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THE STUDENT’S DISTRIBUTION FOR A UNIVERSE
BOUNDED AT ONE OR BOTH SIDES (Continued)

By
Yoshikatsu WAaTANABE

(Received September 30, 1962)

In the foregoing notes® the author had dealt with some special Student’s
ratio for sizes n=2, 8, 4, but laying less stress on the general treatment. In
the present note he intends to investigate the matter more generally. If the
sample mean and S. D. be x and s, there are the following (n—1) subcases: I:
0<r=5/3<1/Vn—1, I1: 1/Vn —1<7<N2/(n—2), II1: V2/(n — 2)<7<N8/(n—3),
...... , the final (e —1)-th: Vo —2)/2 <t<vn—1. The partial volume-element
dVi, dVigyeevens can be formulated without much difficulty. Nevertheless its
actual determinations for several concrete values of n>>5 are so seriously
intricate that below the special case n=>5 only could be newly examplified.

13. The Volume-Element for the Sample Mean and S. D. taken from a
Universe f(x) with x>0. Let the sample point drawn from the universe be
P(xy,-.-, x,). The elementary probabilities are

(13.1) dp = f(x1)---f(%n)d2y - - -dx, = g (%, s)dv, and
(18.2) dP=f(z, 9)dxds=g(&, s)dV (= gdv taken as %, s determinate),

where the product f(x,)..-f(x,) is assumed to reduce to a certain function of the
fundamental symmetrical sums >; = nx and Sx? = n(s® +x%).

Now after Cramér® we transform w,- -, x, orthogonally into yi,---, y,, e.g.
as

y1=(—m1 + %2)/V2 = (— & + &)/V2, where and below & =x; —,

1) Y. Watanabe, Some exceptional examples to Student’s distribution, Jour. of Gakugei, Toku-
shima Univ., vol. X (1959); The Student’s distribution for a universe bounded at one or both sides,
ibid., vol. XI (1960) and its continuation, ibid., vol. XII (1962). They are below referred as [1], [I17]
and [IT7], respectively.

2) H. Cramér, Mathematical Methods of Statistics, p. 383—, where Prof. Cramér treats in two
different ways, one statistically, one geometrico-analytically, after which latter the present author
has followed, who wishes here to express his heartily gratitude to Prof. Cramér, whose treatise indeed
so much helped the author to plan and perform his work.
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Yre1=(— 21— — 2,21 + (a — D)/ V—L)n
=(—& — = &1+ (e — DE)/Nn—Dn,
Vo= (21 + %2+ - + x,)/Vn=+"n%, so that ?(xi—g”c) = ng,. =0.
Or, solved for x; —x=§;, rewriting coefficients in columns to rows,
Erm oy — 5= — y1/NE — 3 VB — 5 NI — ..
*yn_z/\/m—yn_l/\/r?(ﬁfﬁ,
(18.4) E2=123— %=+ y1/V2 — yo /N6 — y3/V12 — ...
~‘J’n-z/\/(na_"‘“lj(n*—2)”‘}’n—1/\/7;(—71»«:1—%
Ey =3 —x= + 2y2/V6 —y3/¥12 — ...
_J’n-z/\/m—yn-ﬂ\/m,

En1=%x 1 — %= + (@ = 2)yn_2/Nn— 1) —2) — yp_1/Vn(n—1),
En=1p— %= 4+ (1 — 1)yn1/Vn(n—1).

Whence directly or by the known orthogonal property, we obtain
” n-1

(13.5) D — 2 = Syt =ns,
1 1

as the equation to the (n—1)-dimensional® spherical surface K,_; of radius

Yns with center G(z,.., ). Also y;’s equations (3) represent »n hyperplanes,
which two by two are perpendicular to each other. In particular, the last one
expresses the z-hyperplane, whose normal from the origin O inclines equally
to all x;-axis and along which the length OG=4ynz being measured, the end
point denotes the centroid G(z, %,.--, ). Or, else, y; denotes the i-th component
of the vector OP with orthogonal components xi, x5, .-, x,, Which has the direc-
tion cosines Iy =l,=...=l;= —1/\iGF+1), Lis1=+vi/G+D), lLixz="..=1,=0. So that
y:’s direction is precisely that of OY; drawn through O with direction cosines
li,--, I, This is however by the description of the simplex S,_, inconvenient,
since we ignore here the origin and instead of which, the centroid G is pre-
dominated. Hence, if the centroid’s translation y,=+n% be for a while kept
aside and considered only the rotation around it, we may imagine to have
given —z to every x;, so that G coincides with O and now the i-th component
y; may be regarded as the projection of GP on y;’s direction, as really describ-
ed by £’s in (3). We interpret these directions in the following ways: First,
considered a vertex 4, of the simplex S,_,=4;4;...4,, its height is the per-

. 7, . . . .
1) TItis true that ) (x;—%)? = ns® denotes a n-dimensional sphere. However, since the sample point
7
(%4, --,%,,) 18 confined to satisfy not only this equation but also the equation ] x; = n¥ necessarily,
1

the dimension is lowered to n—1.
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pendicular from A, on the base simplex B, ;=S%,=4,4,... 4,1, or what is
the same thing as the join of the vertex 4,(0,.-.., 0, nx) and G, (nz/(n—1),...,
nx/(n—1), 0), the centroid of the base S¢,. In fact, its direction ratios being
—1: —1:...—1: (—1), which are the same as y,_,’s, we take this direction as
£(=494-1). Next, conceiving the base simplex S, = A4, 4,... 4,_,, its height
against the further base B,_;=S{%"P=4;4,.--A,_, is the join of 4,_:(0,..., nx,
0) to the base center G*%V=mzx/(n—2),---, nx/(n—2), 0, 0), but now converting
the direction for a later convenience’ sake, its direction ratios now become 1:
l:...: —(»—2): 0, which are those of y,.,’s with all signs changed, and we
shall denote it by 71(= —y.-2). Similarly, the following subsimplex S{»z-1.#-2
=A1A;5..-A,_3 has its height A4,_:G,_, with direction ratios when the sense con-
verted: 1: 1:...: —(»r—3): 0: 0, which are those of y,.3’s with the signs chang-
ed, and we shall denote it by 7:(= —y,-3), and so on. Lastly the subsimplex
Spr-boP= 4,4, has its height 4,4, with direction cosines 1/y2, —1/J2 and
we put 7,.2= —y1. In the accompanying Fig. 1, it might become a left-handed
system by some choice of numbering vertices. Thus

An
¢
G=Gnp-1
7 ps
/ )
Apa 7
7/713
Gn-z
G
A, G, A,
Fig. 1.
{=yp1= [“ X — X — e — X1 + (B — l)x”]/\/n(n-l),

m=—"Yn-2= [x1 + 29t Xy — (n - 2).%',,_1]/\/(77;-‘-1) (n~2 y
N2=—Yuz3={21 o+ 2,3 — (n—8)x,_2]/N(n—2) (2 —3),
(13.6) 3= —Ynoa=[#1 + -+ %54 — (2 —Drp_31/N(n—38) (n —4),

Nn-g = — Y2 = (21 + %z — sz)/\/ga
Mu-2~= —Y1= (xl - xz)/\/g-

However, in certain circumstances, ¢ shall be conveniently written as », or
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nm-1. Naturally all these directions form a (» — 1) rectangular co-ordinates
axes, G as origin and they suffice to deseribe S,.; and K,.;. We have also in
view of (6) and (4)

n—-2 n-1
13.7) 4+ Sint= 3yt =ns
1 1

as the equation to the s-spherical surface K,_,. If its half, upper or lower ac-
cording as £==0, be projected orthogonally on £=0, it becomes a (n—2) dimen-
sional spherical solid

n=-2

(13.8) 2ini=p’=nsd ¢ (0 < ¢ <Vns).

We write further

71==p COS 01 COS F2 COS O3+ - vvvvviriniiineninnn. €08 0,_4C0S 0,_3
Ne=p SIN@;:CO80,€0885.  cvvviiiiiiiiiii oS @, 408 0,_3
ne= SINBsCO8 Og-cvvvvereneinaniiniaaan., €08 6,_4 COS 0,_3
(18.9) oo
Niv1 = pSin@; cos Gy --vvvnen €08 0,,_4, COS O,,_3
Moy = psiné,_,cos b, 3
Nu—2 = P sin 6.3,

where p=GQ is the projection of GP on ¢=0 and ¢; denotes the angle which
the projection of GQ on the (i+1)-dimensional subspace formed by #i,..-, 741
makes with the i-dimensional subspace formed by #y,--, %, i=1,2,...,n — 3;
and 0<6; <27 or —7z<0,<m, but all other 8;’s are between + /2.

In the foregoing successive transformations, the Jacobians being

we have

dv=dx;. . .dx,= dyl . dyn = \/Ed??dé‘d’)n . -d‘?]n_z.

Furthermore

a(”]la 725 T]35° "5 Tn—2y g, 55) _ s 43 2 n—4
(1311) S(P, 91; 92"") 671—3’ S, .’76) - é‘ P €08 92 cos 03“'008 971-—3;

where ¢ = =+ vns?2—p?, whose signs can be both taken, and thus obtained two
systems yield the same value of the probability element 4P, so that the
Jacobian should be multiplied by 29. Consequently we have

1) Cramér. loc. cit., p. 385.
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— . / 2
(18.12) dv=2VndxVnds 1S "3 08 0,...c08" 4 0,_3dpdb,df;...db,_3
—pzf p

nsz 2

=ndxdsdF,_,,

where dF,_, denotes the surface-element of the s-sphere K,_,, which lies in
S.-1 and whose integral extended over all possible arguments yields F,_,(=
S,-1"\K,_1). Hence the required volume-element is

(13.13) dV=F, ;ndxds with

cos”“40,,_3d0,,_3szl}/

B1 B2 Br~3 2
(18.14) F, _»(z, s)=2§ d@lg cosﬁzdﬁz...g B p"3dp,
o1 ®2 ns*—p

Qp—~3

. [}
whose innermost integral may be replaced also by (v ns)”‘zg sin”~3rdnr
4]

on putting p=vnssin y, = sin~1p;/Vns.

It remains only to determine the limits of integrations «; 8; in conformi-
ty with the various subeases, cf. [1]: I: 0<r=s/2<1/Vn—1, II: 1/\n—1<
7<N2/(n—2),........ , the finale: v(n —2)/2<r<vn—1.

First, the opening scene is

I: 0<vns<vn/(a—1)x=GG,_,, so that the whole s-sphere lies inside S,_,.
But the whole area of the (n—1)-dimensional sphere of radius p,= us being
as well known,

(18.15) Foo 1 =2Vn" "Was)y"2/I"(n — 1)/2),
the required volume element is given by
(13.16) AV, 1 =nF,_s rdxds = 2Jn"Nz"1s" 2dxds/I" (n—1)/2),

which is the well-known Fisher’s formula. Otherwise, we obtain (15) imme-
diately on writing the evident limits of integrations in (14)

/2

3 /2
(13.17)1@",,_2,,=2S2 delg cos ezdez...g
0

-7/2

Tf2
cos"”* Gn_adgn_gg (Vns)y*=2 sin® 3 rdnr,
[¢]

-n[2

and employing the formula 28:/2cos’”€d9 =zl ( m'zl'l > / P(%FA>, for
m=0, 1,..., n—3. For example, if n=4, 5, we have

(13.18) Fo,r =167s%, dVy = F2,;d(2%)d(2s) = 64ns®dzds,

(18.19)  F3;=10255, dVs ;="F; ;d(N5x)d(V5s) = 50V5n*s*dzds.

