## A THEOREM ON STEP FUNCTION

 $\mathbf{B}\mathbf{y}$ 

## Pawan Kumar Kamthan

(Received September 30, 1962)

- 1. In this paper we prove a theorem on step function and apply it to prove certain results in the theory of entire functions represented by Dirichlet series.
- 2. Let us define two sequences  $\{\alpha_n\}$  and  $\{\beta_n\}$  satisfying the following conditions:
  - (i)  $0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots < \alpha_n \rightarrow \infty$  with n.
  - (ii)  $\lim_{n\to\infty}(\alpha_n-\alpha_{n-1})=h>0.$
- (iii)  $\overline{\lim}_{n\to\infty} \frac{n}{\alpha_n} = D < \infty$ ,  $Dh \leqslant 1$ .

and

(iv) 
$$0 \leqslant \beta_1 \leqslant \beta_2 \leqslant \dots \leqslant \beta_n \to \infty$$
 with  $n$ .

Suppose now that f(x) is a step function having  $\beta_n$  as jump points. Further, let  $(\alpha_n - \alpha_{n-1})$  be the jump at the point  $\beta_n (n = 1, 2, 3, ...)$ , so that define f(x) as

We prove:

THEOREM: Let f(x) be a step function defined by (1) and let

$$\varphi(x) = \int_{1}^{x} f(t)dt$$

$$\overline{\lim}_{x \to \infty} \frac{\log f(x)}{x} = \frac{B}{A}; \quad 0 < B \leq \infty, \quad 0 \leq A < \infty.$$

Then

$$I(f) = \overline{\lim}_{x \to \infty} \frac{\varphi(x)}{xf(x)} \leqslant 1 - \frac{A}{B}. \quad \dots (2)$$

Proof: We have

$$\varphi(x) = \sum_{\beta_n \leqslant x} (\alpha_n - \alpha_{n-1}) (x - \beta_n)$$
$$= xf(x) - \sum_{\beta_n \leqslant x} \beta_n (\alpha_n - \alpha_{n-1})$$

Further

$$\overline{\lim_{x\to\infty}} \frac{\log f(x)}{x} = \overline{\lim_{n\to\infty}} \frac{\log \alpha_n}{\beta_n} = B,$$

so that

$$\frac{\log \alpha_n}{\beta_n} < B + \epsilon,$$

for all  $n > n_0$ , and hence

$$\sum_{\beta_n \leqslant x} (\alpha_n - \alpha_{n-1}) \beta_n \sum_{\beta_n \leqslant x, \ n > n_0} (\alpha_n - \alpha_{n-1}) \frac{\log \alpha_n}{(B + \epsilon)}$$

Let N be the largest integer such that  $\beta_n \leqslant x$ , then we get

$$\sum_{\beta_n \leqslant x} (\alpha_n - \alpha_{n-1}) \beta_n > \frac{1}{B+\epsilon} \left\{ \alpha_N \log \alpha_N + O(\alpha_N) \right\}$$
$$= \frac{1}{B+\epsilon} \left[ f(x) \log f(x) \right] + O\left\{ f(x) \right\},$$

and therefore

$$\varphi(x) \leq x f(x) - \frac{1}{B+\epsilon} f(x) \log f(x) + O\{f(x)\}, \dots (3)$$

and so

$$I(f) \leqslant 1 - \frac{1}{B+\epsilon} \underbrace{\lim_{x \to \infty} \frac{\log f(x)}{x}}_{= 1 - \frac{A}{B+\epsilon}},$$

and since  $\epsilon$  is arbitrary, we get (2).

