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The author schemed first to investigate fully the distribution of Student’s
ratio for the xi- and B,,distribution taken as universe, which for the sample
size #=2 but with all positive £ and p, ¢, so simple yet their various remark-
able features may be comprehensibly and interestingly grasped. However, this
pleasing plan being kept for students’ heuristic self study, the present author
did continue the previous work and intended especially to treat the complicated
cases #==3, 4, ---, possibly the general case, since he deems it his duty to
clarify and supplement his preceding papers in this journal”’

8. The x-Distribution as Universe, when the Sample Size n=3.

Let a sample taken from a %:-universe®

(8.0)  fu(%) =—cre*2x¥1, where c,,=1/2k/2r(12‘1), >0, E(x)=k

be {x1, x;, %3} with mean % and S. D. s. Its probability is

dp= dke~3i/2(x1x2x3>*/2—ldxldxzdxa/swr(g)3.

First we transform, as usual, x;, %, X3 into &, %, £ orthogonally with ¢ =v'3%:

= 2 Z x=—¢/V' 2 —4/v 6 +£/V 3 (=%)

] -vE IvE 0 e
n| SIVE SIVE 2NE = 8V 2LV 6 +X

¢ wWIT o wI o INE . 2%/VE6 +%,

and secondly into polar co-ordinates £-=pcosf, yp=psinf with p=1/ 35, so that

- y 2 x x i i
X1 X5 Xg=X°— % (&4 x— <E2 B %)7% e %70256 - 37%311]30
_ 3
— ,3,s2x -5 sin34.

2 v 2

1) Y. Watanabe, The Student’s Distribution for a Universe bounded at one or both Sides,
Journal of Tokushima University, vol. XI (1960), pp. 11--, which will be below cited as [II].
Also the same author’s first paper: Y. Watanabe, Some Exceptional Examples to Student’s
Distribution, ditto, vol. X (1959), pp. 11-- is referred as [1].

2) H. Cramér, Mathematical Methods of Statistics, p. 233.
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Now taking Student’s ratio I=(x—k)y/ 2/s and writing =(Xx—k)/%t
(=s/v/ 2 x>0) for brevity, we have

X1 X% = %3 (1 - 3r*—2¢%5in30).
Also

dxdxedxs=dedypdl =/ 3 dxodpd0=23y/ 3 sdsdxdf8=06+/3 (X —k)2dxdodt/|¢|°.
So that the elementary probability reduces to

dP=d,e3*2(k— x)2x3%21(1 — 32— 23sin36) > 'd xdedt/ | t |3,
where

dy»=6y/ 3 /81 (k/2)®.

Consequently Student’s fr. f. is given by

(8.1) s(t :%S:e‘%ﬂ(k——k)2553k/2—3]d5c
where
9 —
N _as_oa. ka1 _x—k_ S’>
(8.2) J Seo(l 3c®—23sin36)¥2-1d6 <r T

and the limits of integrations are determined after several subcases.
In Fig. 1 the simplex S is given
by the equilateral triangle ABC, where

its side @=3y/2 %, height h= 3‘/,3,;5,

GM~GN=y/3%, GC=1/6%, &c. The

relation between the radius of s-circle
(=v/3s) and OG(=+/3%) yields the
following subcases:

I: 0<<s<x/v' 2 (0<r<<1/2).
When the radius is less than GM,
ie. O</§s<~/%5€, the whole arc

of s-circle can be adopted, so that
0,=0, 60,=2z. Also inequalities
0<<2(x—k)/t<<x follow. Accord-

Fig. 1
N ingly (i) if 0<<{<C2, we obtain k<C
B<2k)(2— ), (i) 2<t<oo, h<k<oo and (iii) if — co<t<0, 2—2_’%<5c<k.

II: x/y/ 2<<s<X%y/ 2 (1/2<<x<1).
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When the s-circle’s radius is between GM=GN= 1/ %55 and GC=1/6 x,
ie. if /12 <s<<y/ 2 %, the contribution from its arc is 6 times PQ (Fig. 1).

Consequently 6'GQ=60,= ’g - and EGP=60,=1+ Jé- , where cosr= ‘g]}\)’ :

=17%: Z(Txik.):_zlr- Also from the inequalities /v 2 <<(x—k)y/ 2 /t<<2%,
the limits x, and % are decided as: (i) if 0<t<l, 2K << Gi) if

2—t
1<$<2, %<56<°o; however the case 2<f<Coo is impossible in II, and

2—t
— k- 2k
13.St].y (111) if —°°<t<0, ’1_:t<x<’2j:t.
The behaviour of s(f) in a neighbourhood of the origin shall be investi-
gated by means of (i‘) and (iii), while the significant limits are to be deter-

mined from (ii) or (iii).

To express (2), the inner integral J, more suitably, we put 302—3—71: +2¢

in I, and 30=—23—7r—2<a in II, respectively. Then (2) becomes

P1 . B 2 P1 2
J= S? (1 — 322+ 2:3 — 4%sin?p) /2‘1§d¢ES? K(¢,r)§d¢.

Since the range of integration in I: 0<(#< 2z can be replaced by —g-<ﬂ<gn

by periodicity, it follows that ¢,=0 and ¢;=23=, and thus
27T 3m 2 2/
]I:S Kdﬁzg f———chp:zlg Kdo.
0 o 3 0

Similarly in 1I, the corresponding values of ¢ being ¢,=0 for 01=-g— and

-7 _3 T
[ 2 2T for 00 7+ 6 5

P1=m/2—-3Y/2

— —Z—qu):llg Kde.

0
9’13 9

]11 = 68:1Kd6 == 68
Also putting
1-3c2+20¢=(1—0)*(1+20) =g(c), V4*/g(x) =n(o)

as auxiliaries, we see that in the whole course 0<(r<C1, g and x are positive and
monotonic decreasing or increasing. Namely, 1>g(z)>1/2 and 0<<u(z)<<1/2
in I: 0<r<<1/2, while 1/2>g(z)>0 and 1/2<<u(r)<lec in II: 1/2<z<C1
(Fig. 2). By means of these auxiliaries we may write

K(u,v) = [(1—-7)2(1+2¢c) —4c%in2p| #2 1= g ()21 (1 — plsinp) ¥+,

so that
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8. 4) T=4g(ey\" (1= isinto) vdy
0
= - a1 7
where ¢, 2 for I, but ¢, 5 <O<T cos - 3 ) il
/:‘(’Z’)
ol
| |
% i
E B
1 0 g
2 . i S
H 1o
i i 19
i : )
3 1 )
S ! !
T P e 7

Fig. 2

Hence, for 1 (ii): 2<f{<Ceo, we have

(8. 5) S(t)zs,(t) m%@g e—sx/z(x k)zxaklz—sg(r)k/2-1dxs (1 ﬂzsln2¢)k/2 1d(o

where the inner integral being the complete elliptic integral F (,u, —g~) with
modulus (=1 in I), it can be expanded into a power series:
(8.6) Fk(ﬂ)EFk( >:S/(1—ﬂ2sin2¢)k/2‘1d¢ (0T p=<<1)

:i(k/z 1 ( ]_)v#zugo sin (pd(p

& y(B—=2)(B—4)---- (k—2y) -

“51’;( 1) CPDE (20) 1 2

:—75[1~k 3(k 2)(k—4) . 5(k—2)(k—4)(k—6) L. ]

2 4 64 768

in which (1— u?%in%)*? is certainly absolutely convergent in the open interval
(O£r<—;—, 0=<<u<<1l), so that the termwise integration is legitimate there.