For the following several subcases, however, it is too intricate to deter-
mine actually every «;, 8; in (14). More preferably we would consider ade-
quate corrections of F; to be made for successive subcases, as will be seen in
the subsequent section. However the final subcase
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(13.20) Nn—2)/2 < s/z=7<An—1

would especially be treated, since here the determination of limits of integra-
tions can be found with ease. Observing that there are n vertices in the sim-
plex S,.1=A4,4,.-.. A, and at every of them (n— 1) side-simplexes S,_; meet
symmetrically, we may only consider that surface o,_, bounded by a said S,_.
at a said vertex 4,, or its half by symmetry. Consequently the whole surface
is

(13.21) Frs, tinate = 2n(n — D)oz,
so that
(18.22) AV, tinate = 20 (n — D op_p dzds.

But, since 4f,..., 4,_,, the projections of A4,,..., 4,_; on the 7;5.-plane, which is
perpendicular to G4, = ¢-axis, situate symmetrically about G, e.g. / A]G A4, =
27z/(n—1) and its half is =/(n—1). Hence, we have 8;==/(n—1), but «; as
well as all «; are 0. First, considering the innermost integral of (14)

—_ p;)/ nsZ 7n—3
(13.23) L= SO e,
the upper limit is clearly the radius vector of the boundary of s-sphere K,_::
pl:+¢E=ns* cut out by a side face S¢;V=4,...4,_»4,(x,_1=0), whose equation
will be obtained as follows: The axis or height of SV is A, ;= 4,G% Y,
which is the join of the vertex 4, to the centroid of its base B,_;=S{% V=
Ai...A,_ 5, where 4,=(0,0,..., 0, nx) and G2~V = (nx/(n—2),--, nx/(n—2), 0, 0).

Therefore,, the equations to %,_, become x;=x,=="... =%,_2={n% —x,)/(n—2) and
2,_1=0. Or, in view of (6) these reduce to
(13.24) ¢ =Vnn—Dx —Va(m—2)n, ny=-.-=nz2=0.

But this height 4,_, being perpendicular to the base B,_s;, which is parallel to
the subspace formed by 7s-, 73-,---, 7s—2-aXis, the side simplex S{7? is generat-
ed by the parallels to 4,_, drawn through every point of B,_s;, so that the co-
ordinates of any point P in S0 satisfy the first one of (24), but with variable

N2,-+» mu—2. LhUS the first equation, i.e.

(13.25) ¢ = Valn—1)% —Vn(zn —2) p coS ;.- .C0S b, _s

may be regarded as that of S0, rather with its prolonged subspace together.
Hence, its intersection with K,_: &% + p? = ns® is given by

(13.26) p?+n(n— 1% — Vn— 2p cos 6;...c08 0,_3)* = ns’;

or, if cos 8; = u;,

[14+n(—2)u? w2 3]p* =20V —1) (n—2)Zpur- - -up_3 + n(n — D&* — s*]=0.
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This being solved for p and its smaller root selected, because the greater one
corresponds to those about other remote vertices at farther side, we have, as
the upper limit of I,

(13.27) pr=0Vn—1) (—2)u. .u,3x—VE)/F,
where
(13.28) E=n[Fs*—(n—1z"], F=14+n@—2ud ul_.

For its integration, we write p=1/ns sin 4 and obtain
— &1
(13.29) I = (\/ns)"‘zg Sin" e
0

where +r, = sin™'p;/yns and
(13.30) sinyr = [Vn(n—1) (s —2)u,. - -un_s% — VE/n]/Fs,

(13.31) COS Ay = [Vo—1% 4+ Vn—2u;.. ~un_3\/E]/Fs.

When all u,’s=1, the radical expression VE reduces to vn(n—1) [(n—1)s* —z%],
which is real positive after (20) and sin«j,, cos+, become non-negative frac-
tions and accordingly +r, becomes an acute angle. Thus every upper limit of
u; is all unity, i.e. a;=0. However, if one of u; be =0 (3; = =/2), the radical
expression VE reduces to Vn(s®—(n—1)z%), which is imaginary. Therefore, in
the existing continuous domain, each u; should be between 1 and a certain
positive fraction §;. In general, to make p real, we must have E=>0, i.e.

(13.32) nln—2)u?.. . ul_ss?>m — 1Dx% — 2 (>0).

Hence

m—1zx*—s* __ n—1—72
(13.33) 12u12ulu22-~2u1u2~~~un—32‘/ n(n—2) 52 —]/ na—2y% 5,
where 0<6<{1/(n—2)<1, because of (20). Therefore, for §;, the lower limit of
u;, we should have
(n—1)72 — <2
(13.34) 1>u;> M)x - 8 =8 (=238,..,n—23),
Nn(n—2)uy..

SUi-18 Uy---Uj-1

and u; >8, =cosz/(n—1). Consequently we get the main factor of F,_,

- n—4
(13.35) o,,_zzwns)n—zgl duy g updity S widun. s

¥
(it bt el Tn#-3
5o V1—u? s, V1—uf = s,,_n/l—-u,zz_ggo S

In particular, for the ending value r=+n—1, p; as well as »; reduces
to naught and we have o,_,=0, as a matter of course. Thus the general
formulation is rather plainly accomplished. Notwithstanding, the actual
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computation for the (n—2)-ple integral with a given n>>5 is enough intricate.
For examples, we pick up only few cases:

Ex. 1. Case n=3, II: 1/V2 <r<+2, we have {?+,2=3s%, n=p from (7) (8)
but none for (9), so that (85) reduces to

o= Spl 3338—;) dp = \/33& 1d~]/~= V8syr, on putting p=3ssin .

Here pi(=1,) is found by eliminating ¢ between (24) t=v6z—+37 and 2+
=3s” to be

pr=m=[3% —V8(2s2 —z%)]/2v2
Hence
sin s =[V8 —V2r2 —17/2V27, cosn =[1+ V322 —1)]/2V2.

And whence cos (w/3 —yr1) =1/V2r, ie. = z/3—cos™'1/V2+. Thus obtained
o1 being multiplied by 6, because there are 3 vertices and we have halved at
vertex. Hence

(18.836) Fy ;r=6v8s(x/8—cos1/V27), dVsir=Fi ;d(N8z)d(V3s),

which coincides with (3.9) in [1].
Ex. 2. For n=4, IIl: 1<r<+3, (35) delivers

1 du

(21
—42) Y i
o =4s Ll i SO Sin +r dor,

where u=cos 6, 8 = cos /3, cosln = (V8% + V2 cos §-VE)/Fs, where E=4(1-+
8cos?0)s? — 12z%, F=14-8 cos?d after (28) (80) (81). Executing the integration,
we get

et e =) oy S vy T

which multiplied by 2n(n—1)=24 yields

(13.37)  Fyrrr=968] - ( éT 1) - \/;—Ttan‘l]/ _2(72—1)

/170 1
+tany/ 3 (1-5) .
This multiplied by 4dzds becomes (8.12) in [1].

Ex. 3. In case n=5, IV: v3/2 <r <2, a much more intricate results are
outlined as follows: We have after (35)
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_ du 1 od by _
(13.38) o3 =5V5s sz N S e SO siny dy(=7 say),
where
d—
SR 7 = (L e
10V 3uvz — VB[ (1 + 15u202)s — 4xZ]
pr= 1+ 15u%

This triple integral on putting p = uv becomes

-1 du
(13.39) J= S]_Iv . m S (\[fl - s1n«plcos\!r1)7\/u——*
where

(1340)  po=y/ AT, 0 =10VBEE VX x4 4 1500 — gz,

T2 T It
The inner integral of J integrated by parts yields
(13.41) —éw Ju? = pt (cos‘lé —%]/ @) + S V& =% Rdp.

o
Because X vanishes for p=p,, we get pio = p:1(p=po) =sV5(4—7%)/2 and ;=

cos”'r/2. Hence, the integrated parts, when further integrated about u,
yield, as the first component of J,

(18.42) J1=U(r) [%(1 —po) — T(Po)],
where
(13.43) U(T)——1—<COS'1 T ,/1 >, and

T(p) = tan~'WI1—2p% — p tan~' v1 — 2p?/p.

The not-yet integrated parts are

(13.44) J —Sl _ du S V@ —pRd
. 2= s U ll_uz o P P>
where

_1 4 S pt Op1_
R= 2 d‘P‘l (’\]’I‘ Sln1;r1COS\P1) ap 8[7 = 582\/1582—“0% ap s

which reduces after some calculations to
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_h P
(13.45) R= + gz
where
(13.46) Q=1+ 15p%, vX=zr16(p7—pD),
(13.47) P0=4T5[1—T— (1+ )15;;]

4 4 i
(13.48) P=—90[1- "5+ (1 + W) 155" p.

Interchanging the order of double integration in J,, we have

(13.49) Jo= S (1—-p)Rdp — SWE T(p)Rdp=V —-W
Po
=W+ V) —(Wo+ W),

suffixes 0, 1 corresponding to P, and P; respectively. They become after all

(18.50) V=" [ A=(G+ g —2) +eos™ - — 206 —20(-)],

(18.51) Wo(r)= T(p@(%po \/15p0> T (po)( 57+ tan-l«/lspo)

L1 e ¥1=298 /16, —1—*ng>
(«/Btan po TV irten 1702

£ _ E dé‘
+tanmy/ By 1%

(13.52) (o) =( > =

0.0951 0.3802 07746  2.4099\ (¢:tan~ V1 —2p% —£2%/po
T 3 >+< 8 >So 1+15P%—§2 ¢

( 0.0004 0.0012 ) g vy

-+
,7.8 TIO

tan-! (% v Wf@> tan-1 Y1 = 20" dp,

bo P

where po=v(4—7%)/167%, {1=+v1T7?—8/157%. Thus obtained J multiplied by
200v55° would yield F; ;. However, to complete the calculations, the last in-
tegral in (51) and two integrals in (52) are to be still computed e.g. by means
of Taylor-Laurent series expansions, which are extremely troublesome. So
that, unless some ingenious device about the method of literal integration
corresponding to Gauss’ method of numerical integration might be furnished
or we could tabulate the values of J(r) e.g. by use of the electronic calculator,
the above obtained result should be less worthy. We would rather contrive to
manage otherwise as in the following section.
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14. The Principle of Projection, the Correction to F; for Subcases II, III,. ...

Below we shall rewrite the preceding ¢ by ... for a while in order to
facilitate the notation of summation, and re-establish the notion of projec-
tion. Let

n-1

(14.1) S =a, with Sta=a?>0
1 1

be a hyperplane H=H,_;i() in the (—1)-dimensional space R, ;. First, let us
obtain the minimal distance from a fixed point P= P(&,,..., &,_1) outside H to
the surface, which is to find after Lagrange the absolute minimum of the
squared distance

n—1 n—1
y= 2;1 (77v - Ev)z - 2>"($ ayny — aO):

so that gy =2(n, — &) — 2xa, = 0. Consequently
v

7 —&=\ay, ie og=&+Na, v=12,..,n—1.

n—1
Substituting these values in (1), we get Ma*=a,— >, a,£,. Hence we have
1

(14.2) sy = &y + ay (g0 — ”z'ljaygy)/az —& say,

where ao — >,&,5=0 and o*5=0, so that P'(¢) on H is uniquely determined.
Furthermore, if Q(;) be any point on H, we have

PQ* =& — ) =20 — EY + (o — E) — 233, — ED)(ny — £)
= P'P* 4+ P'Q* + 23 \a,(n — &)
= o+ 2 ey — 2iaé) (= a0 — ao = 0 by (1))
Therefore
(14.3) PQ*=P'P?*+ P Q* and L PP'Q=a right angle.

Thus PP’ being perpendicular to all straight lines drawn on H, we may call
PP’ the perpendicular or normal to H from P. Or, we say P is projected to P’
on H. Its uniqueness should be especially remarked.

Naturally the converse i.e. that for a determinate P’ on H there is only
one point P, is not true, as a matter of course. However, to abbreviate words,
we say frequently, P is the inverse projection of P'.

