g. «=0.01, 0.05, 0.1, &c.) are obtain-
able from the equation S(z,) = «/2. Thereupon, in view of Tables (42) (46),
we can predict that the upper 1 % point ¢, o1 (or to be denoted by z o5 ?) lies
certainly in the subintervals 5° 3<¢<{ e and the 5% point ¢y s in the vicinity
of the middle of 4° t=%(3-++43)=2.366 and the 10% point ¢, , shall be about
coincident with t=+/3. On the otherhand, in these domains the contributions
from the corrections being small enough, we have only to consider the main
d.f. S, (?) solely and to determine the critical points from the equation S,(;) =
«/2. But, for this purpose we must know the first few terms in the i1 series
of S(t). Just similarly to (15)—(21), we have

(20.47) S —c S”(x e g Sjexp [ —6(w—m)’/&]ds/s

— 2 ) S:oz (_. 6 (x — m)Z)vdt/ZZy +4

—es (=1)6 Sw o N2v43 —a(x-a)?
=c Z (21) x 3)t2u+3 m(x m) e dx

= {Jo/38° — 6]5/58 + 18],/T¢ — 4o/ + ..},
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where in virtue of m=a + 1

(20.48) Jam S”(x —a— DYl gy = i(@ (— i, with
m 0

(20.49) . r(x o) M gy

which has a recurrence formula and whence we get

(20.50) ]zm—é—e'z“zwi”’ “/201p—q, = }fﬂ“,
1 _2sz P—q12P 5y 241 |2p l/—fr“
@051) oy =g 3 g gpmag T g o o=y G (10

For examples, the odd numbered ; are

= e o= (B4 )i = (24 2+ )

Spp— 6 34 4 3 2 3 0 . N
]7—(11 +f2 Pl +—2—/1 +T>]1’ ..., while the even numbered j are
. a . . 1. . 3 . 3 .
]o=,/ 5 [(1=0@D], =X+ o 14=<13+Ti>11+-4~10a
(5,5 55 15, 15

jo= (B 0+ g A )i+ o

. (. T 5, 85 .5 105 105,
]S_QZ +Tl +161 + l‘)l+256]0, &_C.

On substituting these in (48) (47), we obtain

1 2 1 3 4 9 2 L)

) S"(”)_‘{lz <’1+"’2> 105(’““4—’1 tg
9 (1o ps 8T o, 8\_ 1 (s, 356 345, 975, _g}
+14t7<l+5/1+—1€l+4> t9<““4’1+16 Tt T )

—c[l—mzz)]/ 3 ,z{ (f}; +iﬂ>—%5<%z4+ 3/12+~-g~>

+i<£_,16+i,14+15 B U

2
7 3 32 t et

18914 315 945 }
64

which being equated to a/2 and putting 1/; = x, the resulting equation

(20.53) F@)=35(1/5)—a/2=0
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is the required one. Thus we obtain the equations for 3 species:

(i) 0.409316x° — 0.714228x° + 1.23649x" — 2.19038x° — /2 = 0,
(i) 0.577879x° — 1.40478x° + 2.07120x" — 7.58082z° — or/2 = 0,
(iii) 0.304134x° — 0.329924+° + 0.16015x" — 1.5879x° — /2 = 0.

Solving them and taking again the reciprocals of the roots, 1/x=rz,, we obtain

(20.54) The upper critical pts. for » = 4 found from S, () = a/2:

species \ level { (A)e=0.1 (B)a=0.05 | (© a=0.01
(i) truncated at the centroid | 1.725 2.295 1 4.208
(i1) » right quartile ‘ 1.874 2.443 1 4.967
(iif) 2 left » l 1.741 2.132 l 3.840
untruncated normal distribution‘ 2.353 3.182 ‘ 5.841

The C-class may be adopted as it is, since they are all>>3. But, for those
in B lying in 4° /3 <t <3, we are to investigate how much the effect of the
first correction 5; does change the figures of the decimal place. By computing
S1(to) after (43) as well as s(z) after (35) (36), we obtain

1) S.(2.295) =0.0"26 (i) S5:(2.443)=0.015 (iii) S5:(2.132)=0.0788,
50(2.295) = 0.0276, 5(2.443) = 0.0275, 5(2.132) = 0.0314.

Writing S;(z) = — ¢ (deviation), s(z) = 7 (the ordinate of the fr. f. at #) and
the true i o5 =10 — ¢ (—¢, the correction), we have approximately ¢ = 7e, so
that e =0/7. Hence, we find the order of correction in the B-class to be

¢ in (i) = 0.0"%1, (ii) = 0.0°%5, (iii) = 0.0%8, respectively,

which show that the values found from our equations shall make shift, as it
stands.

