NOTE ON SEMI-LOCAL RINGS

By

Tadayuki Matsuoka

(Received September 30, 1961)

We know that the notion of a system of parameters of a local ring can be extended to the case of a semi-local ring (cf. [4]¹⁾). In this note, we introduce the concept of a regular semi-local ring, naturally extending the definition from regular local ring to semi-local ring. For regular semi-local rings we shall show some properties which are analogous to the fundamental properties of regular local rings. Throughout this note the term "local or semi-local ring" will mean commutative Noetherian local or semi-local ring with identity.

1. Regular semi-local rings

Let R be a semi-local ring and \mathfrak{q} be a defining ideal of R. We denote by $\dim R$ the dimension of R, by $l(R/\mathfrak{q}^n)$ the length of R/\mathfrak{q}^n and by $e(\mathfrak{q})$ the multiplicity of \mathfrak{q} . The integer $e(\mathfrak{m})$ is called the multiplicity of R, where \mathfrak{m} is the I-radical²⁾ of R.

Given a semi-local ring R of dimension d, a system $\{x_1, \dots, x_d\}$ of d elements of R which generates a defining ideal is called a system of parameters of R.

The well known relation between multiplicities and lengths is given as follows:

PROPOSION 1. Let R be a semi-local ring of dimension d, $\{x_1, \dots, x_a\}$ a system of parameters of R and \mathfrak{q} the ideal $\sum_{i=0}^d Rx_i$. Then we have $e(\mathfrak{q}) \leq l(R/\mathfrak{q})$. The equality holds if and only if the form ring $F(\mathfrak{q}) = \sum_{n=0}^{\infty} \mathfrak{q}^n/\mathfrak{q}^{n+1}$ is isomorphic to the polynomial ring $(R/\mathfrak{q})[X_1, \dots, X_a]$.

For the proof, see [4].

Let R be a semi-local ring having maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ and \mathfrak{m} be the J-rabical of R (i.e. $\mathfrak{m} = \bigcap_{i=1}^t \mathfrak{p}_j$).

Definition. We say that R is a regular semi-local ring if in is generated by a system of parameters of R and the dimention of every quotient ring $R_{\mathfrak{p}_j}$ $(j=1, \dots, t)$ is equal to that of R.

The system of parameters of a regular semi-local ring which generates

¹⁾ Numbers in brackets refer to the bibliography at the end of this note.

²⁾ We mean by the J-radical the intersection of all maximal ideals of R.

the J-radical will be called a regular system of parameters.

Lemma 1.3 Let R be a semi-local ring and q be a primary ideal belonging to an arbitrary maximal ideal p of R. Then q is generated by a finite number of elements such that none of them is in any maximal ideal different from p.

Proof. Let $\mathfrak{p}=\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be maximal ideals of R. We consider the non-empty set $Q=\{a\,|\,a\epsilon\mathfrak{q} \text{ and } a\epsilon\bigcup_{j=2}^t\mathfrak{p}_j\}$ and let \mathfrak{q}' be the ideal generated by the set Q. Since R is a Noetherian ring, \mathfrak{q}' is generated by a finite number of elements of Q. For the proof of this lemma it is enough to show $\mathfrak{q}\subseteq\mathfrak{q}'$. Let a be an arbitrary element of $\mathfrak{q}\cap\mathfrak{p}_2\cap\cdots\cap\mathfrak{p}_t$ and let b be an element of Q. Then $a+b\epsilon Q$, whence $a=(a+b)-b\epsilon\mathfrak{q}'$. Thus $\mathfrak{q}\cap\mathfrak{p}_2\cap\cdots\cap\mathfrak{p}_t\subseteq\mathfrak{q}'$. Since $\mathfrak{q}'\oplus\mathfrak{p}_j$ $(j\geq 2)$, we see that \mathfrak{p} is the unique prime ideal containing \mathfrak{q}' . Therefore \mathfrak{q}' is \mathfrak{p} -primary. Since $\mathfrak{q}\cap\mathfrak{p}_t\cap\cdots\cap\mathfrak{q}\subseteq\mathfrak{q}'$, we have $\mathfrak{q}R_{\mathfrak{p}}=(\mathfrak{q}\cap\mathfrak{p}_2\cap\cdots\cap\mathfrak{p}_t)R_{\mathfrak{p}}\subseteq\mathfrak{q}'R_{\mathfrak{p}}$. Therefore we have $\mathfrak{q}\subseteq\mathfrak{q}'$.