Moreover, any straight line which passes through P and meets H, inter-
sects H only once, just likely as any straight line in R; behaves against the
ordinary plane. For, if it meets H at two points Q; and Q., then /PP'Q, =
/PP’ Q,=a right angle, what is absurd in Euclidian space unless Q;=Q.. This
explains why H is called a hyperplane in R,_..
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As was stated at (13.24-25) as to S,7, the first subsimplex of S,.; is
nothing but a hyperplane H,_;, what can be generally recognized about all
other first subsimplexes, since they are symmetric in S,_;, all things in regard
to one special S,_, must also hold to other S,_,. The sum WS, surrounds S,_;
and serves as the boundary surface, since any ray issuing from the centroid
G meets USS?, once and only once, just as in the sphere K,_; its surface K,_;
relates with its radius vector.

Next, let P(&) € B,_; = B, a bounded second hyperplane (the projecting

hyperplane) with an equation

(14.4) %ﬁ@:m Mt§%<& 88y,

By projecting B on H, we obtain a third hyperplane (the projected hyperplane)
(14.5) niﬁ &y = co,

which yields by eliminating &, &,..., &,-1 between (2) and (4), or else (2) solved
for £, and these being substituted in (4), generally. However, if ¢,=0 in (1),
i.e. £, be lacking in (1), the corresponding &, = £, and c,=b, follows. E.g. if
(1) be merely

(14.6) Nno1=—%Nn/(n—1)=a, (a first subsimplex S¢,

then (4) becomes ni‘?byﬁ (lacking &,_,)=b¢—ah,_i1(=b{), that moreover some-
1

how bounded. By the same reasoning, even if the projecting space B is any
surface of dimension n—1 at most with the equation B(&,-.-, &,.1)=0, the pro-
jected space B’ becomes R(&],. ., £,_1, ao)=0. In particular, if the projecting
space be an inferior spherical segment of the (»—1)-dimensional sphere K, _;

4.7 ST =ns®

1

n—2
cut out by the hyperplane (6), its projection on (6) becomes S1£,* = ns® — £2_,
1

. n
with ]/ —
n—2 n

(14.8) Sy p2 =ns— 1 (= —1)s?).

1

% <E,_1 <+Vns, that is, a (z—2)-dimensional spherical solid

Here the last dashing mark relates merely to the first subsimplex S’'=S5¢7,, but
by no means to projection. Similarly, coordinates of the centroid of S’ being
(mx/(n—1),--, nx/(n—1), 0), it may briefly be written as G'(Z',-.., ', 0) in accor-
dance with

(14.9) &= (n — 1)¥
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and further by (8) and (9) it follows that
(14.10) + =5/7 =V (r—1Dr*—1)/n eg. « =+{@dr2—1)/5 forn=>5.

Now we return to our main problem: Supposing a surface element do at
a point P(£,), e.g. that of the s-sphere K,_,:£%+p* = n}.—“ln% =ns® is projected on
H,_;, hyperplane (1), its projected elementary area dcrl’ at P'(&;) is given by
(14.11) de’ =do cos v,

where v denotes the angle the sphere’s outward normal GPN makes with that
7—1
of H,.1. The equation to H,_;, (1) may be written after Hesse >V,s,=p, where
1

p = GG’ expresses the normal drawn from the origin G on H,-; and [, denotes
the »-th direction cosine of GG’:l,=cos p,=a,/V>a%, v=1,..., n—1, while those
for K,_, are N,=§&,/Vns. Hence

(14.12) cos y = "SIl = ST a.f, /s vnSil.
1 1

In particular, if H,., be {=ay, i.e. n,.1=ao, but all other 5, arbitrary, then
H,_, reduces to the whole (#1,---, 7,_2) coordinates system itself, i.e. an entire
(n—2)-dimensional space. In this particular case a;=... =a,.2 =0, a,.1 =1,
Se?=1 and the normal GG’ coincides with the ¢-direction. Hence, for the s-
sphere K,_;:¢{%=ns*—p® we get simply

(14.12.1) cos v =&, 1/\Nns=¢/Nns=ns?—p? /Nns

and v is the angle between the radius vector GP and {-axis.

The truthfulness of (11) can be shown as follows: generally H,_; contains
(r—1) unknowns and one equation, so that it is a (»n—2)-dimensional space,
and its surface element shall be given by do’ =dx;---dx,_, at P’, in whatsoever
way we may take the (n—2) rectangular P’-(xi,---, x,_,) co-ordinates axes.
On the other hand K,_; being a (»—1)-dimensional surface, its surface element
can be replaced approximately by that of the tangential hyperplane T, ;:

-1
Sw.p=ns’. Hence, the corresponding surface element at P shall be represent-
1

ed as do=dx;...dx,_, also. Now it is in our power to select these x-, x’-systems
suitably. For a moment we rotate the G-(31, -, 71_2, 7z_1=¢) co-ordinates
system to a new G-(x1,---, %,_2, x,-1) System and further translate to P-(x, --,
x,-1) System, so as the x,_;-axis to coincide with the radius vector GPN and
the x;-axis to lie in the plane PGG’ and perpendicular to PN, while, corre-
spondingly G’-(x],---, x,_1) system (or translated to P'-(xj,---, x,_1)), naturally
so as the «/_j-axis to coincide with G'G in direction and xj-axis to lie in the
plane PGG’ and perpendicular to G'G so that (Gx;, G'x7)=_(Gxp_1, G'x' 4_1)=".
All the remaining #-, .-, x,-2-axes as well as x;-, ..., x,_o-axes being all per-
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pendicular to the plane PGG’, independent of «, and their directions before
and after projection remain the same. Therefore dx,=dx]secy, but dx,=dx’
(v=2,...,n—2). Hence we have dxiduw;..-dx,_2=dx]| secy-dx; - -dx,_», that is

(14.11.1) do = do’ secy Q.E.D.

All the above being a prologue, we are now able to produce the corree-
tion formula for F; necessary to obtain F;;,.... In all subeases II, III,..., the
s-sphere K,_; protrudes outside S,_., whose protruded portion accordingly
should be subtracted from F; in (13.15). First, for the subcase

II:  1/4n—1«7<N2/(n—2), since GG,_,=Vn/(n—1)% < Nns < N2n/(n—2)z
=G6G,_; (Fig. 2), the s-sphere protrudes partly over each of n faces of S, i,
but, the protruding portions evidently have no common part. The area of the
protruded calotte C,_; can be found by an application of the principle of pro-
jection. Projecting the protruded part of K,_;, e.g. over the base simplex S’
=S®, = A;...A,_1, whose centroid G’ has the co-ordinates (= ... = 7,_, =0,

= —+n/(n— 1)x) after (13.6), and which is perpendicular to GG’, produced 4,G
(¢-axis). The intersection of ' and K,_; having the equations: ¢= —vn/(n—1)z,
pt=ns’*—nz"/(n—1)=(n—1)s% it is a (n—2) dimensional sphere K, _, with ¢’ as
center and radius p; =+vn— 15 (Fig. 2a), which wholly lies inside S, since
Vn—15=ns? —nx?/(n—1) < Gp_2Gp_3=VGG2_4 —~GG%,;= nx/N(n—1) (n—2), be-
cause of II: r =5/2<v2/(n—2). Hence, the area of calotte is obtained as an
inverse projection by applying (11) in aid of (18.15)

) \

t J— [}
A, | G=Gp, !

]

1

1
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T 02 e n—2
Cn_z=g iseC'Y|an-3,1=So \/n—‘7-2¢ﬂ 2p 3dp/F< ),

inside K’/ 32 e p 2

where p;=vns?—nz?/(n—1). Or, on writing p=+vnssin+, y, = cos™'z/vn—1s,
we obtain

(14.13) Cy zzﬂgblsinn-wd\y
2T T/2=D)o ’

a generalized Archimedes’ formula. When the integral performed indefinite-
Iy, it becomes

cos ) sin”* —4 i o
- —% L (—n:?))—(m Cos Jr 8in" Cp— ... ending in

(1—4)(n—6)...4-2 (n—4)(n—86)...3-1
F B (0=5) 53 (A0S Y) or + gl

according as n is even or odd, however, for =4 or 3 the last coeflicients being
taken as unity. Thus, e.g. for n=3, 4, 5 we have

(14.18.1) C;=2V8syr; = 2435 cos™ /v 2s =23 xrcos™(1/V27) (cf. Ex. 1.),
(14.183.2) Cp =85’ (1 — €08 ;) = 27(2s)(2s — 2%/ 3)
= (circumference) (height), i.e. Archimedes’ proper formula?,
(14.18.3) Cs=10v57=s*(cos™*1/2r —4r2—1 /47%), and so on.
Subtracting nC,_, from (13.15), we attain

() o2("55) e
(14.14) Fy_g 1= 2*/P( %1)> [1~ «/771“< %2 _1> S: sm”"sl!/’dxp]

=Fy2,r(1 = H,»(7)) say,
where 4, =sec"Wn—17. E.g. for n=4 and n=>5, we have
(14.15) Fozr= 167281 — (2 — 2/V37)] = 1625*(2/V3 — 1), and
(14.16) Fs,1r=Fs,;(1 — H; (7))

= 10VE 225 [1 ~ %(cos‘l ZLT )/ /472)] .

1) In Archimedes’ proper formula, the height being quite arbitrary between 0 and radius 2s, our
formula seems to be less general. However, our 7=s/% being arbitrary between 1/v'3 and V3,
our height = 25— 2%/173 is also arbitrary between 0 and 2s and thus just equally general as
Archimedes’.
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The volume-element d7;; is obtained by multiplying F,_, ;; by ndzds.
We proceed to treat the subcase

I: V2/(n—2)<7<V3/(n—3). Now that the calottes considered in II
have some common portion, it needs to subtract the overlapping area O;;;
from nC,_,, i.e. to add O,;; into F;;. By its quadrature, a leading principle
may be stated as follows: Since, the simplex S as well as spherical surface K
are compact and convex (cf. section 1 in [1]), if some two curves or surfaces
be both C&=(SNK), and they are closed, then, the space bounded by the 2
boundaries ought to belong to & also. For the sake of clarity, we consider
preliminarily a particular

Ex. 4. Case n=4, III: 1<7<+v3. Here the s-sphere Ks: £+ p?=4s* inter-
sects firstly the subsimplex S;: e.g. 4;4; at 2 points P, Q, which may be under-
stood as a linear circle K; (Fig. 8), secondly S{¥=A4;4,4; along a small circle
K, of radius p;=G,P=G,Q= v4s®—4x?/3 = V85, and thirdly the plane of sym-
metry, an equator A4,4;4;, whose equation is {=m;, where m= —tan a/2=
—1/42 along a great circle PQA4,, where 4, is the middle point of 454, and « is
the angle between G;4;, G14,. Their protruding arcs, one, the small cirele’s
arc PHQ with the central angle 283, where 8= /PG,G, and cos B8=G,G,/V3s =
V2/(3r2—1), and the other, the great circle’s are PEQ together bound a protrud-
ing lunette L, CK;. To find the area of L,, we project it on the hyperplane
¢=0 by which K,s radius p; = V35 remains the same, while the great circle
PQA, becomes an ellipse E,: 7?sec’a/2+n3=4s%, or pi=4s/(1+1/2 cos?d) with
semiaxes 2s and 2sv2/3, where 25> V35 > 25v2/3, because of Y3 >7 >1. The
plane area o’ outside the ellipse but inside the cirele, if projected on K; in-
versely, yields the required area of lunette (Fig. 3a),

& Ellipse
e Po= 25/ os?
’ /T/_..A\<\ Q'o et
, //" circle
Ky~ p1=f3_s’
/3 P,
)
b o

G=GilL P o

n
{
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8 P
=] 2 iy L 1) Ay 1)
Just similarly, the protruding arc over PQ of K,'s intersection with S =
A, 4,4, and are PEQ again bound a congruent lunette of area «, by reason of
symmetry. These portions belong both to the protruding calottes over S{» as
well as S5 and thus there gives rize an overlapping. Hence, if the formula
F;; be applied to case III, we have subtracted too much. To correct this, we
ought to add the whole overlapping O;;; = 2+ x number of sides=12+. This
being added to F ;; in (15), we get rightly

(14.17) Fy 1=
965t [ 5-(~ 25 ~1) +tanty/ T(1- 1) —Lotany/ B 1)),

which agrees with (13.37).

