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1. A generalization of Hankel transform is due to Hardy [ 3] who gave
the following formula:

) 8@ =\ )6, un) -
where
® f@ =\ 5@ F, () d,
and
3 G, (x) = cos(an)-J,(x) + sin(an)- Y, (x)
= cosec(mv)[ sin{(a + v)7} - J, (x) — sin{an)-J_, (x) ],
@ R@= 1(;“/ 12")(2»+ i Pl a1 v+ a+ 1, —/4]

This formula is valid under the following conditions given by Cooke [ 1]:
i) a>—1, a+v>—1, v+2s<38/2, |v|<3/2,
ii) "g(@) is integrable over (0, 0), 6 =min2a+ v + 1, 1/2),
iii) ¢"/%-g(2) is integrable over (0, ), 6 >0.
At another place [4], we have obtained a relation between Hankel
transforms of different order. The object of this note is to obtain a relation

between Hankel and Hardy transforms. The result of [4] is obtained as a
particular case of this result by taking ¢ =0.

The result in this note is based on the following integrals which are
special cases of Weber-Schafheiltin integral. The results in question, which
are easily derived from the more general ones given by Watson 5], are

i) if m is zero or a positive integer, vy >—1—m and £ >0, then
(5) goyl—k 'Jv<xy)'-]k+2m+v(uy)‘dy: 0, u < x,

r(m+1) _ x VY 2\ k-1 e 2 2
=i ) () B (1) e
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ii) if m is zero or a positive integer and & >0, then

(6) S:yl—k'.]—v(xy) *Jheomey (uy)'dy

~GHrny e () (- 5) e (-2

uZ

2%
7Z'°P,£,hk*n<1 = 2?)

+ ﬂf], 0> %,

2sin(my)

-Gy e () -5 e (- E), s

where P3P (x) and Q,® (x) are Jacobi polynomials and Jacobi functions of
the second kind respectively.

2. We prove the following theorem:

Tueorem: Let

@ e@ =\ 3/0)- G-y,
and
® R = | 3+ Toszmn @)y F )y,
then
281k + m) sin {(@ +v)7} — (—1)" - sin(am) %

) T+l &8W= sin(mv)

S“’uk—l )~ (/) (L — 22 Ju2)e e POk 1 (1 — 22 /) s —

—(—=1)-2-sin(an) S:uk’l h(w)s (/) « (1L — 22 /)2 Q%1 (1 —2 —z—z—)du,

provided

1) m is zero or a positive integer, v > —1 and k >0,

1 oo

ii) S [gErEmevr e £(g)| o dt andS [t**12 £(¢) | di are convergent,
0 1

iii) S |t-h(£)|-dt is convergent.
0

Proor: If the conditions under (i) and (ii) are satisfied then by Hankel
inversion theorem [ 27, we have

10) P fly) = S” Tovtmay () - B () .
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Hence from (7) after substituting the value of f(y), we obtain
an §@ = 36,0 dy | uTrramen @)+ 5@

= S:u ° h(u) du S:_'yl_k *Jrromey (u}’) G, (xy) 'd}’

= cosec(ny) S:u «h(u)+du S:yl'k Jrszmsy (@y) X
< [sin {(a + 9} Iy (ay) — Sin(am) -] (ay)] - dy.

The change of the order of integration is justified under the conditions men-
tioned in the theorem. The final result is obtained by using (5) and (6).
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