Proposition 2. Let R be a semi-local ring and $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be maximal ideals of R. Then R is a regular semi-local ring if and only if all the quotient rings $R_{\mathfrak{p}_1}, \dots, R_{\mathfrak{p}_t}$ are regular local rings having the same dimension.

Proof. The if part: Since $R_{\mathfrak{p}_j}$ is a regular local ring of dimension d (where $d=dim\ R$), by Lemma 1 there exist d elements $a_1^{(j)}, \cdots, a_d^{(j)}$ in \mathfrak{p}_j such that none of them is in any maximal ideal different from \mathfrak{p}_j and such that $\mathfrak{p}_j R_{\mathfrak{p}_j} = \sum_{i=1}^d a_i^{(j)} R_{\mathfrak{p}_j}$. Let \mathfrak{a}_j be the ideal which is generated by these d elements. Since $\mathfrak{a}_j \oplus \mathfrak{p}_k$ $(k \oplus j)$, all of the prime divisors of \mathfrak{a}_j are contained in \mathfrak{p}_j . Hence we have $\mathfrak{p}_j = \mathfrak{a}_j$ for every j. Considering the d elements $a_i = \prod_{i=1}^d a_i^{(i)}$ $(i=1,\cdots,d)$ and the ideal $\mathfrak{a} = \sum_{i=1}^d Ra_i$, we have $\mathfrak{a} \subseteq \mathfrak{m}$ and $\mathfrak{a} R\mathfrak{p}_j = \mathfrak{m} R\mathfrak{p}_j$ for every j, where \mathfrak{m} is the J-radical of R. Therefore we have $\mathfrak{a} = \mathfrak{m}$.

The only if part follows immediately from the definition of a regular semilocal ring.

Lemma 2. Let R be are regular semi-local ring and in the J-radical. Then e(nt) = l(R/nt).

Proof. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be maximal ideals of R. Since

$$R/\mathrm{m}^n\cong (R_{\mathfrak{p}_1}/\mathfrak{p}_1^nR_{\mathfrak{p}_1})\oplus\cdots\oplus (R_{\mathfrak{p}_t}/\mathfrak{p}_t^nR_{\mathfrak{p}_t})$$
 (direct sum)

and since $\dim R_{\mathfrak{p}_j} = \dim R$ for every j, we have $e(\mathfrak{m}) = \sum_{j=1}^{t} e(\mathfrak{p}_j R_{\mathfrak{p}_j}) = t$. On the other hand, $l(R/\mathfrak{m}) = \sum_{j=1}^{t} l(R/\mathfrak{p}_j) = t$ since $R/\mathfrak{m} \cong (R/\mathfrak{p}_1) \oplus \cdots \oplus (R/\mathfrak{p}_t)$. Q.E.D.

³⁾ This lemma and Proposition 2 have already been obtained by S. Endo (cf. [1]).

Theorem 1. Let R be a semi-local ring of dimension d, \mathfrak{p}_1 , \cdots , \mathfrak{p}_t be maximal ideals and in be the J-radical. Then the following three conditions are equivalent:

- (a) R is a regular semi-local ring.
- (b) The form ring $F(\mathbf{m}) = \sum_{n=0}^{\infty} \mathbf{m}^n / \mathbf{m}^{n+1}$ is a polynomial ring in d variables.
- (c) The maximum number of linearly independent elements of the R/mmodule m/m^2 is equal to d and the dimension of every local ring $R_{\mathfrak{p}_j}$ $(j=1,\ldots,t)$ is equal to d.