Fig. 4

Now speaking about the general simplex S,_: (»>>5) with a vertex 4,

(Fig. 4), we conceive only 2 first subsimplexes, e.g. the base S;"}z(é‘ =— ]/ n 19‘5)
n— ;

and a side S¥P(¢=+vn(n—1)z—Vn(n—2)»,), which have a common base B,_;=
Sen-1 with the equation 7 =nx/V(n—1) (n—2). Their axes 4,.,G%,, 4,673V
both produced, meet at G4 ’=G,_;. Besides they are both perpendicular to
B,_; and make an angle a=sec ' (n—1) with each other. We say figuratively
the subsimplex S5 comes on S, by a rotation « about the common base
B,_3 as axis, this axis remaining in its initial situation invariablly, what is
evident when n=4, a=sec '3 (Fig. 8). Also, if the base B,_; be projected from
Ay, the middle point of A,4,_,, thus obtained subspace is A¢-B,_s=T,_»CS,.1
and becomes an equator, a space of symmetry with respect to S, and S0
So that its axis 4,G,_; bisects the angle « and accordingly we may imagine the
axis G,-34,., rotates about B,_; first an angle a/2 to coincide with G,_34, and
then still «/2 to come finally on G,_sA4,.
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Under III, the s-sphere K,_, having the radius vns which are between
Gr-s =\2n/(n—2)% and GG,_,=V3n/(n—3)%, it holes a pitfall cavity, which is
edged by a circle K,,_3 on B,_3, and forms there as the lowest part of the pro-
truding calotte, a concave canopy C,L_Z—K,, SN where N denotes the nadir, the
end point of the radius vector GG,_sN=+vns. The s-sphere K,_; intersects the
spaces S2,, S¢5Y and T,., along spheres K%, K%Y and KZ_, respectively,
all of which pass through K,_; and make their respective canopies K,. 3H

Kn sK and K,,_ 3E where H, K, E are the ends of radii G*,G,_sH=G3PG,_ K=
Vnst —nz?/(n—1)=+Vn—1s' and GG,_E=+ns, respectively. It should be noticed
that e.g. although K,_,C&,_o(=K,_.1N\S,_1), the inner or outer pomt P of Kn 2

is also an inner or outer point of K,., and PES,_,. The canopies K,,_ 3H K. 3K
coincides, if one receive a rotation amounting « about the circle K,_; as axis,

TN
the canopy K,_sE being an intermediate position. By reason of symmetry the
TN S
space vyr extending between 2 surfaces K, ;H (x,=0, x,.1<0) and K,_;E is
TN

TN
congruent to vz that extends between K,_;K(x,_1=0, x,<0) and K,_:E. Both
vgr and vgp CC,_s C(K,.1N\S,_1 extended), in consequence of compactness of
K, and S,_; extended toward x,_,<0, x,<0. We are going to find v=2vyz,

N

TN
the volume between two canopies K, _;H, K,_;K, which shall be overlappingly
subtracted if formula F;; be applied, and the whole overlapping is

(14.18) Oirr=v X ,Co=n(n— Dogg,

R TN TN
where vy r denotes the volume bounded between 2 canopies K,_;H and K,_sFE.
So that we have

(14.19) Focorrr="Fu_p,11+ 0111 =Fy_3,;(1 — H(t) + K(7)).

The volume vxr should be computed by integrations about p, 61,---, 0,-3,
TN
as in (13.14). The canopy K,_sH being the intersection of

R, p +(§+‘/

if projected on £=0, it becomes simply

7x> —(—-Ds* and SEif=—y 1,

(14.20) o1 =\n—1¢,

which gives the upper limit of p. The equations to the axis of equator T},
=A-ST%"Y are §=— ,/ L

715 2= ---=n,_2=0, whose first equation may be

2

seen as that of 7,_,, so that the equation to KI_, becomes p?+"—24%=ns?,

ie. g(n—;l)—n%+n§+... +ni_2=ns’, a (n—2)-dimensional ellipsoid, and its pro-

jection on £ =0 is
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(14. 21) po= \/;S //1 - —nf;&cosz O1.--e cos? O,_3.

The space enclosed by (20) and (21) being projected inversely on the sphere
K, 1:5*=ns*—p? we obtain the required measure

(14.22)  vgp= 2"‘3SS...Ssec v-p""2 cos 0, cos?0;...Co8" 40, _sdpdb: . --db, s,

TLSZ — p2

where secy = / 1+< gé‘ >2 = ‘/ ns® ,and 2% denotes the number of
f:

quadrants. For example,

Ex. 5. If n=5, III: v2/3 <s/z< v3/2, we have to compute
8 (3 ' S
(14.28)  wgp= 4S d(pg cos 9d 9 Sp sec v-pidp with secy = 5s/VbsZ—p?,
0 0 Po

73

/55

ellipsoid
. po=fss/fm

sphere

P=25"=[{T5r i q)

7,

Fig. 5

where the limits of integrations are found by Fig. 5 as follows: p;=2¢=
VB(st—x2/4), po=+\55/V1+0.6 cos?p cos?d, h=G,G3=b%/23, cos B=h/25=
V5z/2V3(s* —x2/4) =+5/3(4r* —1) = 1/Y3+" and cos § = hsec p/2s' = cos B sec .
Executing the integrations, we obtain

ey tany (G- 1>(1~§2)d§
5rf Vo 1+ (@r—2)0Y/5r

(14.24) var = 10455 [

(- ).

Fortunately the not-yet completed integral can be expressed finitely as?

1) Y. Watanabe, Zur einigen Integral-Abschitzung, the present volume, p. 49.
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R R A
Hence

(14.26) vyp=bV5xs®(tan 'War: — 1 —tanv15/8 — Vdr? — 1 /47% 4 V15/12+2),

and

(14.27) Or1r = 20vgz = 100V57s° ( " " )-
So that

(14.28) Frir=Fi; + Orr=F; (1 — H(r) + K(7)),
where

(14.29) K(v)=10z"'[tan"Wir2 —1 — tan~'V15/3 —4r? — 1/47% + V15/127%].
E.g. we have for r=2, /=43,
0771 =702.4815s° (tan~'V15 — tan~*415/8 — v15/24) = 172.1107s°.
But, we get after (18.19) and (14.16)
F3, 1 = 10V5 7%® = 220.69115°,

Fs,17 = 220.69115° {1 - %(tan‘lx/ﬁ —Vi5 /16)] = — 157.2635%.

Therefore
F3,11[ = Fg,][ + 0[[[ = 14847683,

which shall be further compensated by the following Ory.
To illustrate the subsequent subcase

IV: V3/(n—3)< s/ =r< &/ (n—1), we examplify by

Ex. 6. Case n=>5,IV: v3/2<r<2, as its generalization can be made with-
out difficulty. Now that GG,=v15/2z<V5s< G4, =2V5% hold, the s-sphere K,:
p?+ &% =5s® intersects the third subsimplex, e.g. $;®* 9= 4,4, (x3=2x,=2x;=0)
at a linear circle K;:PQ (Fig. 6). - There are the following first and second
subsimplexes containing 4,4, as their common side: 1° S= 414,454, (x;=0),
2° S§4) = A1A2A3A5 (964 = 0) and further 3° S§4’5) = AlAzAg (x4=x5=0), 4° S§3’5) =
A1 Az A(x3=25=0), 5° S = 4, 4, As(x3=2x,=0). Their respective equations are
1°¢=—V53/2, 2° t=V525—V38n1), 3° t=—V5z/2, ;=bx/2V8, 4" ¢ = —bz/2,
m=—bx/6V8, 5° t=v5(2x — V341), 5=+ 271, whose first two are 8-dimensi-
onal, while the remaining three 2-dimensional. To save the trouble, we may
conceive again the space of symmetry (equator): 6° 7545 = 4,4, 4,45, where 4,
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denotes the middle point of side 4,45, and whose equation is = — ‘/ %—m.

The intersection of K, with 1°, 2° and 6° are subspheres K{, K$* and K7, all

f5s ellipsoid
Po= ‘/_5—3/4 1+0.6cos’cos? 9

sphere

pr=25=[5(50-14)

Fig. 6a

of which pass through K; and consequently they intersect furthermore with 3°
along a same circle K, that contain K, as its chord and protrude over K;.
Hence, there takes place again some overlapping among the subspheres’ por-
tions as in Ex. 4. Since, however, the overlapping portion produced between
K$ and K7 is congruent to that between K¢ and K7 by reason of symmetry,
we can halve the trouble of caleulations by taking only the first half. First,
the equation to K{®, as intersection of K,:¢24-p?=5s* and 1° S§:¢{=—V5%/2,
yields a sphere

(14.30) p1 = VB( — /Ay = 25,
where %s<23'< V55 because of IV, and which remains the same even when

projected on {=0. Next, by eliminating ¢ between K,:{%+p*=5s> and T;:

L= — / —g—m, we get the equation to their intersection KZ (or its projection
on £=0): p+ -5 p2=5¢, ie. B tap4g3=52 Thus, it yields an ellipsoid
(14.31) po=155/1+0.6 cosp cos®J.

Both of K{” and KT pass through K; which contains the protruding are PMQ,
TN TN

and they form, as in Ex. 5, their respective canopies K.H and KyE. These

canopies are both C&;=(K$ N prolonged Ss), so the space bounded by them

C &, also. But, as in Ex. 4, the portion of &; bounded by two lunettes PQ-MH
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on K{ and PQ-ME on KI yield a reoverlapping volume vz, which can be
computed after the projective principle as

(14.32) ”HE:ZS d¢g cos ﬂdﬂgplsecy-pzdp, where sec y=v5s5/v5s%— 2,
Po

whose limits are found by reference to Fig. 6a to be tan~!8, = hy/h; if h;=
G:G3=5%/2V8, hy;=b%/V6, so that B, =tan W2 =sec W3, B =sec V37 and
§=sec™ (v'V3 cos ¢), as well as p; =25, po=V5s/V1+ 0.6 cos2p cos?y, where
25 = V5(s2—x2/4), v =(4v2—1)/5. Executing the integration, we get

(14.33) vrr =5v5s° ‘/27- J() — tan‘l}/zq- -3

g (,/ 5 -1,/3(27 —8) — 47— 1 tan-! i:i:? )]

where

(14.34) J(m)= S;tan“l V1/8+2(2+2—38) (1 —¢2)/15v2dg /(1 + (27% — 8)£%/3),

which could not be unfortunately expressed as attained in (25) in a finite form,
but, if ~ be given, it may be computed by Gauss’ method of numerical integra-
tion. Since we get still a congruent one bounded by K and K%, and there
are 10 sides and besides we may choose the vertex against a side in 8 ways,
the total re-overlapping area is

(14.35) Ory = 60vgr = F3 ;L(7) say,
which should be subtracted from F;;; to obtain Fry:
(1436) FS,IV - F3,111 - OIV = Fg,l[l - H(T) + K(T) - L(’T):],

where

30 /5;2-3 5 22 —38
(14.37)  L(r)=0sv/Fs ;= 71/ E%J (r) —-_~tan™ l/ Z 3 :

5 tanty/ 3o 8) i T tan-ty/ 23
+ g (f o-tanty/ 22 ) VBT Ttan =3,

When + =2, the s-sphere passes through all vertices, and consequently
F3,1v(2)=0. Hence by (86) we must have

(14.38) 1-H@)+K2)—L2)=0.
But, after (16) and (29) we find readily that

(14.39) H(2)= _i“(tan‘l V15 — ¥15/16) = 1.712594
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and
(14.40) K2)= *1;?— (tan~! V15 — tan‘lx/B/S — Vﬁ/24) = 0.779870.