Lastly for the 10% points =0 4., we devise the following heuristie
method: we calculate the deviations ¢ =S5(y3)—0.5 and the ordinates s(y3)
after (44) and (38). Then the corrections to z, =3 are ¢ =09/7(=0). In this
way we find

the 10% point = y'§ + ¢ = 1.727 in (i), 1.876 in (ii), 1.618 in (iii),

which agree pretty well with our roots, except the last one. The deviations
are rather to be expected, as the result that the points of 4-class being some-
what remote from ;= 3, our equations, which were simply constructed from
S, (#.) = /2, become naturally insufficient.
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A RELATION BETWEEN HANKEL AND
HARDY TRANSFORMS

By
K. N. Srivastava

(Received September 30, 1963)

1. A generalization of Hankel transform is due to Hardy [ 3] who gave
the following formula:

) 8@ =\ )6, un) -
where
® f@ =\ 5@ F, () d,
and
3 G, (x) = cos(an)-J,(x) + sin(an)- Y, (x)
= cosec(mv)[ sin{(a + v)7} - J, (x) — sin{an)-J_, (x) ],
@ R@= 1(;“/ 12")(2»+ i Pl a1 v+ a+ 1, —/4]

This formula is valid under the following conditions given by Cooke [ 1]:
i) a>—1, a+v>—1, v+2s<38/2, |v|<3/2,
ii) "g(@) is integrable over (0, 0), 6 =min2a+ v + 1, 1/2),
iii) ¢"/%-g(2) is integrable over (0, ), 6 >0.
At another place [4], we have obtained a relation between Hankel
transforms of different order. The object of this note is to obtain a relation

between Hankel and Hardy transforms. The result of [4] is obtained as a
particular case of this result by taking ¢ =0.

The result in this note is based on the following integrals which are
special cases of Weber-Schafheiltin integral. The results in question, which
are easily derived from the more general ones given by Watson 5], are

i) if m is zero or a positive integer, vy >—1—m and £ >0, then
(5) goyl—k 'Jv<xy)'-]k+2m+v(uy)‘dy: 0, u < x,

r(m+1) _ x VY 2\ k-1 e 2 2
=i ) () B (1) e
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ii) if m is zero or a positive integer and & >0, then

(6) S:yl—k'.]—v(xy) *Jheomey (uy)'dy

~GHrny e () (- 5) e (-2

uZ

2%
7Z'°P,£,hk*n<1 = 2?)

+ ﬂf], 0> %,

2sin(my)

-Gy e () -5 e (- E), s

where P3P (x) and Q,® (x) are Jacobi polynomials and Jacobi functions of
the second kind respectively.

2. We prove the following theorem:

Tueorem: Let

@ e@ =\ 3/0)- G-y,
and
® R = | 3+ Toszmn @)y F )y,
then
281k + m) sin {(@ +v)7} — (—1)" - sin(am) %

) T+l &8W= sin(mv)

S“’uk—l )~ (/) (L — 22 Ju2)e e POk 1 (1 — 22 /) s —

—(—=1)-2-sin(an) S:uk’l h(w)s (/) « (1L — 22 /)2 Q%1 (1 —2 —z—z—)du,

provided

1) m is zero or a positive integer, v > —1 and k >0,

1 oo

ii) S [gErEmevr e £(g)| o dt andS [t**12 £(¢) | di are convergent,
0 1

iii) S |t-h(£)|-dt is convergent.
0

Proor: If the conditions under (i) and (ii) are satisfied then by Hankel
inversion theorem [ 27, we have

10) P fly) = S” Tovtmay () - B () .
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Hence from (7) after substituting the value of f(y), we obtain
an §@ = 36,0 dy | uTrramen @)+ 5@

= S:u ° h(u) du S:_'yl_k *Jrromey (u}’) G, (xy) 'd}’

= cosec(ny) S:u «h(u)+du S:yl'k Jrszmsy (@y) X
< [sin {(a + 9} Iy (ay) — Sin(am) -] (ay)] - dy.

The change of the order of integration is justified under the conditions men-
tioned in the theorem. The final result is obtained by using (5) and (6).
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ON A STEP FUNCTION
By
Pawan Kumar KAaMTHAN
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1. In a recent paper [ 27, I have defined a step function and found its appica-
tions. Here I make use of the same function and find its certain more appli-
cations in the theory of entire functions defined by Dirichlet series.

2. To revise, let us define two sequences {«,} and {8,} to satisfy the following
conditions:
D O=a<au<. .- <ay,—>oo;
(i) lim(a,— ay,-1)=h>0;

7>

(iii) limn/l,=D < oo,

n— o

and
(v) O< B <Bo<..-<Bu—> oco.