Proof. That (a) implies (b) follows directly from Proposition 1 and Lemma 2. Assume next that (b) is true and we want to show that (c) is true. The first part of (c) is evident. And hence there are d elements x_1 , ..., x_d in m such that $m = \sum_{i=1}^d Rx_i + m^2$. Since R is a Zariski ring with respect to the m-topology, we have $m = \sum_{i=1}^d Rx_i$. This shows that the system $\{x_1, \dots, x_d\}$ is a system of parameters of R. Applying this and the condition (b) to Proposition 1, we have e(m) = l(R/m) = t. We may assume that $\dim R_{\mathfrak{p}_j} = \dim R$ if and only if $j \leq s$. Then $e(m) = \sum_{j=1}^s e(\mathfrak{p}_j R_{\mathfrak{p}_j})$. Since $m = \sum_{i=1}^d Rx_i$, $\mathfrak{p}_j R_{\mathfrak{p}_j} = mR_{\mathfrak{p}_j}$ and $\dim R_{\mathfrak{p}_j} = d$ for $j = 1, \dots, s$, each of these $R_{\mathfrak{p}_j}$ is a regular local ring. Hence $e(\mathfrak{p}_j R_{\mathfrak{p}_j}) = 1$ for $j = 1, \dots, s$ and therefore we have e(m) = s. This shows s = t. That (c) implies (a) is included in the proof above given.

Corollary. Let R be a semi-local ring, in be the J-radical and \widehat{R} be the in-adic completion of R. Then \widehat{R} is a semi-local ring having the same dimension of R and \widehat{mR} is the J-radical of \widehat{R} . Furthermore R is a regular semi-local ring if and only if \widehat{R} is so.

The first part of this corollary is well known (see [5]). Since the form ring of R and that of \widehat{R} are the same (see [5]), the second part follows immediately from Theorem 1.

2. Unmixed semi-local rings

The properties of unmixed local rings were studied by M. Nagata (cf. [3]). In this paragraph we show some results which are directly followed from Nagata's results and apply these to regular semi-local rings.

Let R be a semi-local ring and m be the J-radical. We denote by \widehat{R} the m-adic completion of R.

Definition We say that a semi-local ring R is unmixed if $\dim \widehat{R}/\hat{p} = \dim R$ for any prime divisor \hat{p} of zero in \widehat{R} .

Proposition 3. Let R be an unmixed semi-local ring. Then we have $\dim R/\mathfrak{p}+\dim R_{\mathfrak{p}}=\dim R$ for any prime ideal \mathfrak{p} of R.

For the proof, see [3].4)

Proposition 4. If a semi-local ring R is unmixed, then for every prime ideal $\mathfrak p$ of R the quotient ring $R_{\mathfrak p}$ is also unmixed.

Proof. In the local case, this proposition is true (see [3]). If \mathfrak{q} and \mathfrak{q}' are arbitrary prime ideals such that $\mathfrak{q} \subseteq \mathfrak{q}'$, then $R_{\mathfrak{q}} \cong (R_{\mathfrak{q}'})_{\mathfrak{q}} R_{\mathfrak{q}'}$. Therefore we may assume that \mathfrak{p} is a maximal ideal of R. Let $\mathfrak{p} = \mathfrak{p}_1, \dots, \mathfrak{p}_t$ be maximal ideals of R and R_J be the $\mathfrak{p}_J R_{\mathfrak{p}_J}$ -adic completion of $R_{\mathfrak{p}_J}$. Then $\widehat{R} = R_1 \oplus \dots \oplus R_t$ (direct sum). Let \mathfrak{q}_1 be any prime divisor of zero in R_1 . We consider the prime ideal $\widehat{\mathfrak{p}} = \mathfrak{q}_1 \oplus R_2 \oplus \dots \oplus R_t$ of \widehat{R} . Since $(0):\mathfrak{q}_1 \neq (0)$ in R_1 , we have $(0):\widehat{\mathfrak{p}} \neq (0)$ in \widehat{R} , which shows that $\widehat{\mathfrak{p}}$ is a prime divisor of zero in \widehat{R} (because R is unmixed). Let e_1, \dots, e_t be the orthogonal idempotents corresponding to the decomposition $\widehat{R} = R_1 \oplus \dots \oplus R_t$ and $\widehat{\mathfrak{p}} \subseteq \mathfrak{P}_1 \subseteq \dots \subseteq \mathfrak{P}_t$ be a chain of prime ideals in \widehat{R} . Then $\mathfrak{q}_1 = \widehat{\mathfrak{p}} e_1 \subseteq \mathfrak{P}_1 e_1 \subseteq \dots \subseteq \mathfrak{P}_t e_1$ is a chain of prime ideals in R_1 . Hence we have