So that by the above (38) also

(14.41) L@2)=1—-H@)+K®2) =1+ %(tan‘l Vi§— 2tan_1%:5 _ \%)

= 0.067276.

Lastly this value being substituted in (87) for +=2, the uncompleted integral
J(2) can be evaluated as

.7 (7 -1.7E _ —1@ _
(1442)  J@=—5T ( %+ tan~! 15 — tan' Y3 >_0.4196499.

On the otherhand, calculating (84) for =2 by means of Gauss’ five ordinates
method of integration employing Chamber’s Table, we obtain indeed

0.419651,

and thus the percentage error is only 0.002%, which evidences the excellence
of Gauss’ method.

15. Student’s Functions for the special Case n=>5. Now that every vol-
ume element dVy (N=1, I, III, IV) has been obtained, the Student’s functions

may be readily written down. If the parent fr. f. f(x) be such that ]? f(x) =
g»(%, s), the partial joint-probability of z and s would be
(15.1) fn(&, s)dxds = gn(%, $)dVN = gn (%, s) Fn (%, s)ndxds (N=1, IL,...).

Whence we obtain, on replacing s by Student’s ratio :=vn — 1(z—m)/s, where
m is the parent mean,

(15.2)  f(x Odadi = go(% 5= o =1z~ m) /t)FN<5¢, s=h—1G—m)/r)
xmln — 1 |x — m| dzd: /i

We shall detail the concrete shape regarding the special case n=>5. Substitut-
ing Fx obtained in the foregoing section, we have

Ib 0<r=5/2<1/2:

(15.3) f1(®, 1) =800y57%(x — m)* g (&, 1)/1°.
I: 1/2<+<V2/3:
(15.4) J11(®, t) = f1 (&, £) 1 — H(z)),

where H as well as K and L below, as have been seen in section 14, are all
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functions of 7 =s/z = 2(z — m)/x alone.

II: V2/3<+<V3/2:

(15.5) frr:1 @ ©) = f1(&, ) 1 — H(r) + K(7)).
IV: V8/2<+<2:
(15.6) frv(@ 8) = f1(%, ©) (1 — H(z) + K(r) — L(7)).

Hence, the partial Student fr. f. is obtained by integrating these fv(z, 2)
about %:

15.7) sx () = S G, D)d.

It remains to determine the limits of integrations for several subintervals.
Because of v=2(%—m)/z, the four subcases are denoted in terms of ¢ as
I: 0=2x—m=xt/4, II: ®/4=Z%—m=x/V6,

15.8 — - _
(158) {III: #/N6=% —m=x/V8/3, IV: m/V8/3=x—m=w,

where the double inequality signs must be taken all upper or all lower accord-
ing as t==0. Further, if we put

m

m m m
(15.9) M= x2=1—_m: x3=m’ x4=m,

their magnitudes are in order as follows:
1°if — o0 <3 <0, 0 < <y < 203 << g <
2°if 0 << 1, m <%y < w3 < 22 < 23 < 00}
8% if 1 <2< V8/8, m<m<w<ap<oo with x<O0;
LI V8/3<i<Vb, m<m<xs<oo With s, 2 <0;
5°if V6 << 4, m<uxy< oo with =, x5, %1 <0;
6" if 4 << oo, m< oo withall x’s<0.

Therefore, the inequalities (8) hold by adopting those non-negative xi, %, s,
x4 as permissible limits of integrations:

(1510) I:mZEZ:XM, IIZx;;Z.’Esz, IIIZx;;ZﬁZxZ, IVZO@ZEZ.’M,

where the double signs are to be taken all upper or all lower according as
t=0. However, it must be noticed that for certain ¢ >0 if the left side be-
comes positive, yet the right side occurs to be negative, the latter should be
replaced by <o, and if both sides become negative, that interval shall natural-
ly be abandoned. Hence, only the following integrals are permissible sum-



The Student’s Distribution 25
mands in each zinterval:

1° — o0 <t <C0: frd% +

x2

fridx + S an[diC + S“fjvdf)_&;
J

2°0<t<11: f[[dx + f[[[d.’)_c + Sx‘fn/d&?;

x3

4° V8/8 <1< V6: frid% +

|+
J.

8° 1< < V8/8: S frdx -+ S frrdx + S frrdz + S:Zfzvdﬂ?;
S S S frirdx;
|

5° V6 <1< 4: - f1d% + g fr1d%,
6°4<¢< oo: Swf,dx only.

But, since, if we abbreviate f;(z, ¢) of (3) by f(&, ©),
fi=f fu=f—fH fiu=f-fH+fK, fiv=Ff~-fH+K=fL
we get the full Student fr. f. s(¢) on summing up the alike integrals:
1° — o0 <t <0:
(15.11) s() = V‘ £, Oz — S FG, O H(@)dz + S F&, HK () dz — S £ DL d.

And whence the Student d. f. is given by

S(t0) = S:s(z)dt,, S(0) = S_is(t)dt.
2°0 << 1:
(15.12) 5(¢) = Sm FE, 0z — S £, O Hx)d7 + S Fx, K ()i — S £, ) L(z)dx.
And S(to) = S(0) + S:Ds(t)dz.
8° 1< < V8/3=1.6330:
(15.13) s(t) = S; G, Odz — S‘” F DH )R+ S” F& DK () dx — r £ DL dx.
So)=S1) + Sios(t)dt'

4° V8/8 < r < V6 =2.4495:
15.14)  s()= S; £ Oz — S” f@ )@+ | £ K@z,

S(t0) = S(VB/3) + S s

v'8l3
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5° V6 <1< 4:
(15.15) () = S” £, 05— S“ £z, O H(z)dx.
$@) =S8 + | s@a
6°4<t<< o0
(15.16) s(@0) = S“ £, 0dz,

St = s<4)+g s@dt. O, else, S(to)z——l—rs(z)dt.

If we take generally the conjugate d. f. S(z,)= Sms(t)dt, we have S(t)=1—35).
to

Here, for the sake of later reference, the correction-factors are recapitu-
lated:

(15.17) H(r)= —g—[sec-lz-r — ‘MZ - ]
5 _ Xt x|t V16(x—m)? —x?? -
=7["°S Aa—my 16(x—m)? ]

where 16 (x—m)* > x%* because of ~ >1/2, and
H(1/2)=0, H(2)=1.71259.

(15.18) K@) = 10 [sec‘12T - \/42 2_ 1/;52 — tan '1‘/ 5
5V15 n- 5
= 2H() + gty 11/

and
K(2/3)=0, K(2)=0.77987.

J() — %tan‘l‘/

30 /2;2-83
3

S
(15.19) Le)=—-3 2r . 8

5 .. .1/3 1/ 223
+ 27127'2 (,/ g~ tan 1/ (272 —38) —V4r? —1tan! 4:2—T,>’
where
tan~WI1/3+2(2r2 —3) (1 —¢2)/15+2
(15.20) =\ o 3
and

L(V8/2)=0, L(2)=0.06728.
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Furthermore the derivatives of these correction-factors are

42 1 2.2 1B (v — )2 — 272
15,21 H()— BVATT —1  BaWNI6(x—m) —wt , H’(1>=0.

2t 16|x—m|? 2
(15.22) K'(r)=2H (r) - 5@?:211’—%)7, x(y %)=0-
(15.23) L’(T)_u / 57— <4TZJ(T)—7r)
ey sl ey e o)

where 472J(r) — = tends to zero as T—+v3/2, so that divisible by ~—+3/2 and
still L'(v3/2) = 0 also.
But, what really wanted afterward, is Sz/_ w*L'(7)dr. This integrated by

3/2
parts, yields

(15.24) S 4L'(T)dT-T4L(T)| -4SZ

‘372

3/2

2L(D)dr

=16L(2) — ﬂ\/_gﬁg -

EQ 2 3 -1 2sz 10\/E 2 1 }/3 2
+ - S/_T tan ]/ 3 dr — = S‘/mtan g(27' —3)dr

22— 3] () dr

= (0) — (i) + (ii) — (iii) + (iv).

The integral (i) being really a double integral, it can be evaluated by apply-
ing Gauss’ method of numerical integrations iteratively, while all others are
immediately found by integrations by parts. We get thus

(15.25) Sz AL (D)dr =1.0765 — 17.7331 + 16.0258 — 4.0169 -+ 5.2463
v'3/2
= 0.5986.

Hence, we have also by (24)

(15.26) SZ/T PL(r)dr = 0.1195.
v'3/2
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16. The Truncated Laplace Distribution as Universe, Case n=5. When
the function ]? f(x:)=g(, s) does not contain s, the problem reduces to a some-
1

what simpler one. This is the case e.g. if the universe is a truncated Laplace
distribution

(16.1) f@=e" (0<x< oo).

We would discuss below this one to examplify concretely the foregoing in-

vestigation. An apparently more general case f(x)=ae " (a, b >0, x>c¢) can

be written as f(x)=ae e ?*~9=4'e""*, where o' >0, «’ =x—c>0; or, because

of 1= ra’e‘b"’dx’ =d'/b, it reduces to f(x")=be " (' >0), which becomes (1)
0

by putting bx' = x. Hence, without loss of generality we may treat (1). Here

the parent mean m=1 and g(x, s)=e""*. We obtain by (15.3)
(16.2) fi@® t)=c@—1)%"/5, where c=800V5~ = 17655.8.

After (15.4)-, the remaining f;;, fi17, fiv are obtained by the above f; multi-
plied by the correction-factors 1 —H, 1 —~ H+ K, 1—H + K—L, respectively.
Hence the Student partial fr. f. is given by (15.7)

(16.3)  sy() = #S (x — 1)%5 x (the corresponding correction-factor) dz,

N=1,II, 11, IV.

For the sake of later convenience, let us put

16.4) G(x)= S” (s — 1) e — L(x 1) = LG () dw

= — e [0.2(x — 1)* + 0.16 (x — 1)°
+ 0.096 (x — 1)? -+ 0.0384 (x — 1) -+ 0.00768]
= — " [0.10528 — 0.4736x + 0.816x% — 0.64x° -+ 0.2x*.

So that
(16.5) G (x)=(x— 1% >0,
(16.6) G (%)= — (Bx—9) (x — 1)%e~*=0.

The function G(x) is negative and monotonic increasing throught the interval
0<x< oo (the Table below and Fig. 7), its absolute value being small. Also,

(16.7) GP1)=0, v=1,2,34, but ¢®1)= — 24¢75.
Consequently G(x) osculates strongly its tangent at x=1, and we have

(16.8) G(x) =G(1) + 0.0013476 (x — 1)° + O((x — 1)),
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Yy
« G(x) ¢ (%) l
G'(0)=1
0 —0.10528 1
0.1 —0. 00537 0.3979 ,
¥=G{x)
1 —0.0¢517474 0 (min)
0.0°1}
1.5 —0.0¢462 0. 04346 /\
1.8 ~0.04325 0. 04505 (max) 0 1/ 1.8 2
2 ~0.0¢228 0. 04454 :
3 —0.04015 0.0:043
4 —0. 04004 0.0¢017
4.5 —0. 040001 0. 0 0004
-0 0
o + G(0)=—0.105
Fig. 7

while, if x itself be small enough, (4) yields

(16.9) G(x)=6(0) + x — 4.5x° + 12.83x° — 26.2083x* + 41.0754° + O (°).