COROLLARY (i) Let  $\psi(x)$  be integrable in any interval (1, X). (ii)  $\psi(x) \sim f(x)$ , where f(x) is a step function as defined in the theorem, then

$$\overline{\lim}_{x\to\infty} \left( \int_{1}^{x} \psi(t) dt \right) / x \psi(x) \leqslant 1 - \frac{A}{B}.$$

For let

$$\psi(x) = f(x) + \theta(x).$$

Then  $\theta(x)$  is integrable in any interval (1, X) and obviously

$$\theta(x) = o\{f(x)\},\,$$

and so

$$\int_{1}^{x} \psi(t)dt = \int_{1}^{x} f(t)dt + o\{x\psi(x)\}.$$

But from (i), we also have

$$\overline{\lim_{x \to \infty}} \frac{\log \psi(x)}{x} = \frac{B}{A} ;$$

therefore

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \psi(t) dt}{x \psi(x)} \leqslant 1 - \frac{A}{B}.$$

3. Applications: Let

$$f(s) = \sum_{r=1}^{\infty} a_n e^{s\lambda n}$$
  $(s = \sigma + it)$ 

be an entire function repredented by Dirichlet series of order (R)  $\rho$  and lower order  $\lambda$  (0 <  $\rho$  <  $\infty$ ) and let  $\mu(\sigma)$  and  $\lambda_{\nu(\sigma)}$  be respectively its maximum term and the rank of the maximum term. Then, since  $\lceil 1 \rceil$ 

$$\underline{\overline{\lim}_{\sigma\to\infty}} \frac{\log \lambda_{\nu(\sigma)}}{\sigma} = \frac{\rho}{\lambda} ;$$

and

$$\log \mu(\sigma) = A_1 + \int_1^{\sigma} \lambda_{\nu(t)} dt,$$

we have from the above theorem  $(f(x) = \lambda_{\nu(x)})$ 

$$\overline{\lim_{\sigma \to \infty}} \frac{\log \mu(\sigma)}{\sigma \lambda_{\nu(\sigma)}} \leqslant 1 - \frac{\lambda}{\rho} . \qquad (4)$$

Also from (3) we have

$$\overline{\lim_{\sigma \to \infty}} \frac{\log \mu(\sigma)}{\lambda_{\nu(\sigma)} \log \lambda_{\nu(\sigma)}} \leqslant \overline{\lim_{\sigma \to \infty}} \frac{\sigma}{\log \lambda_{\nu(\sigma)}} - \frac{1}{\rho + \epsilon} = \frac{1}{\lambda} - \frac{1}{\rho}, \dots (5)$$

since  $\epsilon$  is arbitrary. The results (4) and (5) have also been obtained by R. P. Srivastav [2] by a different method.

4. In this article we below give an example to show that (2) is the best possible result. We also show that for one value of  $\alpha$  the equality sign in (2) holds and for the other value of  $\alpha$  the inequality sign in (2) holds. It is also shown here that when  $A = B = \infty$ , I(f) may have any assigned value  $\alpha$  such that  $0 \le \alpha \le 1$ .

If  $0 < A = B < \infty$ , it follows from (2) that I(f) = 0. We give an example to demonstrate that the converse, viz., may be zero but  $A \neq B$ , is not necessarily true.

(a) Let 
$$0 < A < B < \infty$$
,  $1 < \alpha \leqslant B/A$  and let\*

<sup>\*</sup> In what follows, we suppose that  $\{x_n\}$  is a sequence of positive numbers increasing sufficiently rapidly.

$$f(x, \alpha) = f(x) = \begin{cases} \left[ e^{Bx_n} \right] & \text{when } x \in I_1(x_n \leqslant x < \alpha x_n) \\ \left[ e^{Ax} e^{(B - \alpha A)x_n} \right] & \text{when } x \in I_2(\alpha x_n \leqslant x < e^{x_n}) \\ \left[ e^{Bx} \right] & \text{when } x \in I_3(e^{xn} \leqslant x < x_{n+1}) \end{cases}$$

Then

$$\overline{\lim_{x \to \infty} \frac{\log f(x)}{x}} = B; \qquad \underline{\lim_{x \to \infty} \frac{\log f(x)}{x}} = A.$$

Further for x in  $I_1$ 

$$\frac{\varphi(x)}{xf(x)} = \frac{e^{Bx_n}(x-x_n) + O(e^{Bx_n})}{xe^{Bx_n}} \sim 1 - \frac{x_n}{x}.$$