However, since the ultimate series converges absolutely even at x=1, it is
absolutely and uniformly convergent in the closed interval (0<<p=1). Further
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we have

S 47®

_ — A3 2__ 0.3 PR
u A—021525 43(1 +3¢2—2:5+ 9r )

which is absolutely and uniformly convergent in <0§r<%r . Hence, if this be

substituted in (6), the resulting series of F,(x) shall behave similarly regular

in ogr<%. And we can say the same about g(r)¥*t1=(1—z)*2(1+2r)¥*1

and consequently so also about their product series
gy Fi(w) z—g—[l —%(k —2)1'2—}-%(1? —2)(B—4)rt+oneeee ]E%H(z‘).

Therefore, on transforming the variable x in (5) into r:x;ﬁ, ie. J—C=1~A]g—t—,
LT

2]

s(?) reduces to

3k/2> H(z)cdr
34/
8.7) St 2& eXp( 1—ifr /(1 —fc)skzet?’

which is surely integrable so far 2<f<Coo.

We are going to express s(f) in (2<<#<Ceo) by a power series of ! up
to a certain degree, say £, so that up to z*. For this purpose, again replacing
v in (7) by r=u/t, it yields

k3#/2 —3k/2 u?
(8.8) s(t)=2mds S XP( 1_; )(l_u)sk/éﬁx

B PSSP (572 RN O S o AR (2 W
><|:1 S 2>(t) + -2 4>(t> + ]du.
Accordingly we attain finally the following d. f.

(8.9) S(t)zgws(t)dt

O T TS YU I (2 N e

=ﬂdkk3’”2[f2/ﬁ—%(k—z)ﬁ/ﬁ-F%(k*2)(k—4)]e/ff+ ------ | @=2),
where

(8.10) A S exp( 3k/2>u”du/(l—u)3k’2” (n=2,4,6,--).

Hence, if these J. be computed, we can obtain an approximate equation
(8.11) S(t)=A/B+B/ti+C/1 .

To compute (10) actually, Gauss’ method of numerical integration may
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be applied. However, the variations of its integrand being somewhat enormous,
it is rather preferable to calculate the exact value directly, somewhat cumbrous
as it is. For this purpose, on writing v=1/(1—u) and [=3%k/2, the integral
(10) becomes

(8.12) Jn= Sje’“’vl“1<1 — %)ndv = S;e"”v’"lg( — 1)”( ’3 )v-"dv.

Thus, e. g. ]2281 e (vt =202+ 0v%)dv. By successive applications of recur-
ring formulas

. . —ae —an
Svme—“”dv = Vg ﬂSv’He‘“”dv, S “dy= 1 e,,, ,‘LS Ll-d v
a a m—1v—t m—1)o™

we can make v's exponent possibly small in the absolute value: If 2 be even,
[=3k/2 becomes a positive integer, so that the final exponent reduces to zero.

But, if 2 be odd, we get, as the final integral Se“"’dv// v, which on putting

P izl-xz vields

VE§ eonas- Vi3 [1-00/20)],

where

(%) —1/%8 e~**/2dt, the usual probability integral.

For example, if k=1, di=61"3 /1/8:3=0.659845, we have for {>2 after
(12), eg.

Jo={ ez oomdo —8ers My /B 11-20(,/3)] =0.03265.
1

So that A=rd, J.=0.06769, and similarly B=rd, J,=0.01578, C=nd, J;=0.00770.
And thus the approximate equation (11) is gained. This being equated to
a/2(a=0.1, 0.05, 0.01) and solved for £2, we find the upper significant limits
tor=1.27, tows=1.72, to.01=3.71, which, compared with the corresponding classi-
cal Student’s values 2.920, 4.303, 9.925, are remarkably small.
Also the lower significant limits can be treated just similarly. Now after
I (iil): —oo<<t<<0, we get by (1) and similarly to (5)

(8.13) sl(lf)“4dkg e%2(k— x)2x3’”2‘1g(-c)”/2‘1dx8 (1—sin%)¥*de(p<1)

2k/(2—t)

:4dkk3k/2§1’2ex;>( 13 t/z)g@k/z-le(ﬂ, )%/(1 £2)PEL(£0),
0

Besides however this time comes the additional contribution from II (iii):
—oo<(f<C0, 1/2<r<C1, as
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4d 21:/(2-—-!)7 _ _ Pr=7/2-37/2 R
(8.14) su(f)= kg e“"’“”z(kqx)2x3k/2—3g(r)k/2'1dxg (1— psin®e)**dg

— 3 Jesa-n 0

1 — k/2-1,.2 P1 .
- 4dkk3k/281/2exp< . ikéZ) ;Efl(r_) - 3:/511' SO (1— 2sino)*21dp.

Now that 1/2<Cr<C1, it is 1<Zp?<Zoo, and ¢;=n/2—3r/2, cosr=1/2¢, so that
sing; =cos3r/2=1v g/4r*=1/p. Hence, if we put psing—=siny, the inner integral
reduces to

1 ) 1% costrdyr
2 2, ¥ k-1 = e =
(8.15) So (1— u2sin®p) de SO V1= sin®y

“ EGk(ﬂ): say.

In particular, for k=1

6=\ i u et

Thus G;(x) reduces to an ordinary complete elliptic integral of the first kind
with modulus 1/4(<<1), Fi(1/x), multiplied by 1/p.
In general we obtain from (13) and (14) the d. f, for #,<<0

8.16) St =\ [s:(8) +su(®)at

- 4dkk3’2[g:/jg(r) WAL () J* (e, bodede + S;,zg@) W16, () JH (x, to)rdr],

where
/% k-1
8.17) G =lg ,&__1"”& l<1),
GO0 ]/1 —Fsin?(P &
and
A4 —
(8.18) J¥(z, to) :S_NeXp< 13ik),é-2> 1 _;ffgk/zu :

Since the lower significant limit z, is rather large in magnitude, we have
merely to take few terms, or roughly the first term only, when the integrand
of (18) expanded in powers of {'. Thus we have

S“’ (—3k/2)"cdt __

eyl (1 _ h_)wsk/za 1

(8.19)  J*(r,t)=3

v=0

2 (—ter) (150,

Accordingly it remains only to compute two integrals in

o) e }:Sl/zg(r)k/z‘le(u)dt+Sl g@)kﬂ—lck(mdr}

3 ( — tO) 3k/2 0 T3k/2—l 12 T3k/2——1

For example if k=1

wm  sa=Sa( )T EWE | B
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) T e LA

where g=(1—2)2(1+2¢), x=v4c*/g and F,(n), Fi(1/p) denote the complete
elliptic integrals of the first kind with modulus x and 1/4, respectively, both
of which are <C1 in their respective integral interval. On calculating after
Gauss’ method of numerical integration, we get approximately

S(t) E%dl( —1)-3/2(1.1731 +0.4178) = 2.799/( — £o) %2,

This being equated to «/2 (a=0.1, 0.05, 0.01), we obtain as the lower signifi-
cant limits ;= —14.6, .= —23.2, {,n=—67.9, which are in magnitude con-
siderably greater than the corresponding classical values —2.920, —4.303, —9.925.