In fact, G(z) being an entire transcendental function, it behaves regular in
the whole z-plane, and its Taylor expansion at any finite point has the radius
of convergence= oo, so that the above O are really iav (x—1) and ébvx”, res-
pectively. With this G(«x), we can rewrite ° °

(16.10) s1(t) = TI——S G ()ds
and s;z, s;r1, s;v are obtained by multiplying the above integrand by (1 — H),

(1—-H+K), 1—H+K—L), respectively.
Now according to (15.11)-, we can write down the full s@) as follows:

1° — oo << 0:
(16.11)  s@)= M - [S Cdx— S '"C'Hdx + S“G’de - S“G’de];
2°0< <11
(16.12) s(t) = % [leg,dx _ lec/de n leGlex _ leG/de] ,
1 x4 %3 x2
1< «/87??: 1.6330:
(16.13)  s()=—% [SwG’dx ~ S” G'Hdx + r G'Kdn — Sw G’de] :
1 x4 %3 %2
4° V8/3 <1< V6 =24495:
(16.14) ()= —t%[rc'dx - S” G Hd + r ¢'Kix|;
1 x4 %3



30 Yoshikatsu WaTANABE

5° V6 <t< 4:
(16.15) s =5 [S”G’dx . g” ¢/ Hasx);
1 x4
Lastly, for 6° 4 << o
- ¢
(16.16) ()= %Sl Gdx= 5 [6(e) 6] = — LD _ o

where ¢; = — ¢G (1) = 0.91361.
Consequently the d. f. from right in 6° immediately can be obtained as

(16. 17) S(to) — = S(t)dt =c Sw ig_ — 614 _ 0224840 .
‘o fo ¢ 47t0 to

And particularly
(16.18) S(4) = 0.00089.

Thus, ¢=4 lies above even the upper 1 percentage critical point.

We shall below detail about the first subinterval more minutely. Whereby
the correction factors H, K and especially L come intricate. There are two
ways in their employment: One is to express them by z and z on substituting
T=s5/%=2(®%— 1)/x in them. Otherwise, retaining + as it stands and rather
to denote ¢(or %) in T and the remaining z (or ¢). The former appears obvious
to look over and may be applied for H, K, although it is troublesome to do so
for L, for which the latter method is convenient.

1° — oo << 0: Integrating (11) by parts, we obtain

(16.19) s() = ﬁ [G(1> G () — G H()

" S“Hl (v, £)da

+ G(x) K(7)

" S“Kl (x, ) d — G(x) L(7)

Xz xz
+ S Ly(x, £) dx] "
x1 X1

where, in view of (15.21) and (15.22),

5:G(x)

H =26 H (n)/«'t=g T 75

V16(x—1)2—x22% (>0, since :G(x)>0),

5v15:2G (x)

(16.20) Ky =26 K'(r)/2*t=2H — —jg_ 435~

. G(x)
(the last term <0, since =17 >0>,

Li=26@)L ()/~% (cf. (15.23)).

From r=2(x—1)/x, e.g. for x,=1/(1—1¢/4) yields r=1/2, and similarly xs, ., %,

correspond to r=v2/3,v3/2, 2. Now that H(1/2)=K(~2/3) = L(3/2) =0 and
1-H®2)+K(2)—~L(2)=0, all the integrated parts in (19) reduce to naught and
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we have

x x

(16.21) SO =5+ [y [S“Hldx— S

x1 x

‘Kydu+ S ledx]

= 50(t) + 51(®) + 52(2) + 53(2),

whose complete integrations to an explicit finite form however seem of less
hope. Rather we conceive the d. f.

(16.22) (o) = S“ st = ﬁg” s ()t =338, o),
—o0 0 -0 0

in which

(16.23) So(t) = — c1/4¢8 = — 0.22840 /14,

As to the remaining, first consider

where and below x10=1/(1—1), x0=1/(1—1,/4), &e. Interchanging the order
of integrations (Fig. 8) and making use of the formula

Va? —b%2ds _ Va? —b%2
i4 - 3(12t3 ’

a) ©y=1/(1—t) ort=1~1/x
b) =1/(1—1/f3) or t=/3(1—1/x)
c) 1'3=1/(1—t/f-6) or t= /6 (1—1/x)

d) x,=1/(1—t/4) or t=4(1—1/x) /

é”’”_—/ .
. Lo

-4 to -1 0 1 Jerz [e 4
Fig. 8
we obtain
(=0 G(x)dx V16(x—1)2 — x%2% q1-1ix Sm to
(16.24) S:(e0) = cz SO (x—1)5[ —* ]4(1—1Ix) + %10 L ]4<1—1/x>

=81+ 5.2 say, where  ¢;=5¢/3847»="73.1751b.

The inner integrands vanish when the lower limit : =4(1 —1/x) is substituted
and consequently
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X1o 3 —
(16.24.1) Sii=a| —G(—fcile‘)if, where  cy = 15VIBc, = 4251.1.
0

Next, in S;. ; replacing x by x=1/(1—0s), we get

o 1\ v16g? —1°
(16.24.2) Sl.Z_‘ t‘é 81/4[_G<1—0t0> 0° ]dg‘

Secondly, observing that S.(z,) is obtainable similarly as in S;, but now
non-vanishing at inner limits:

Z1p — 2 242 -1/x x10 3
(16.25.1) sz_1=~2czg G(x) [16(96 _123 &'t ]1 u e S Gl

o (@—By =) -1y

v6(1-1/%)

where ¢, = 2¢;(15V15 — 5vV15/9) = 8187.8, and

S R LV A )
(16.25.2) Sp.0= ¢ Slh/gG(l_gto)(\/166'2~1 79 )95 )

But there is still the additional part:

[ G(a)xdx mo xG(x) 71 _L
16.253) $es=ar) "CENE +el T I [ - st ]

where c; = 25V15¢/1447=38778.75 and cs = 5v1bc/24n =6c;/5=4534.5. The last
half yields, when x is replaced by x =1/(1 — 8z),

_ e [ 1 oy1. 1
Su00= 4|12 ) (o a0 )40

which may be combined with S, , together.
Thirdly

o dt S G 11 ()

(16.26) S3(z0) = — 265 5 e

e 10
X1p 1-1/x x20 il
= —2cS MS ' L’(T)*%lgt— - 205 " St ”

0 % v8/3(1~-1/x x10 V8I3(1- 1/

X1

Or, on transforming the inner integration-variable ¢ into +=2(x—1)/xt, i.e.
1=2(x—1)/xr, dt= —2(x—1)dr/x7%, the first half becomes

S c Sm G(x)x*dx Sz

515 ¢ /*T4LI (r)dr

0 (x"l)s v3/2

whose inner integral reduces to the constant 0.5986 by (15.25). Hence on put-
ting ¢;=0.5986¢/16 =660.5, we have

-0 Gx)x®

(16.26.1) Ss1=¢ So (x—1)

dx.
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Similarly

L (D) dr,

3/2

C xz20 G X)X 2(x=Dlxto
T AN

which yields if the order of integrations once more interchanged (Fig. 9)

|

1

i “‘ hyperbola

E Yy T V(l—tr/2)
| or r=(1-%)
|

|

(10<0,2<1,2> 0)

=1/(1~1o//§73)
x=1/(1—1t,)

T=2/1,< 0

(=

J3/2 2
Fig. 9

KL= 20712) G(x)a’dx
1/(1-¢o) (x—1)° -

So that if the inner integration-variable x be transformed into @ as before by
x=1/(1—0t), we get

c (2 ,
Sg' 9 = T6 SVsl—Z’TIIL (’T)d'TS

c [2 1 do
(16.26.2) S5.2= — 164" S,T,TL (T>dT\ G< —t@) 05

We are going to obtain the asymptotic forms for several expressions as
10220, or 1/t 220, which shall be denoted by starring them once or twice, res-
pectively. Thus, we find after (8)

(16.27) G*(1/(1 = 06)=G() + 0();
or, after (9)

-1 1 5.5 22.83 79.2083 1
sk ~ — — — — —_—
(16.28) ¢ ( 1—6z >= ¢(0) 10 (t.0)* (#:.0)° (o0)* < £ )

And consequently we have

S5 = — "]—.96‘ [ Gt(41) +0( 0)] S L (T)dT[ ‘;941 ]11'/2

~ €1 2 _]:__ 4‘ ’
=~ o Sv'm@_ )L @,

which being integrated by parts, the integrated parts do vanish because of
(4—7*/4),_,=0 and L(v3/2)=0. Hence

2
S;kz: 16t4 S/ngL(’T)d’T,
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whose integral was evaluated as 0.1195 at (15.26), so that
(16.29) S%,220.00682/t4.

But, we obtain similarly
= e 2 G(O)T 4o, 8y, W, 32

So that to know the coefficients of 5%, z;°,..., we ought still further evaluate

2
the integrals S _ L(ndr/7, (v=2,8,...), e.g. by iterative employment of Gauss’
V32

method, which are never so easy going. No doubt the matter will go smooth-
ly, if we could expand L(r) by Laurent series. Actually the author tried to
do so by taking powers up to the sixth, yet the results were unpleasing. Pro-
bably we ought to take terms up to ~'? at least, but desirably to ~—** or more,
which needs extraordinary labours and is put off for a future work. Presently
we shall neglect all powers of ;! with indices >>5, as 1;1=0. Thus treating

(16.30) sy~ — 0 SZ_T3L(T)dT;13.88/zg.
16t5 )z

On picking up similar terms from the foregoing, we attain for —co<{7,<0

0.22840 Sﬂ“o(;(x)ac3 c2 Sl < 1 )\/1662—13 10

(16.31) ()=~ 8), Go— 1P~ 4t 1—0z, 6s

+2CZS1N€G(1_1&0)[‘/169;5 r_ 55;/31?’ ——8\/1—5( = 625 )]d0+832

1/4

= (0) + (i) + (ii) + (iii) + (iv), where cg=c3—c4+c5-+¢c;=503.1.

We shall estimate these terms for £, >0 as well as 1/£7=20, in the latter case
taking powers of z;' up to 4, as a rongh approximation.

First, to compute (i), replacing x by y=1—x, yo=—1, y1 =12,/(1 — 1), we
obtain easily by integration by parts
3 1

S+ | (= M)

1/(1-¢to x dx
S 2y

1
G =gy =—CA+n[+
" el 1ty (=N, s,
The integrated parts become

(16.32) M= 560+ 5 (1- 2 )6(2),

th —to
so that availing (27) or (28), we find
M*220.02631 + 0.00001 /15,
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G(0) 1

M~ S8 __( 1 5.5 22.83 79.2083 \

to t2 + £ i ;

Since G'(1+y)=y* exp [ —5(1+y)] after (5), the not-yet integrated parts
yvield by further integrations by parts

(16.33) N(2p)=0.0244 — exp[ — 5(1 + y)1[0.2y} + 0.42y? + 0.368y, + 0.1236],
where e~*1y; ~0(1). So that
N*2~ —0.02523,

N **;%—(the same as the bracketed expression in M**).

Hence, on multiplying M*+N* as well as M** + N** by ¢;=>508.1, we get
(1)y* = 0.5432 + 0.00650/1¢, (i)**=13.24/1¢.

Next, making use of (27) and (28) for the factors in (ii), (iii) we heve the
resulting integrals

1v6

(16.34) Sl V1667 = 1d6/6° — 88.7776, E n =67.0914.
1i/4
So that
(i)* = — 88.777c,C(1)/t = 0.33616/2, (ii)** =~ — 88.777c,G(0)/st == 683.93 s,
Further

oy 203 (1 1 V1662 —1° = 7V15  8Y15
(lu)ﬁfglwa <1—9t0>[ o° + 6 & ]d@
in which again availing (27) or (28) and integrating, we find

:i%zngﬂ X <G(1) or G(O)).