$$dim R_{p} = dim R_{1} > dim R_{1}/q_{1}$$

$$\geq dim \ \hat{R}/\hat{\mathfrak{p}} = dim \ R \geq dim \ R_{\mathfrak{p}}.$$
 Q.E.D.

The following characterization of a regular local ring was given by M. Nagata (see [2]).

Proposition 5. A local ring R is a regular local ring if and only if it is of multilicity one and unmixed.

In the semi-local case, this is generalized as follows:

Theorem 2. A semi-local ring R is a regular semi-local ring if and only if the multiplicity of R is equal to the number of maximal ideals of R and R is unmixed.

Proof. The if part: Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be maximal ideals of R and \mathfrak{m} be the J-radical. By Proposition 3 the equality $\dim R_{\mathfrak{p}_J} = \dim R$ holds for every j. Then we have $e(\mathfrak{m}) = \sum_{j=1}^t e(\mathfrak{p}_j R_{\mathfrak{p}_j})$, whence the multiplicity of $R_{\mathfrak{p}_J}$ is one. On the other hand, $R_{\mathfrak{p}_J}$ is unmixed by Proposition 4. Therefore R is a regular semi-local ring by Proposition 5 and 2.

The only if part: The equality $e(\mathfrak{m}) = l(R/\mathfrak{m})$ has already seen in Lemma 2. This shows that $e(\mathfrak{m})$ is equal to the number of maximal ideals. For the proof of the unmixedness, by the definition of unmixedness and by

⁴⁾ In [3] M. Nagata has proved this proposition in the quasi-unmixed case which is a weaker condition than the unmixedness.

Corollary to Theorem 1 we may assume that R is complete. Let \mathfrak{p}' be an arbitrary prime divisor of zero in R and \mathfrak{p} be any maximal ideal such that $\mathfrak{p}'\subseteq\mathfrak{p}$. Since $R_{\mathfrak{p}}$ is an integral domain (because $R_{\mathfrak{p}}$ is a regular local ring), we have $\mathfrak{p}'R_{\mathfrak{p}}=0$. Hence $(R/\mathfrak{p}')_{\mathfrak{p}/\mathfrak{p}'}$ is isomorphic to $R_{\mathfrak{p}}$. Therefore, since $\dim R_{\mathfrak{p}}=\dim R$, we have $\dim R/\mathfrak{p}'=\dim R$. Thus the proof is completed.

Bibliography

- [1] S. Endo, On regular rings, Journ. Math. Soc. Japan, Vol. 11 No. 3 (1959), pp. 159-170.
- [2] M. Nagata, The theory of multiplicity in general local rings, Proc. Intern. Symposium Tokyo-Nikko (1955), pp. 191—226.
- [3] M. Nagata, On the chain problem of prime ideals, Nagoya Math. J., Vol. 10 (1956), pp. 51—63.
- [4] P. Samuel, Algèbre locale, Mémorial Scien, Math., No. 123 (1953).
- [5] O. Zariski and P.Samuel, Commutative algebra Vol. II, Van Nostrand, Princeton (1960).