To investigate the behaviour of s(#) at the origin, we need to refer to I

(i), II (i) for ¢>0 and I (ii), II (iii) for #<<0. After transforming X into z,
we obtain for £=0 both the same form

8.22) st =adskvs|exp( TI2) g eyt e/ (1~ ey
o FP\TZ

i
+ . S » » Gk (ﬂ) 2 R

1/2

and as their derivatives

(8.28) §'(1) =4dik® 2S exp( T ikt/f 2) [r — (1 + %k) tr{l ¥ Fy(p)de/ (1 —tr)3H2*

1
+  » S 2 2 Y Gk (#) 33

1/3
Therefore

8.20)  s(20)=ddike ] (g ode+\ g 1Gi(wde |,
1 12

1/2

©.25)  s(x0)= = [go AT fdr],

all of which are positive finite. Accordingly s(¢) is regular at the origin and
increasing there, so that the mode should lie on the positive axis. All these
asymmetric feature is quite different from the ordinary Student’s fr. f., that is
symmetric about the origin, which is also its mode.

The special case k=1 illustrated above materially corresponds to a trun-
cated N. D., as is seen by putting =232 in (8.0). The investigation of s(f)
about various values of %, even confined as #=3 only, becomes enough diverse,
which however is left for students’ exercise.

9. Continued (Case n=4). The probability element is now

e—25 o ’ - .
dp=4—kl:;(k—/~27ig<x1x2x3x4>k'z 1dx1dx2dx3dx4 <x S>O, and X, S glven).
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Let the co-ordinates x;, X,, Xs, X, be first transformed orthogonally into &, 7,
Z, % in conformity with those in paper [I], as

‘ X1 X2 X3 X4 x1: 35/1/‘1—2+X/Z(=3&>
s 1o NG INE —2NE a=£/V 6 +9/vV 2 —C/V12+%
7 0  -1V/ZT INVZ 0 . _ o
e |aniE I T i %=E/V 6 +9/V 2 —C/V12+%
x(=2%)| 1/2 1/2 1/2 1/2 Xo=—28/V6 N INSTES

and next into polar co-ordinates &=psinfcose, y=psindsing, ¢ =pcosf with o=2s,
s=(x—k)v 3 /t. Further, for convenience’ sake, putting (¥—k)/xt=s/vV 3%
=z, we get

X XoXaXe = X4 [1—602—2:3(21 2 sin®cos3p -+ 3sin?fcosd (3— cos2¢p) — 4cos®d)
— 3¢ (47 "2 sin®fcos3¢ — 6sin%0cost + cos®)cosf] =xg(0, ¢, 7),
and the volume element

40— d 5,0 5o 540 1, — 165%d5d T.sindbde =28 3 dt.| x— k|°d % sinodode.

t4
Therefore, Student’s fr. f. becomes
(9. 1) s = %S”‘e—zw |Z—E| 3}2k—4d§§ Ss 22106, o, ) sindddde
EDY P

where 2;=48v" 3 /4'T'(k/2)* and the limits of integrations shall be determined
below according to several subcases.
We have in the simplex S; (tetrahedron, Fig. 3), a=BC=4%V 2,

D(0.0,041)

A(4Z,000) C(004%.0)

(n(0,2%,27,0)

B0,42.0.0)
Fig. 3
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DG,=2,/ 6% GGi= v/ G4 DGF;}%—E, GGQ:V%}, GD=76—3—?C, GG, —2%,
&ec.

Subcase I: 0<<s=(x—k)V 3 /t<x/V'3 (0<c=(x—k)/xt<<1/3). Here
0<2s<GG,, and the whole s-sphere lies in Si, so that 0<le< 27, 0<76<nx.
3k 3k
3t 3t
(iii) if 3<f<Coo, k< x<Coo, since one half of the condition holds by itself, %
cannot be upperly bounded.

II: x/v'3 <s<<x (1/3<<r<<1/v/3). Then GG,<<25<<GG; and 4 calottes
(spherical segments outside S;) should be subtracted from the whole s-sphere.

1/1/ S_kk/x< - (di) if 0<Zx<<y/ 3, t<x<1/1/33_kk

(iii) if v/ 3 <<t<<3, 3k/(3—1)<x<"oo.
II: x<<s<<v' 3 x (1/v/ 3 <r<<1). Thus GG,<:2s<<GD and the spherical
portion inside S; shall be actually computed. About x,, %, we have (i) if

i< VB G it 1at<ys, SR B G i

As to x,, xy (i) if —oo<Cf<Z0, then < x<k (ii) if 0<Tt<I3, k<<Z<,

Also (1) if —oo<If<0,

— oot

1<t<y/3, ;/’?lgjgt/x/oo The case t>v/3 in IIl and #<<3 in II do not
take place.
Also, if x be transformed into rz%%@, (1) becomes

_ k Zk) A__Sdf k/2—1 i
0.2 sty =k exp( 2 o tf)wgg (8, ¢, *)sindddy,

where it holds I: 7,=0, v;=1/3: II: 7,=1/3, 1,=1/v/3 and IlI: ,=1/v"3,
=1 respectively.

In the general case we need to investigate the inner double integral, what
however being far intricate than that of case n=3, is here left over. Presently
we shall simply consider about the special case 2=2, i.e. the truncated Laplace
distribution. In this case we can ignore g(6, ¢, r) and put dP=e¢*dV/16,
where the volume element dV can be written after [I] as follows:

I: dV/16=4nsdsdx=c|%—2|%dxdt/t*, where c¢=12v"3 n=65.2968.

o dV_ 2x_A> 3[ 2x-t ]dxdt
II: 16 45(1/33 2ldsdx=c|x—2| 3(F—2) 2 o

:%c?c(?c~2)2dicdt/ 1413 —c| F—2|°dxdt/ 1,

. dV __ . (2zs/ 2% _ x2 4sx -1 /3
III: ﬁ“6{ 3 (1/3 s>+432tan 1\/#<1—s2> V@tan \/2(x2 )dsdx
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4

% E(E— Z)dedt——]x 212dxdt +-25 %(%—2)*T(c)dxdLt,

[£]®

where

3c _11/1 C1\_1 _11/3 B e
T= tan 2<1 37) ntan ?(31-2 D, * =i

Or, else, replacing X ‘by 7, we obtain as the second forms:
I. dV/16=16cc*dedt/(1—1r)5, for 0<<r<<1/3,
II: dV/16=16cc*(2/3—1c)dzdt/(1—tc)5, for 1/3<x<<1/v'3,
II: dV/16=16cc*[(2/3-1) +2T]dvdt/(1—tr)>  for 1/v/ 3 <e<1.

By means of these dV we may write Student’s fr. f. for n=4

wdV
(9.3) s(t):TS e dtaz,

which yields concrete expressions for several subcases.