Suppose now that f(x) (>>0) is a step function having j, as jump points.
Further, let (o, —a,_,) be the jump at the point 3, (n=1, 2, ...); so that define
f(=») as follows:

2.1 f@) = 3y — Ap-1), (o= _1).

Bn<kx
Also define:

x oo

(0 < A<IB < o0).

logf(x) _B
x A

Lemma: Let v (x) be a integrable for » >0; then
33— @)V (B = F@ ¥ @) — | fOW @

Bn<a

For, we have

| FOW @i = (0 — ) G (82) — (80) + (e — ) 6 80) — ¥ (81)
o (@ — ) () = (80)
= (a1 — ap) (Y (%) — ¥ (Bo)) + (2 — a) (¥ (x) — ¥ (B1))
+ ot (@ — ) (v () — P (B2)
>3 (et = 1) (¥ (@) — ¥ (B),

Basx
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and the lemma follows.
3. Turorem 1: Let
f(®) ~ Lx)e",
where L(x) is a ‘slowly increasing’, monotonically tending to infinity, such that
L)~ L(x); 0<7< oo,

then, if o >0,

“ _ (~B)3; ;Zi, .

3.1) lim — [OL (m v ﬁ%.x(an Qu-1)e o
— —(@+B)3); — ;B_
(3.2) lxlﬁm,, Fe _@HB)x Z.;x(an Opi)e o

Proor: From the above lemma, we have

38.3) Z( (U — 1)@ D% = f(a)e® D" — (@ — B)SZ F)e=Prds.
Hence
(@—B)3y o ,E‘i ¥ ot
S B~ e Lt e | L0

But

S L di< L+ L(x) e

SxL(t)e‘”‘dt > S L()e™ de > L(0%) S:e"”dt O<b=1—c<1)
[1] x

= %L(x) o,

Therefore (3.1) follows.
Now

SV (@y — 1) @B = £( X)e™@+BX — f(x)e~+B% 4 (B + a)g f@e Brerdy,

x<3n.<X

Hence

S . B S
'fW;w—wT B};x(an — o )e” @B~ 1 4 T@;—e—?‘”"— SxL(t)e ‘d.

But

S LG)eds > L@e"”.
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e dt

vleg 2+x log 2+x
S L@&)e* di = LS L@ di < 330 log2 + x)g

(v—1)log 2+x (v—1)log 2+x

< L(x)v:Z; (1 + S)v I:e—a((v—l)log2+x) _ e-—o&(vlog2+x):|

—+‘L—(fc)—;;, on letting, after summation, ¢—0.

This proves (3. 2).
Tueorem 2: Let f(x) be a step function defined by (2. 1), and
?(x) = S:f(t)dt,
thenr, if A and B are defined as in (2. 2), we have

lim—= ¢ (%) < < <lim—2> 9
@ o <lm F@
Proor: We have
lim 9% _ g

and so if H< B, we have lim «,exp(—Hg,)— co. Theorefore ([3], p. 20)

n—w

eH(Bp._ﬂn) > Xy

(3

#=1,2,...n (equality holds only if # ==n).

One can choose a number %, 8,< x < £,.1, then

eHBu=5 > g" , #=1,2,....n

n

Let f(x) = a». Then

= ey ) =)= - S — ) o= 8,)
i 2~ ) log( - ) n 0( loch”an )
<A (3o 52)
=it b, 1oe( 5 )as+o(PE)

—>1/H asn—> co.

Hence, since (B— H) can be made arbitrarily small, we find that
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Similarly it can be shown that

and the result follows.

4. Applications. Let f(s) = iane“” (s =0 + it) be an entire function repre-
n=1

sented by Dirichlet series. Further, let #(¢) and 4, be respectively the
maximum term of f(s) and its rank. Let x, =log|a,-1/a.| /(2 — Au-1) (2o = 0);
then (17, p. 717) %, (n=1, 2,...) are the points of the left-hand discontinuities
of 1.y, where

lv(q) :ngg(ln — ln—l), (/{0 — 1_1).

Further x, (1], p. 718) is a non-decreasing function of » tending to o with .
It is also well-known that (#(0) =1)

log £2(0) = Solv(,,)dx,
Q

and the order (R)¢ and lower order 1 are given by [5]:

m&%ﬁ:@ =45 (O<<a<Co<e0).

G oo

So replacing f(x) by 1, and ¢(x) by log #(x), we have from Theo. 2

4.1) @M<

=
T—ea v(o)

—il)-»<./1r<\ﬁﬁ\f Lo, (0<A<Co < o0).

K. N. Srivastava 6] has proved (4.1) by an alternative mothod. Again, let
Avey = L{0)e", then following (3. 1), we obtain

4.2) lim log#@) _ 1
0

S oo v(o)

Q. I. Rahman [47] has obtained this alternatively.
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