Hence
(iii)*=~ —0.12109/z5, ({ii)** = — 246.36/z2.
We have already seen that in (29), (30)
(iv)*=20.00682/:5, (iv)**~=13.88/:,
and by (23)
(0)* = (0)** = — 0.22840/¢.
Summing up all these, we obtain for — co <1, <0

(16.35)  S* =0.5423 + 0.34948 /74 — 0.34949 /74 = 0.5423 — 0.00001 /2%,
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Here the second term deviates from the true value zero in consequence of
calculations rounded at the fifth decimal place. Thus we see that

S(0) = 0.5423

and the median lying in the negative side, the distribution is skew.
On the other hand

(16.36) S** ~464.46/t5 roughly.

This being equated to a/2 = 0.05, 0.025, 0.005, we obtain roughly as the first
approximation for the lower critieal point with significant level «

(16.387) ty=— "W464.5x2/a = —*929 /a,
and thus
(16.38) fo.1 = — 9290 = — 9.8,

f0.05 = — /18580 = — 11.7,
fo.01 = — 92900 = — 17.05,

respectively. However, these are only crude results, because the correspond-
ing lower critical points for »n =4 were after [III], —7.99, —10.91, — 19.15,
than which the present values must naturally be smaller in absolute value.
To proceed more correctly, we shall still calculate coefficients of #;°, 3¢, %7,
&ec. to exactify S** and solve the equation S**=a/2 by Horner. The computa-
tion by means of series perhaps an appropriate method, as before mentioned,
and the author expects to perform it in some future. The present note shall
be ended with a few touching on the other subintervals and the upper critical
points.
To get a foothold, if in the fr. f. the first term only be taken

(16.39) s@ =~ and then, S() = "—d5i= L 0'24284 .
t 4 1 4z} 7

This being equated to oc/2(a =0.01, 0.05, 0.1), we obtain
to = *0.4568 /.
Hence, we have approximately
(16.40) 1501 =2.60, 1905 =1.74, 1,,=146, for the present size n=>.
These compared with those eritical values obtained in [II7], [1I1]:

£0.01 = 310, to.05 = 183, fo.1 = 132, for n= 4,
491, 2.19, 1.55, for n=3,
27.07, 5.41, 271, for n=2,
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the present values seem not to be unplausible in outline, except the 10% point
is probably overestimated. They should be exactified by taking into considera-
tion the remaining terms further more.

We have seen for the end interval 6° 4 < ;< o

the area under s(;) = P; —S(4) — S”s(z)dz —0.00089.
4

In the neighbouring interval 5° v6 < : < 4, we have to compute, for z,=v6 to
get P; and for ;, = 2.6 to check (40),

a = 4 C1 4 dt (=
(16.41) S(zo)=S(4)+St @ dr=—% -{—cS T:S“S H, (x, ) d

1o *

after (15). The double integral, when the order of integrations interchanged
(Fig. 10) and treated as before, yields

x

1 J”4=1—lt/4
xw—:l—_m or |
/ t=4(1—%)
1
//
s(t)
—F[ P | P || P B
0 1 Js73 J5 to 4

Fig. 10

= Gx)dx [ V16(x—1)%—x%2® y4a-1/0
(16.42) ngm (x—1)° [ > ]h

:nglltuc_,( 1 )«/166‘2—13

_ G
i—a, G df= 2 U(t,) say,

1/4

which may be also written by putting 6z, = @ as

K23 _(t 1 16p* (’dp_
(16.42.1) 2 UG _CZSMG( - ) S i
Let us calculate the definite integral of the form with finite limits of in-
tegrations
b
(16.43) Fa = f@,
where t,, a parameter, but presently assumed as a known constant, may be

contained in f(¢) or in the constants @, b also. For this purpose we have only
after Gauss’ method of numerical integration by means of 5 selected ordinates,
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simply to evaluate the expression
5
(16.44) B —a)>14,f(¢E) with &= %(b +a) + —é— b—a)a,,
v=1

where 4,, «, are Gaussian constants

o= — 09061798 = — a5, (A;=0.1184634 = A4;,
(16.45) oy = — 0.5384693 = — oy, <4, =0.2398143 = A,,
a3 =0, A3=0.2844444.
In this way it is found for (42)

UW6)=—0.0°1877 and U(2:6)= — 0.0°383.
So that

S(¥6) = 0.22840,/36 — 0.0°1877¢,/36 = 0.00634,
and accordingly the area under s(¢) between ;=6 and ;=4 is given by
(16.46) Ps =S(6) —S(4) = 0.00545.

Also
5(2.6) = 0.22840/2.6* — 0.0°383¢,/2.6* = 0.004997.

Hence, the forecasted value for ¢, o; can be said to be just correct. For, when
we interpolate such value as S(z,) = 0.005 from the above obtained two values

S(¥6) and 5(2.6) by law of P. P., we find ¢ o, =2.600 almost exactly.
Next, for the interval 4° v8/3 <: < V6, we have in view of (14)

Kldx,

(16.47) S(to) —S(\/é) _ S‘:/s_s(t)dt: 4023 + CS-/(T dt S«.

¥ Hldx——cg’s d S”
to

5
x4 to 1 %3

=(0) + (i) + (iD),
which becomes, when the order of integrations interchanged (Fig. 11) and in-

x r=1/(1-t/[s or
J = t= e (1—1/2)

X3

*5=2.580 /
X0 /
L~

A

0 1 Jainte Je 4
Fig. 11

1=1/(1—t/4)
or

t=4(1—1/%)
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tegrated about ¢,

%43 —~1)2 — 2423 —1/x oo =
(i)=CZS G(x)dx [\/16(90 1)2 —x% ]40 ll)‘i‘czg ”{”]Ve

x40 (x_l)S —ta to ta
where x;=1/(1 — v3/8) = 2.5798 and

. = Gx)d V16(x—1)% — 22123 Qa(x—1)2 1vsa-1m
Giy=2e | -0 [T - T

Or, if x be transformed into ¢ by x=1/(1—8z) or into ¢ by x=1/1—¢),
they become

3

to

o cg (Ut 1 V1662 —1° e (1 1 /8 2_4dp
(16.48) ()= £ 81,4G<1—050) 6° dé t4 Smc( 1—q9> 37 1 P°

= ;%gw(to) )

whose second integral reduces to a constant, as well as

1/to / 1602 — 13
(16.49) (D)= 55 &Lﬁ(ﬁ) (246 - s 160" ~1 )‘f)_‘j = o V)
These integrals U, Uy, ¥V are again to be computed after Gauss’ method (44)
for ¢ =v8/3 to obtain the area P, and for z,=1.7 to check the forecasted value
of 1,05, respectively. Hence there are needed 3 x 2=6 calculations, which how-
ever are left as students’ exercise.
Finally, for the interval 3° 1<:<+8/3, we have in view of (13)

(16.50) S(to) — S(VB/3) = S:/ms(t)dt

o

v'8/3 dt oo = £
= yry + cg ’ 3*—[Smﬂldx- stlﬁdx—l— gledx]

= (0) + (1) + (ii) + (iii).
We interchange the order of double integrations (Fig. 12). As to (i) and (ii)

x z=1/(1—t//8/3 )
1{ or t=,,/¥ (1—%)
il fr=1(1~¢t/[%)
Ta ort=/%(1—1/2)
x32= 3
16?(; x=!1/(1—t/4)
R =4(1—1/2)
1%
!

0 1t/8/3 /e 4
Fig. 12



40 Yoshikatsu Waranase

almost similar as in (48) and (49), we get

1/t A
oo 0 ol o oy )

o J1ivE
C2
=71 [UGo) — U,
where U,=const., as well as

2/3%0 1 _l_ 1692 —13 jﬂ
(16.52) (iD= g Sl,y/gc<_1~9to>[892 g —15y/ 160 17

o (Ut /1 , _ N
8’fo S2/3t06<1—5t0 )[89 \/15('\/169 —13 +460 1 )] 05
=g () + Valeo)].

These four integrals U, U;, V1, V; should be integrated also by Gauss’ method
for & =1 or i, = 1.2, respectively, in order to obtain P; or to correct the fore-
shown values of #. 1, which 8 computations, however, are again left to stu-
dents’ exercises.

But, there remains still the third part, which, when written in the origi-
nal form (13) is

v8is dt
5
to 2

(i) = — cS S:;G’de - cg 5 (5 — 1) du

Here ¢ transformed into + by ¢t =2(x—1)/xr, dt = —2(x—1)dr/x+*, and x into &
by x=1/(1—§), yields

Sr §73C1-1/%

L(T)dz/?.

(16.53) (iii) — "IC_GSM 5 4de | SLmdr

v'3/2

-~ {5 |, f©|" sremar,

where

(16.54) f(5)=exp< 1—__55 )'(1_}&)6: and 50:‘/%%, T1='2%=%Oé.

Further, if the inner integration-variable + be transformed into » by = =9
and r2=4£"/t3=y,, the last inner integral becomes after (15.19)

MS &@an 16, Dat =2 |7 yenan

ST; L) dr =

3/2

where
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g(m)=nv2y—3,
ror o =tan™y/ Lt 8 agy /(1+(F0-1))
4 () = 2ntan=/ 2_77_? - \/ﬁtan‘ll/ 22-3)

+-3V4;—1 tan™? ‘/

(16.55)

n—3
dy—1

Thus, we obtain
eee 1 J1 1 1 y1
(16.56) GiiD) = — o || f@]" g nr, 05 4|, @2 wnan
= —cg W3+ c10 W2,

where ¢, = 5v8¢/167% = 96.825 and c¢;, = 5c/647°=13.975. Hence, to integrate
(56) for z,=1 and ¢, =1.2, we must iterate Gauss’ method thrice or twice.

The triple integral in (56) can be computed by iteration of (44) as

(16.57) Ws=(1—£) 2 AAEL/13 — 3/2) (&) z Ag(m) 2 RIC W)

where

[a — A+ + 5 A —Eay,
(16.58) D= (2E3/2 + 8/4) + (284/12 — 3/D)
Exnpy = %—(1 +a,),

where «,, «,, a, and 4,, 4,, 4, are those Gaussian constants in (45). Thus, to
integrate the triple integral by iterated Gauss’ method, with » abscissas, we
must compute 5° = 125 ordinates, if » =5, or 1000 ordinates if » =10, which
requires a pretty labourious work. This method applied, we obtain for z, =1,
W3 = 0.0°2383449642 and for £, = 1.2, W5=0.0%5292247". The function Ws(%)
does indeed vanish for z,=v8/3 (=1.6330), since then the lower limit £—=13,/8t,
tends to unity. Moreover, its left-sided derivatives of every order vanishing

at 1,=v8/3—0, the curve osculates the z-axis very strongly there. Hence, we
may interpolate Ws(z,) e.g. by

¥ =[4+8 /(8 —s)]exo[ -1 /(5 —)]

and obtain 4 = 0.0"1641715, B = —0.0*2012370 on availing the above data.

1) About these calculations, the author is indebted to Messrs. Members in the Institute of Industrial
Science, Tokyo University, for the achievement accomplished by electronic calculator.
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Also the double integral in (56) will be similarly obtained by
5 5
(16.59) Wy=(1— Eo)é A (4E3/88 — 3/2) f(ED = Al (a)-

However, as the inner integrand +(») can be integrated finitely, we shall be
able to evaluate W, by a single Gaussian process as in (44). In fact

- - g —a_ A7 /5. /3
(16.60) | y(a)dn = my? tan 2y, =5 — Y 2 tanty/ 22 -3

3/

+ _;_\/4%—:—1%%_1 Zzi:i _ %[n(yl +8) + 18y, — 35]¥2y, — 3
= gT(E: tO)
because of y; = 4£%/:3. So that
_ 1 —'5 w(é: tO)
(1661) W,= S{:o:v/m“exp( 1—¢ > (1___5)6 dét.