We require to find the partial probabilities P, that ¢ falls in the i-th
portion of the following successive intervals:

1° —oco<t<C0, 2° 0<<t<C1, 3° 1<t<<v'3, 4° v/ 3 <<t<3, 5° 3<i<Too,

and incidentally to get lower and upper significant limits also.
For the sake of brevity we shall use as auxiliary functions

(9. 4) ce | x—2|°=g(x), ce ™ (x—2)2=nh(x).
Further putting

_ 2 _2v3 _ 6
(9- 5) xl__].-”‘?’ xZ’*_‘/?_t,‘ x3—3*_7 s
we have for #<C0, 0<Twx;<<x,<<x3<<2, but for >0, x:>x; as {<<j, so that
2<<xy<<xy<co, the negative valued x:, if any, being abandoned. On summing
up those with the same integrands we may rewrite s(¢) as follows:

1° —oo<(f{<C0. Here 0<x,<x,<<%,<<2 and

R e e

e Sh Tdx.

2° 0<<i<<l. Here 2<7x3<xs<"%,< oo and

9.7) s(t)z%z(s gdx— 2& gdz+ 2 S hdx+2 S nTdx.

3

3° 1<¢t<<v/ 3. Then 2<<xz<<x,<<co but x,<<0 useless, and



16 Yoshikatsu WATANABE

9.8)  s(t)= (S gdz—2|” gdx>+%—tlgg hdx+2 S hTdx.
4° /3 <¢t<t3. Then 2<x3;<Coo and
_1/¢= _ ot
0.9 sty=p({ gax—2"gaz)+ 2{ hax.
5° 3<{f<Coo. Here all x';5<C0 are of no use and we have simply

(9.10)  s(t)= SgdrFS e (5 —2)%dx.

We shall discuss each case in a further details.

1° #<0, 0<<x<72. For convenience’ sake let us write
(9.11) 2x=y+4, yl:fg?’ y2:1'/_§'t_t’ y3=3fgt.
so that —4<y,<(y,<9:<<0. Then (6) becomes
(9.12) s(ty=-2 (S:‘e"ﬂysdy —ZS:e*qu'?dy) + %tS:e"fyz(y +4)dy
210" e+ 0 Tdy=si(®) +3an () +5am(®),
where ¢,=ce~*/16=0.074747. But, since

Se‘ﬂysdy: —eV(y*+3y2+6y+6), Se—yyﬁ(y+4)dy= —ev(y2+Ty2+14y+14),

we obtain

c
Say T+ San :# {e_yQ’

ys}
1

+ 2 ter(y £ Tyt 14y +14)

—tl{GJre—w[y1+3yf+6y1+6—~t(y1+7y1 +14y,+14)

_ge—ys[y§+3y§+6y3+6—%t<y§+7y§+14y3+14>]}‘

Now, required to find the d. f. S(to)zs% s(t)dt, we transform the variable ¢
into y,=4¢/(z;*—1t) (ry=1, r3=1/3) by means of t=19,/(y.-+4)r.. Consequently

bO
Sy (to) +San(to) :S_w(sm +San)dt

&y ]
:GCIS_“%+%CIS_4 <y+ 11 +5y4+%§+%%‘+2§48>dy
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32 S”“ <i 8,22, 24
AN SR a2

-4

where y:,=4t,/(1—1t,), Yao=4to/(3—1,). On applying the recurring formulas

eV nd = — g YY"+ S —y n—ld s S_e;yd —_ e’ S 1 Sﬁ—}{.
S y y y n‘ (2 y y yn y (n_ 1)yn—]_ n— 1 yn—ldy
repeatedly, we obtain
(9.13)  Suy(to) +Sen(te) = ~2t§1~4§1e—yzvo[yl,o+12+f5i4~ +1J22+9T,6]
0 Yio NYio Yio

32, [ 1 7 8 e“]
+ =ce7V0 —— A — A —
27 ! YVs.0 V3o yg.o 16

=(0)+ (i) +(ii) say.

We want their asymptotic forms for #,==0 as well as 1//,==0, denoting
those by dashing once or twice, respectively. On availing Laurent’s expansion
about #,=0, we get for #,=0

i)'=c,{ — 2 E) i) == (_4,11:1,"._1@ 2
(r=ei—gtag) W=\g ! 81>—2762’

where ¢, =c,*=4.08105, so that we have

(9.13.1)  Sen(—0)+ Sary( —0)==(0) + (i)' + Gi)' =42t — Zog, = ~0.17126.
Also, for 1/£,=0,
o T2 34,128 128 3008 . .. J
(D) ‘02[73+3tg+ 7 _= 7% +’6t8 + ,
()" =c [ﬁﬁz__@hgzi_6912_4424_ ______ }
L w3 o ’

So that we have for 1/{,=

. 09. . .
(9.13.2)  Sen(to) +Sern(t)=—1° f;lf*—@ 9 é‘%ﬁ — —5119t5,2674~ 2455;85889 ,
. 0

which is of use for the determination of the lower significant limit.
It remains to compute

S (E) :'zcl’gyze_"/yZ(y +4)Tdy.

— ),
However this being somewhat intricate, rather we consider its integral, the d. f.

0 ya=4t/(VF -
5 f’}sS ey ) Tdy,

y=47,(1-1)

by

S(ll[)(t()):g S(]”)dtZZCIS

where
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3r A, 1N 1, /3 a4y y

SN Yri B WA vow s B

tan 3 ( 53) tan 5 (3c2—1), =« o+ i’

which is non-negative, because T’(r):itan*‘/ l(l—i)zo in — =<zl
- 2 3¢2 1/ 3

and 7'(1/v/ 3 )=0. First, interchanging the order of integrations, we have
dt

(9.14)  Sumn(to) = 2c18 ?S ey (y+4)dy

1 Tdt T

:26‘18 Tevy? (y+4)dyS —”(y2+4)dyg ’*"tgdt

= (i) + (iv),

where t,=9/(y+4), y2=yv'3 /(¥ +4) and y,,0=4to/(1—Lo), yr.o=4to/(V' 3 —1o).
Next, replaced ¢ by t=y/(y-+4)t, the inner integral of (iii) yields

G 201
[ irem 2=(204)Y, T,

+2018 "

Yito

in which the definite integral after integration reduces to
1 AY
eo=\ _T(ede=g (‘/ 3+ 1) =0.02659.
1/v'3 k4 6

Hence, on putting ¢, =2¢:¢3=0.21705¢7*=0.003975, cs=c,e*=0.21705, we obtain

Ple+ 24t0+<1ﬁ0>2+<13i0>3}} :

(iii)z@S; ev(y+4)dy= c5{6 eXp(l .

Therefore, as {,=0,
(iii)’ = (6 — 142¢*)cs =65 —142¢, =0.73779,
while, as 1/f,=0,

13.8912 100.0156 445.6760

@)= B

Lastly, as to (iv), its inner integral becomes

(21%;1)2810 _ Tzdx, 7=
/v 3

Yy
y (y+4to

This integral yields after integrations by parts

T 3 7 N
’ — %o —1]/i< __1,>__1,< 2 __ —11/3
(9. 15) Sl/ﬁ:rm’r % tany/ 3 {1-3a) o /tan (3c-1)

+J/61/32 1= (z;) say
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Hence

(iv) :2618y2~°e_y<y +4)3T (zo)dy.