Hence for x in  $I_1$ 

$$I(f, x) \leqslant 1 - \frac{1}{\alpha} + o(1)$$

$$I(f, \alpha x_n) = 1 - \frac{1}{\alpha} + o(1).$$

Similarly for x in  $I_2$ 

$$\varphi(x) = \int_{\alpha x_n}^{x} f(t) dt + \int_{1}^{x_n} f(t) dt + \int_{x_n}^{\alpha x_n} f(t) dt 
= \frac{e^{(B - \alpha A)x_n} (e^{Ax} - e^{\alpha Ax_n})}{A} + O(e^{Bx_n}) + (\alpha - 1)x_n e^{Bx_n},$$

and so for x in  $I_2$ 

$$I(f) = \frac{(\alpha - 1)x_n e^{Bx_n}}{x e^{Ax} e^{(B - \alpha A)x_n}} + o(1)$$

$$\leq 1 - \frac{1}{\alpha} + o(1).$$

And for x in  $I_3$ 

$$I(f) = \left\{ \frac{e^{Bx} - e^{Be^{x_n}}}{B} + O(e^{(B - \alpha A)x_n} e^{Ae^{x_n}}) \right\} / xe^{Bx}$$

$$\to 0.$$

Therefore

$$I(f) = \overline{\lim}_{x \to \infty} \frac{\varphi(x)}{xf(x)} = 1 - \frac{1}{\alpha}.$$

(b). Let

$$f(x, \alpha, \beta) = f(x) = \begin{cases} 2xe^{x^2} & \text{when } x_n \le x < X_n = \alpha x_{n+1} + \beta \log x_{n+1} \\ 2X_n e^{X^2 n} & \text{when } X_n \le x < x_{n+1}, n = 1, 2, \dots \end{cases}$$

where either  $0 < \alpha < 1$  or  $\alpha = 0$ ,  $\beta > 1$  or  $\alpha = 1$ ,  $\beta < 0$ .

Clearly  $A=B=\infty$ . When x lies in the first interval I(f)=0. Consider x in the second interval and also we see that

$$\frac{\int_{X_n}^x f(t)dt}{2x X_n e^{X_n^2}} = \frac{2X_n e^{X_n^2} (x - X_n)}{2x X_n e^{X_n^2}} = 1 - \frac{X_n}{x}$$

$$= 1 - \frac{\alpha x_{n+1} + \beta \log x_{n+1}}{x},$$

and so when  $x=x_{n+1}$  we see that

$$I(f) = 1 - \alpha$$
.

(c). Let

$$f(x) = x^{\Delta} \log x$$
,  $\Delta \geqslant 0$ .

Then

$$A=B=0$$
 and  $I(f)=\frac{1}{\Delta+1}$ .

(d). Let  $0 \le A < B < \infty$ ,

$$X_n = x_n \left( 1 + \frac{1}{\log x_n} \right)$$

$$C = \left( \frac{Bx_n}{X_n} - A \right),$$

$$f(x) = \begin{cases} \left[ e^{Bx_n} \right] & (x_n \leqslant x < X_n) \\ \left[ e^{Ax} e^{CX_n} \right] & (X_n \leqslant n < e^{x_n}) \\ \left[ e^{Bx} \right] & (e^{x_n} \leqslant x < x_{n+1}) \end{cases}$$

Then it is easily verified that

$$\underline{\lim_{x\to\infty}} \frac{\log f(x)}{x} = \frac{B}{A} ; I(f) = 0.$$

## References

- [1.] Rahman, Q. I.—On the maximum modulus and the coefficients of an entire Dirichlet series, Tohoku Math. Jour., No. 1, 8, (1956), 108-113.
- [2.] Srivastav, R. P.—On the entire functions and their derivatives represented by Dirighlet series, Ganita (Lucknow), No. 2, 9. (1958), 83-93.

Department of Mathematics; Birla College, Pilani, India.