Students would have the exercise to compute W, in two ways (59), (61) and
compare the results.
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A THEOREM ON STEP FUNCTION
By

Pawan Kumar KamTHAN

(Received September 30, 1962)

1. In this paper we prove a theorem on step function and apply it to prove
certain results in the theory of entire functions represented by Dirichlet
series.

2. Let us define two sequences {«,} and {83,} satisfying the following con-
ditions:

1) O=a<a;<az<...<ap,—>oo with n.
(i) lim(a, — az-1) =h > 0.

700

i)

{i) Tm

g0 ”n

=D < oo, Dh<1.
and
(iv) 0B <B:< .- < By~ withn.

Suppose now that f(x) is a step function having 3, as jump points. Fur-
ther, let (a0, — @,_1) be the jump at the point B,(n=1, 2, 3,...), so that define
f(x) as
f(x) =x>25 (= Clyy) wevereieii )

We prove:

TrroreMm: Let f(x) be a step function defined by (1) and let
o= o

Hﬁk’—ga{@= B 0<B<eo, 0<U< o,

Then

1(f)=1lim Zf(f) <1-%. ........................ @)

Proor: We have

@(x) :ngx(an - an—-l) (x s Bn)
= xf(x) —"nglen ((xn - an—l)
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Further
log f(x) iy los log a,, —3B

5o e B

so that
logna,, <B+ e,
for all n>n,, and hence
log «,
nZ\x(an — 1) Bn 3\% >(7?§n Oy 1)(BT)“

Let N be the largest integer such that 8,<(x, then we get

33— ) > e {ew log cty + 0}

Bp<%

— o U@ log fG)) + 0{fG},

and therefore

@ (%) <xf(x) — B—ig‘f(x) log f(x) + O {f(®)}, ---vevvnnnee 3)

and so

1 . log flx) A4
Ip<l-prelim——=1-%r¢"

and since € is arbitrary, we get (2).
Cororrary (i) Let r(x) be integrable in any interval (1, X). (ii) 4r(x)~ f(x),
where f(x) is a step function as defined tn the theorem, then

tim( "y o) / _
tim( |y @) fey <1
For let

Y (x) = f(x) + 0(x).
Then 0(x) is integrable in any interval (1, X) and obviously

0(x) =0 {f(x)},

and so

S:«p(t)dt—_— g:f(t)dt + o {xfr ()}
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But from (i), we also have

3

X

D)

therefore

. S:«;r(t)dt A
e <17
3. Applications: Let
f(S) = i ae™ (s=o i)
x=1

be an entire function repredented by Dirichlet series of order (R) p and lower

order \ (0 < p < o) and let u(s) and A, be respectively its maximum term
and the rank of the maximum term. Then, since [1]

E log 7\4,(,,-) e
lim —=2) — -

e o
and

log (o) = A4; + Sl)»y(z) di,

we have from the above theorem (f(x)=2,())

+— log u(o) A
Im—=——<{1——. 4
o o0 O—>\w(o-) oS p ( )
Also from (8) we have
1’1—?33. 7\1,(0-) 10g‘ )\q,(o-) <11}B 10g 7\,\,(@) - p+‘ € A P oo (5)

since € is arbitrary. The results (4) and (56) have also been obtained by R.
P. Srivastav [2] by a different method.

4. In this article we below give an example to show that (2) is the best pos-
sible result. We also show that for one value of « the equality sign in (2)
holds and for the other value of « the inequality sign in (2) holds. It is also
shown here that when 4= B= oo, I(f) may have any assigned value a such
that 0 <{a <1.

If 0 < 4= B < oo, it follows from (2) that I(f)=0. We give an example
to demonstrate that the converse, viz., may be zero but 4+B, is not necessa-
rily true.

(a) Let 0<A<B< oo, 1<a<<B/A and let*

* In what follows, we suppose that {x,} is a sequence of positive numbers increasing sufficiently
rapidly.
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(e  when x € I (%, <x < )
flx, o) = f(x) = {[e?"ef~D™]  when x € I(ax, < x < &™)
[8Bx] when x € I3 (e"” <.’X7 < xn+1)

Then
mloif_(xl —B; 1imm — A
x>0 X oy X
Further for x in I;
pl) _ 7w —m) + 0™ o w
xf(x) xeBn x '

Hence for x in I

1(f, ) <1 ==+ o(1)

I(f, axg) =1 — % +o(1).
Similarly for x in I,

P(x) = S £ di + Sl F@) di + S F@de

e(B—aA)xn (eAx — ewan)

= i + 0(eP) + (@ — 1) x5,

and so for x in I,

_ (a— 1) x,65%n
I(f)= weA* (B-aA)ey +0(1)

1

<1——~+o(D.
And for x in 5
1) = {e_m‘“_;éw_n + O(G(B—wA)xneAe"n)} /xeBx
- 0.
Therefore
=l G

(b). Let
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2x¢””  when x, <% < X, = d%pe1 + B 10g %pe1
2X,eX*  when X, <<s< sy, =1, 2,...
where either 0<<«a <1 or a=0, 3>1 or a=1, B<0.

Clearly A4=B=co. When x lies in the first interval I(f)=0. Consider x in
the second interval and also we see that

£ s )= @)= |

Jx nf@ a 2X, e** (x—X,) _

_ X
2% X, 5% 2% X, X% - %
_ 1 ns1+ 3108 %11a
= ~ ,
and so when x=x,., we see that
I(l=1—-a.
(c). Let
fx)=x"logx, 42>0.
Then

A=B=0 and I(f)z—A—_ll_—l‘

(d). Let 0<<A<B< oo,

X (14 )
c=(x-4),

[ean:] (@ <ax < Xn)
f@) =[] (Xy<n< &)
[P7] (e <x < apr1)

Then it is easily verified that

—~— log f(x) B . .
hmsz B up=o.

x>
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ZUR EINIGEN INTEGRAL-ABSCHATZUNG
Von

Yoshikatsu WATANABE

(Eingegangen am 30. Sept. 1962)

Der Verfasser bedurfte im gewissen statistischen Problem das Integral

(! aretgVa(A—£d d¢
7=\, 1+A¢2

zu ausrechnen, wobei 0<{a<{g (endlich), und 0<<B< gewisses <1 mit y=
a/(a+1), 8=R/y< 1 sind. Wegen 0 <8< 1 kann man den Nenner in eine
Potenzreihe entwickeln und dann gliedweis teilintegrieren, so dass

r=3- 1)”@”5:@ arctg Vor(1—2%) dt

_ o D N g2+

0 2v+1 0 (1-I-0£—-oc§2) \/1"§2 (:Av+1).

Wird nun um den Integrand zu rationalisieren V1 — 2 = ¢z gesetzt und jedes
nach Partialbruchzerlegung erhaltene Glied integriert, so findet man eine
Rekursionsformel

Avﬂ:SO (1+(1+a)czi§)(1+z2)“1 =%AV“%BM’
wobei
AO:SM dz _ 1 T
o 1+ +a)7? Vita 2
und

© dz 18....2v~-1) = [2y w T

BVH:SO e = 2.4...(2v) 2 7 @wE 2 2 &

sind, deren ¢, =der Koeffizient des »* in die Entwickelung von 1/v1—x ist. Mit
Hilfe von der obigen Rekursionsformel erhdlt man ferner

Ao

Av+1 = ,Yv+1

T
_WECO‘,‘CIW'}“CZ'YZ’*" e eyt (:dv), IJ=0, 19 2,....

Dabei bedeutet die eckig-geklammelte Summation Slc,v*=d, den Koeffizient
0

von x* in die Entwickelung der Funktion f(x)=1/(1 —sN1—vyx. Zwar 0<vy<1
gemiss ist die Funktion regulidr in [x| <1, und sie ist entwickelbar zur un-
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endlichen Reihe, welche dort absolut und gleichmissig konvergiert. Dieselbe
Tatsache gilt noch fiir die Funktion f(—x) und ebensowohl bei f(—y%) =@(y)
in [y|<1. Daher kann man sie gliedweis integrieren und kennen dass

= (—1)d, V5%

T dy g (7 v
), wd = | T =S U =3

Deswegen ergibt sich

= y B Vot
T=3D g Am

w1 & (- (=1 o
=3 les T -]

Die erste Summation fithrt zu Lo arctg V8§ vermdge V&< 1, wihrend die

B
zweite, wie oben gesagt, zu
1 Swf dy _ 1 S“‘ du
Jad A+9y)VL+yy2 — VB4 @) Ju, uP+1—7

wenn uy = V1I+yy?, uyg= a1+p8) gesetzt und daher
7 4 Ad+a)

_ 1 B
= \/E arctg/m.

Damit erlangt man schliesslich etwas schénes Resultat

J= —72[— N/LE [arctg ‘/filc_j_“l - arctg‘/a(%l_le)] .

Tatséchlich sind a=387%/2—1, B=(8v%—2)/5+%, wobei 7 ein im Intervalle
v2/3< r< 2 verlaufenden Parameter darstellt. Somit bestehen 0< a <5, 0<B<
1/2, B/a=2/67, §=38/5, also geniigen sie alle vorgegebenen Voraussetzungen.
Obgleich bei 7=+v2/8 der obige Ausdruck J ersichtlich eine unbestimmte Form
0/0 darbietet, jedoch strebt seiner Grenzwert fiir +—>v2/3 zur Null, was mit
seiner statistischen Meinung stimmt.

Dagegen aber konnte der Verfasser bedauerlich irgendeinen gleichartigen
Ausdruck fiir ein nur wenig verschiedenes Integral

_{ arctgV1/3+a(l—C2)
K_So 1+ 822 %

mit

0<a=2(2*—8)/15:2<1/6, 0<pB=2r2/3—1<5/3 bei V3/2<r<2
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im allgemeinen nicht ermitteln.
In der Tat, nach zweimaligen Teilintegrationen erhilt man

K:%ﬂtﬁ\/—ﬁ+ L—S ! arctg]/ﬁ('r—zz)
1473 o
1

dz
VB ] 1422

s ( 1)” n4l
N R A

A=\ i Ty sy 0=V, 1 =Ba<INZ, =1+ By/a=31%/2),

was eine Recursionsformel

1 1 8—1 »__dy
Ay == oy B (6= 5 Bn= | )

besitzt, und woraus

A @ 2 B, 1 = 1
Aps1= @nff - ,87,,,20 _en——n%_ <Ao= Warctg V3as, ad= ‘5*(27'2——3) < 1)

folgt. Daher liefert das erste Glied schon den Teilwert von K

(—1) 741 7 B
Ky = \/ o 2 g1 = I arctg V3asd arctg 7

mit y=v/é=a/B+v=3/5=0.6. Jedoch bleibt noch fiir die zweite Summation
lediglich eine verwickelte Summe

—vJa o (=1 / 8 \* &,
Ke=—p S i1 (5) 33 Bemc”

worin die innere Summadtion

Z B,,l+ & ng(lfy% = 2, e”‘S cos™xdx(y=tanw, b=arctg y; =arctgv3a)

n n-1 2m—1) (2m—38)...2Cm— 2v+1) Byl s
:m2=08 [y2=0 Im(2m—2)..-(2m —2v) s?-2-1p 8in b
@m—1)(2m—3)...1
T Sm(2n—2)...2 0]

gilt, deren Gestalt aber fast unverbesserlich zu sein scheint.

Da fiir +—>v3/2, a—0, 80, K—=/6 und K;—~0.6V3 arctg 0.6 =0.29424~
lauten, so muss alsdann K, gegen 0.12757 » streben.
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