Y1'a

Here on transforming ¥ into »=23/(y+4)¢t,, i.e. by replacing y by 4fep/(1—tey),
we obtain

vy = —cotaf, _exp(; "} )5(77) 055 (eo=51201=2080.50).

Therefore, when #,—0, (iv)'= 0({,) =0(1), so that

(9.14. 1) Suin(0)=0.73779.

This together with (13.1) yields

(9.16) S(0)=8,00) +S:n(0) +Su1,(0) =0.56653=P,,

which also shows that the distribution is unsymmetrical about the origin and
the median is negative.
Finally, required the asymptotic expression for (iv) as 1/£,==0. Expand-
ing the integrand of (iv) in powers of f,7!, we get
T < 9 | 47 > .
v)="% 142k e T2,
(v) £ Sl/\/? toy i ()25

0

Whence the successive coefficients of f,7™", as SET (p)dp/3" (m=5,6,7) are found

by successive integrations by parts, and thus

(iv)7==207-4682 | 124.8300 , 769.1497

ta 0 tl)
Hence, by the superposition of (iii)” and (iv)” we get

(9.14.2)  Sum(te) = 18?7;‘779&478}%& 328411
4] Q

Combining (13.2), (14.2) together, we attain finally

(9.17) S(to) =  46.4014 425.8596 5094.4536 _ 244228 ’

t() t(J t() t(
when to<<0, |to|>1. This equated to a/2 (a=0.1, 0.05, 0.01) and solved by
Horner, we find as the lower significant limits #o;= —7.99, 0= —10.91,
t()‘oj - *19.15.

2° (Q<7ft<1 (2<C%<Coo). Starting from (7), we use the same notations
as in 1°, but with the alternation of the upper- and lower-limits of integrations
after I-, II-, III-(ii). Also transforming the integration variable x into
r=(x—2)/xt, i.e. replacing x by 2/(1—Z¢r) and denoting
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exp<fz%>/(l—tr)5=c(t, o)

we have

1 1

Grsawig szdf+2g1 _GrszT],
3 3 /3

/v 3

(9.18)  s(t) :16c[S:GTSdT~2S

1 1

When t=0, G=e¢* and we get readily s(0)=0.29025. Further to compute
1

szgs(t)dt, substituting s(¢) by (18), interchanging the order of integration
0

and then replacing ¢ by u=4/(1—1tc), we get

(9.19) P,=X

o e e o, 5
16 SV

0 3 1/3 1/v3 4
The new inner integral becomes after integrations by parts
(9.20) 142¢*—e*(*+30v2+60+6)=K—V(v), where v=4/(1—1).

Hence, the part of P,, which comes from K, is

(9.21) fl—zlzce“*‘:glﬁdr—ZSl 12dr+281 z'dr+2§1 _errjlzZi?’—ce‘4=0.43347,
16 0 1/3 3 Jus 1,8 108

while the remaining part of P,, due to V, reduces to

(9.22) L e e T ps 000023 = —0.11075.

8 54 9
In fact on replacing « by (v—4)/v and integrating by parts repeatedly, Sz-Vdr,

Sr2Vdr are easily found, while the last one SrTVdﬂ: becomes

1
j=—g\ e +30+60+6) Tede

/v 3

_ —6c(” —1]/l _L<L>2> —v(i_ﬁ*lﬂ2>
B nStan 2(1 3\v—4) )¢ \v v4dv’

vg=9. 4641

which ought to be numerically computed. Upon expanding by known formulas

L)1 1<v>2>ﬁ1 _1_1[71 11 3 5 }
14/ = —_ =y _Z —_ e e e e s e 60000
tan ‘/2<1 3\n—4)) 25¢° 212 T X T6X® 40X5 112X° ’
where X=r9(1—i>2—11/[3<1—i>2+1:| and further writing w=§—<1—£\,
L v v v v,
X:%}%’ZZ—W—wz---=2[1~-2—<1+%+-.->]:2<1—c) &c., we get at length

sect X =1.0472 — =20 o=EES , which being stbstituted in j and inte-

1.7289 12.9231
v v?
grated about v, yields the last figure of (22):
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0.2 == secrxee( 2 -5 1245 —0.00028.
T Jog v v

Therefore (21), (22) together amount to
(9.24) P,=0.32272.

3° 1<<¢<<v/3. From (8) and (11) we get the fr. f. in 1<t<v'3,
similarly as (12),

s(t =ﬁg evydy— 2018 ‘l’y3dy+2 ;;Se“yy (y+4)dy

t4

2
t?s Tevy:(y-+4)dy.
The integrations are easy except the last one. Further, writing u=y;=
4t/(3—1t), we have the d.f. in 1<¢<<v/ 3

B Vs _ 1 1 B vE 3 5 Ef_f
0.2 S@®=\' s(t)dt—261<—t§ )20 e sut but6)%

+zclg/ e (w4 Tu+14n-+14)=2 +2018 dtS Tevy2(y-+4)dy

3 A PP S
= (1) — (ii) + Qi) -+ (v)
Considered the second and third together, replacing the variable £ by # as
t=3u/(u+4), they become after integrations by parts

P __32clg5-4641<1 8, 22 24)
(i) + (iii) = o7 ule u+u2+u3+u4 du

326‘1 [1 7 _8_]
27 u+u2+u3

5. 4641

~0.000175—0.088589¢ (L + 7 8,
U, U U

where u,—=4%,/(3—t,). In particular for t,=1, u,=2, we get
(i) — (ii) - (iii) =0.081934.

As to (iv), we first interchange the order of integrations and then replace { by
v (=y/(y+4b)
VT3 /(v +d

(iv):261§:3ﬂSwTe—yy2(y+4)dy:2clg evy? (y+4)dy§ Tdt/e

B Yr=tt/ve-5 yo=H VT 4D

/(3 +4) oo z-4)/z=T]
=2c18 “y(y+4)3dy8 (, Trdr=2c1e4g e‘zz3dzg( '/Trdr(z:y+4).
)

yo=5.4641 zg=yo+4 /v 3

But S  Tede—T (1) after (15). So that

/v 3
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oo

(iv) 226164S e22°9 (ry)dz, rlzl—% .

z

Integrating by parts. and observing that
Se—zzd?’z = (24324 62+6), T'(r)=uT@), P=2

we obtain
(iv) = 801e4gme“z(z3 +322+62+6) T(n)n%—f
—8c.et\ e(z— _64_1§g2é> \
Bewe 89.465 (Z . z 22 z° T<Tl)dz.

And once more integration by parts yields

8] gty L1 LYe(L 8 )
)=ty (3 5 )¢ (L5 -12)a:—0.00028,

because it is noting but j of (23) only the sign changed. Therefore we attain
(9. 26) Py= (i) — (i) + (iii) - (iv) =0.08216.

But P,+P,=0.88925, so that P,-+P,+P;=097141. Hence the upper signifi-
cant limit 704, such as S%:s(t)dt:O.QS, lies in the interval 3°: 1<t<<v/ 3.

Writing fo..=1+0 we get by (25) &c.,

S() = qumdt:zcl[ . ——L] +o.088589e—m(l+l +§> +(iv)
145 (1+8)® 27 w, uloud ’
where #,=4(1+6)/(2—8) and after the foregoing, the present (iv) may be
put 0.00023(1—d). Expanding in powers of §, we obtain

S(5) =0.08216 —0.243015 +0.748585% - 1.85458° + - -,

which, when subtracted from P,+ P,+P3=0.97141, yields just 0.95. Thus we
obtain
0.88975 4 0.243015 — 0.748586% + 1.85485° =0.95,

1e. 1.854580% — 0.748582+ 0.243016 —0.06025 = 0.

This equation solved by Horner, we get §=0.317, and therefore f,,=1.32.
4° /3 <t<<3. In this subinterval, the calculation becomes an easy task,
now that III does not matter. By (9) we obtain

s(t)= % B:e—yy%iy - ZS eVydy+ —g-tg e’y (y+ 4)dy]

oo =3
y3 y3

:%{3—e°“[u3+3u2+6u+6+é—(u3+7u2+ 14u+14)1},
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where #=y;=4f/(3—1%). To integrate about f{, we may replace { by u, and
thus obtain for 1/ 3 <#,<<3

) _ 3 _ —1__7];~}§ _u1<l Z —_8_ :{
(9-27) SC) Sns@dt ch[ti’ 27 77° u1+ui+ui) :

where u,=4t,/(3—t,). In particular, for £,=v 3, u,=5.4641, we get
3

(9. 28) P4:S _s()dt=0.02306.
Vv 3

Hence P+ P,+ P;-+P,=0.99447, while P,+ P,+ P,=0.97141, so that the upper
critical value, such that Sbo'oss(t)dt=0.975, lies near =1+ 3. Putting t,=

V'3 A+, u,=4(1+8)/(v'3 —1—¢) in (27), it yields
g3 s(£)dt —0.02860 — 0,08357¢ +0.15255¢% — 0.20554¢°,

to which P;=1-0.99447=0.00553 added up, the result should be equal to
0.025. Solving that equation, we obtain ¢=0.055. so that f;=1.055¢"3 =
1.83, which gives the upper significant limit for level a=0.05.

5° 3<f<Ceo. After (10) we have simply

o O\ g 0yag = Sce 044848
(9. 29) sy =L\ e (n—2)2ax =507 DA
so that

_3ce*(~dt _ce* 0.149494
CEt St ==~ SHF" 8 £

Hence s(3)=0.00554, as well as

(9.31) Py =0.00554,
We obtain
(9. 32) P1+P2+P3+P4+P5:1.00001,

where the error 0.00001 came from having rounded at the fifth decimal place
the further following figures as 1 or 0 according as they are =0.5 at that
place. Lastly by equating (30) to 0.005, the upper significant limit is im-
mediately found to be

to.01=170.149494/0.005 = 1/29.90 = 3.10.
10. The Beta-Distribution as Universe (Case n=3).

The general B(p,q) distribution®

1) H. Cramer, loc. cit., p. 126 and p. 243,
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(10.1)  f(®) :;(%;gq)jx’“l(l—x)“—l, (0<x<1, p,q>0)
whose mean is m=p/(p-+q), so that O<m<1 and m=1/2 according as p=yg,
but m=1/2 if p=¢q. At the lower end x=0, f(x) tends O or oo, according
as p=1 and similarly also at the upper end x=1, according as g=1. There-
fore, if p, g are both >>1, its graph shows a bell-shaped one, but, if both or
one of p,g<<1, a U- or Jfigured. When and only when p=¢g=4%, the graph
becomes symmetrical and bell or U-shaped according as k=1. For the sake
of simplicity, we shall only confine ourselves to this symmetrical case:

(10.2) Fl)=clx(A—x)1%", =T Q2k)/T(k)? O<x<1,

where the mean is always 1/2. More particularly if 2=1, it reduces to the
rectangular distribution, which however specially discussed in sections 11, 12.

Now from (2) a 3-sized sample (x;, X, %3) being drawn, with mean X%
and variance s2, where 0<Cx<(1, O<Cs<Too, its probability element is given by

(10.3) dp=ci{x %21 —2) (1 —2) (1 —x3) 1 **dx,d xd %5 .

Transformed the co-ordinates orthogonally as in section 8 again:

I D x=—8/V'2 —9/V 6 +C/V 3 (=1
; \—1/\/? VT 0 _ Ny
1 | SV CINE VE KIS Wj* x

(=vIE| M3 VT IVE P on/V 6 %,

and further into polar co-ordinates: ¢=pcosf, y=psing with p= v/ 3's, we get
dx,dx.d %, = dedydl = pdpdfdy' 3 x=3V"3 sdsdxds.

Hence the joint probability of X, s becomes
(10. 4) dP=3v/3 clasa#\Q1ds,
where
QA[ka—%szﬁj‘%smsa][u~5¢>3—_§.s2<1—50+75%sinsa].

Or, on writing (x—1/2)v/ 2 /s=t, the Student’s fr. {. is given by

(10.5) () = I{FSZ<5€~%>2MSQQ”—W&, c=6v 3¢k,
where

o e 1) 3o o]
(10.6) Q-[ﬁ Fx(x 2) s x 5 sin36
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By reason of symmetry we may only conceive the case #<C0, x<1/2.
The six planes x,=0,1 (»=1, 2, 3) enclose a cube € with center G,(1/2, 1/2,
1/2) and side 1, which forms the entire domain of sample points {¥i, %, ¥s}
(Fig. 4).

The 3 sides of the cube, OA;, OB,, OC, being the x;-, %,-, xs-axis, the
C-axis is the diagonal OG,0’, through whose any point G(x, %, ) with
0G=1v"3 %, the plane x,-+%,+ x;=3% passes perpendicularly to the {-axis and
its section of the cube yields the region for x=2x.

Primarily we consider the subcase 1° 0<Cx<C1/3, where the section becomes
an equilateral triangle ABC with G as centroid. In particular for ¥=1/3 the
section by the plane x;+%;-+%3;=1 becomes a maximal triangle A4,B,C,, while,
for x=0 it degenerates into a single point O.

Secondly 2° if 1/3<Cx<C1/2 the section becomes an hexagon DEFHKL,
whose sides 3 by 3 are equal. In particular, if x=1/2, the section becomes
a maximal equilateral hexagon D.E.FoH,K,L, corresponding to =0, whose
vertices coincides with the middle points of the six sides of cube.

For the general (triangular or hexagonal) section made by the plane
%1+ %, +x,=3%, the radius of inscribed circle being GM=v'3/2% (or GM'=
V'3/2%), we get firstly I: 0<<v' 3 s<v/3/2%, i.e. 0<<v/ 2 s<%, where the s-
circle lies wholly inside € so that 0<(#<2x and 0<I(2%—1)/{<2%. Hence

we get

. c 1/2
0.0 s®=-5

1/(2-1)

<5c ~%)2da_cgzw€)k-1d0 (— oot <0).

Next, when 0<<%<C1/3 with the triangular section, if GM=v3/2%<v 3 s<<
GC=v"6 %, ie. II: x<<v 2 s=(2x—1)/t<2%, we get %o=1/2(1—1¢), but x,=
min(1/3,1/(2—1)), In these cases the s-circle splits into 3 pieces and their
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contributions amount to 6 times /PB (Fig. 4) with 6y==n/2 and 6p,==/6-+7,
where cost=%/v 2 s=%t/(2%—1). Hence

(10.8)  su(®)=-€ Sm ? <x~—~) de " 6Q1ds  (—oco<t<<—1)

. 1301- ) /6T

c 1/3

= S ” . (—1<t<—1/2)
—t3di2a-0

since in the latter 1/2(1—¢) needs to be <C1/3.

But, when 1/3<Cx<C1/2 for the hexagonal section, the two adjacent sides
being HK>KL their central distances are GM'=v'3/2x<GN=v'3/2(1—%),
(%<<1/2). Hence, if GM'<v/3 s<GN, ie. II': <V 2 s<<1—x(<2%), and
accordingly (1+1)/(2+#)<<x<<1/(2—¢), so still holds x;,=1/(2—1¢), but xo=
max(1/3, (1+1)/(2+¢)). And the contribution from s-circle is again 6 times
the arc P'Q with 6¢=n/2 and 6r'==n/6-+7, where cosr=x{/(2x—1), as
before. Hence

1/(2—1¢) /2
10.9) st (H==4{" <;C_%>Zd,—cgm+ﬁ@k_ldg (—1<t<—1/2)

i t3 1/3
Y-

=c/(—t)3g y . (—1/2<t<0).

A+8)/C+t)

Furthermore we need to consider the s-circle with the remaining arc-pieces,
such that GN'=v3/2(1—-%)<v 3 s<GK=v6(x*—x+1/3, ie. II": 1-%<
V' 2 s<2v/%*—%+1/3(<2%). They are 6P"Q" (Fig. 4), where 0y'=
cos1xl/(2x—1)=7r and O¢'=cos*(1—%x)t/(2x—1)=4. Also inequalities II"
vield %= (1+8)/(2+t), xo=(1-+¢/v/3(1—12))/2. With these limits we have

(10.10) See (£) = TS ( —é_> 2d:"ch6Q’“-1d0.

We shall treat as example the case 2=2, f(x)=6x(1—x), a parabolic
distribution. Then, since the inner integrand reduces to € itself, we have

(10, 11) -1 ng <x . l) 2da’cS”Qda (—cot<0)
12— 1) 2 0
1/2~1)
(10.12)  su(d)=- S ‘ ( >dx§ " 6Qdo (—ooci<—1)
[]2dvea-o /64y

&c., where @ denotes expression (6) and r=cos™'[*t/(2%—1)], ¢=12961"3
=2244.7378.

To evaluate the critical values f« (a=.1, .05, 0.01) as |#.|>1, it suffices
merely to investigate the above two formulas and to compute approximately
by the expansion in powers of #!, neglecting those powers of higher degree
than e.g. 7. First (11) reduces to
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(10. 13) s;(t)=%"l—csgw [14‘;(1—@3(14@2

12~1)

+ 3 (x—2)((1—-x)2+x>)(1—-2x)*

1612
9 o L o1 s] _
+64t4(x 22 (1—-2x) 1281,‘6(1 2x)8 dx (t<<—1),

whose last term may be neglected, since it becomes O(¢7°). Numerically it
becomes

(10. 14) 5,(¢) = 0203718 | 125.929 Eltgzﬁé?

T A
approximately.
Similarly (12) reduces to
T ) L R e )
(10, 15) Sn(t)—m—«S (717 3cos 521 x3(1—x) 5 X

[£[2d12a-0 -

-gemaasrenl-o b o)

1/(2-t) 2 S
mi%ﬁglﬂ(l—t)(%_x> <(1“x>3_x3>((1”‘2x>2_4x2t2>1/(1—Zx)z_“xztzdx

= (i)—(@i) say.

To rationalize the integrand in (ii), we transform x into y by v/ (1—2x)%— x%*
=3V 1—2x—xt>0, x=(1—y?/D, dx=4tydy/D? where D=2(1—y?) —
t(1+y)>0, because of <0, x<1/2, so that »2<C1. We notice also that
for <0, |t|>1, D=—t(1+y*) >0, x=— (1—32)/(1+y2¢>0 and consequently
V(1222 —x2#2==2y/(1+5%) >0, but (1-—2x)2—4x%2=1—4(1—y2)2/(1+y??
=0. To calculate (ii) up to the order of #7, we ought to take only those
terms of O(1) in its integrand. Hence

=g, [t T e <o

Also, integrating (i) by parts, we have

1/(2~1t) 26' 1/(2—1) 3[<x)dx
__Fgmu-z)(l—Zx)V(l —2x)— x?

N _ 2c 1 Xt
) ]tlé(nv&)os m)l(x}

= ('~ ("

1/2(1-¢)

where

(%)= S[Jﬁ(l —x)3<% -x>24%(x~x2) ((1—x)2+4x2) (-;——- x>4]deSE(x, Hdx.

Since the integrated part (i)’ vanishes for the lower limit, it reduces to
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. 2cr 1 2cx (VO j
) e
(D) E 2= T E(x,t)dx

Hence also, as noticed above, we are only to take those terms in E(x, ) of
degree not higher than %3, £3. Thus

. ;,_\_,2677:81/(2_’)<x3_ 3 x) _ 2cn x4_3x2} __c(n
<l)*1t13 4 16 dx“ms[ﬁs 32£2 Jye-n 1647

Lastly in the not yet integrated part (i)”, again equating the radical to
y[(1—2x) —=xt], we obtain

(e dy [T
B 14+9416 3282 fi=-a-saerm

;f_g““?[(_l:,yfyﬁi(,l;ﬁ)z]idyr:_c_(1+ﬁ>
417 1-+32) 2\1+3% J1+y* 64[¢]'\3 8 /
Therefore

(10 16) SII(t) = (1>, - (D”_ (11)

_cr ¢ (m V'3)_ 36687
‘16t7+64t7<3+ 8> 7o

Hence (14) and (16) together yield

(10.17)  s(B) :50?3718 + 1251;?29 _ 145t27.s1

(=<0, tI>1).

Consequently the d. f. is

10.18) S =\ s(pyar-2280 31482, 22235 o,
This is to be equated to /2 (a=0.1, 0.05, 0.01) and solved for {*=x by
Horner, so that fe=+1/vx. Thus we find #,= 42242, # = +3L.72,
to.01=+100.7, which are considerably large in magnitude, compared with those
for the corresponding classical Student ratios: 2.358, 3.183, 5.841.

The investigation for those cases that % takes other values than 2,
especially the case that £=1/2, as a continuation of section 5 in [II], is re-
commended to students’ self study.

11. The Rectangular Distribution f(x)=1, x>0, as Universe, Case n=4.

By symmetry we shall only consider the lower half: 0<<x<C1/2 (¢<<0),
which shall be further separated into two subcases: 1° 0<<x<C1/4 and 2°
1/4<<x<<1/2. For 1° the simplex S; (tetrahedron, Fig. 5) lies wholly in the
4-dimensional cube € formed by 4 unit x.-semiaxis (v=1,2,3,4), since the
four vertices A(4x, 0,0, 0), B(0, 4%, 0, 0), C(0, 0, 4%, 0), D(0,0, 0, 4x) all lie
in € because of 4x<<1. However, for 2°, the vertices of S; are outside €,
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e.g. D’s x,=4x>1 (Fig. 6). But the centroid G surely lies inside € because,
its co-ordinates all =x<C1. Hence,

there exists a point M* on DG D(000,47)
with x,=1, O0<<x.<<1 (»=1, 2, 3),

which is also a boundary point of

€. Indeed, an intersection of Sj

with € is the plane A*B*C* drawn

through M#* parallel to the base

ABC. For, if P be any point AZ000)
inside A*B*C*, and @, R be the
point of intersection of DP pro-
duced with the base, and AQ pro-
edduc with BC, respectively, then
the co-ordinates of the successive
points R, @, P are R(0, 4x%/(1+v),

- 4x dxp 4%y 4z Axapm
4%xy/(1+»), 0), Q(m’ Arp) A+ Qre)d+’ 0)’ P<(1+x)(1+m’ ATrn A+ A1)
m m) where 2=DP/PQ=DM*/M*M, n=AQ/QR, v=BR/RC.
Hence A=const.=DM*/M*M for all points on A*B*C*, so that their 4-th

GIZZZ7)

C(0.042,0)

_\ 4_ -
(224

N(0.22.27,0)

B.42,00)
Fig. 5

D(0,0,0,47)

C(0.04%0)

A

B(0,4%,0,0)
Fig. 6

ordinate x,==4%/(1-+4) are also constant=1, because that of AM* is unity.
Thus all points on A*B*C* have x,=1 and lie on a boundary of €. In
particular, if P coincides with M*, 1=4X—1, =2, v=1, so that the co-
ordinates of M* are x;=x:=%x3=(4x—1)/3, x,=1). Similarly on any plane
paralell to base, the 4-th ordinate x, is constant, and in particular x,=0 on
the baseplane ABC.

As the fourth ordinate x, of the inner point of the smaller tetrahedron
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A*B*C*D is much more >>1, the simplex S; is beheaded at D, and similarly
at other 3 vertices also. Thus the
D(00.02) tetrahedron becomes now an octa-
. hedron with 4 triangular and 4 hex-
agonal faces, the latters being the
degenerates of 4 old triangular faces.
Every point on the new triangular
faces has 4 co-ordinates, one of which
=1 and the remaining three <1/2,
because their sum=4x—1<1. In the
limit that x=1/2, however, it reduces
to a regular octahedron (Fig. 7),
whose faces are all equilateral triangle
with side 1, where either x,=1 or 0
(v=1,2,3,4).

Remark. For the case 1/2<x<1,
geometrically we should consult with
the tetrahedron, whose 4 vertices have 3 ordinates, each=1, and the remain-
ing one=4x—3. This tetrahedron is complete (unbeheaded) or beheaded,
according as 3° 1°>x>>3/4 or 4° 3/4>x>>1/2 and these two snbcases just
correspond to the foregoing 1° and 2°, respectively.

Now we shall examine each subcase separately.

I O<s<<x/v/ 3. After paper (1), we see that dV,=dP,=64ns*dsdx~
24v" 3 #|2% —1|3dxdt/t*, so that the contribution from this portion to s(t),
is

s: () :24.1,//??,,7€le |2%—1|%d%

t4 EY

8V 3z@x—-D s [,
[/ 1],
where J; denotes the left standing indefinite
integral. Condition I means that the radius of
s-sphere, 2s, is such as 0<I2s= (2x—1)v 3 /t
<2x/v' 3 =GM (Fig. 8), which inequalities
solved for x yield 1/2>x>3/2(3—t)=a=a(l)
for t<<0, so that x,=a, x;=1/2. Hence

- 1/2;3.'/#3_7.5 e
(11. 1) SJU)*[]{L ‘(3‘_’“54 ( <t=<<0). Fig. 8

II x/v/ 3 <s<<x. After (I}, four calottes being rejected, dVu=dPu=
64n(2%/V' 3 —s)sdsdx =323 n%(2k—1)*dxdt/|t|°—24v 3 n|2x—1|dxdt/1*.
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So that

(11. 2) su(®)=1L—N1%

where
32V 3 (=ron 1vesm_ 2V 3 m _1via 4 ron_1ys
Jo= B3 ez —1az=20 | Gx—1s+te—17].

Condition II means that s-sphere’s radius 2s is between GM=2x/v' 3 and
GN=2%, and whence follows that 0<<b=v"3 /2(v/3 —#)<x<3/2(3—1)=a.
Firstly, for 1° 0<Cx<C1/4, we shall take x,=»5 and x,=min(a,1/4). Hence
X1=a, if —oo<(f<(—3, but x,=1/4 if {>>—3, in which case however it needs
b<<1/4, so that —3<<t<<—+¢/ 3. Thus

(11. 3) Su(t)=1[]Jo—J1l} if —oo<t<<—3,
=1, 1 if —3<t<<—v'3.

II' Next for 2° 1/4<x<C1/2, the bounds of the Il-typed s-sphere’s radii
2s, may be affected by beheading of S; (Fig. 6). Here it is clear that the
central distance of the new face A*B*C*=GM*=2(1—-%)v 3 >GM=2%/v"3 ,
because of x<<1/2. Hence, GM* =GN =2%, according as = (v 3 —1)/2=0.366.
First assuming the upper sign, if 1/4<<@<<0.366, i.e. —3<t<3(1—v 3)/2=
—1.098, still with the same bounding MG<2s<<GN, we get a>%>b and x;=a.
Yet now %, shall be max(d, 1/4), so that x,=1/4, if —3<<t<<—1/ 3, while
%o=b, if —v/ 3 <¢—1.098. Next, when 0.366<<a<<1/2, —1.098<¢<<0, GM*<<
GN and the Il-typed s-bounding makes MG<2s<<GM*, which yields a>x>
(3+26)/2(3-+t) =h>0, and thus still x,=«, but x,=max(k, 1/4). Now
h=1/4 according as = —1. Hence x,=1/4 if —1.098<{<<—1, while x,=h
if —1<(¢<<0. Therefore we obtain

(11.4) s’ (8) = [Jo—Jilin if —3<t<—-v'3,
=[5 1 if —v/3 <t<<—1.098,
=[ , lin if —1.098<<t<<—1
=[., 1 if —1<<¢<<0.

However, the first of (4) combined with the second of (3), it enlarges the

upper limit —3 into —v/ 3 in the first of (3), which further combined with
the second of (4) makes the upper limit —1.098 and we attain

(11.5) su(t)=[L—]ili for —oo<Tf<<—1.098.

II” The case GM*<2s<<GN belongs also to II (Fig. 9). In this case
however we ought to reject the s-spher’s portion swelled over the new faces,
whose area after Archimedes is 272s.(2s—-GM*) X4, so that the corresponding
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elementary volume now becomes

AVi= {12‘;43 ”|25;—1|3+%T§£x<2k—1)2—8‘|/”§ ”(2%1)2}4415“11,‘.

Accordingly the integral [2],+ . — /4],
where J.=32 ’é‘ng(zx —1)2dx/ 1),
should be subtracted from the ordi-

nary Il-constituent [J;—/.]. Hence,
the contribution now reduces to

(11. 6) s =1{J,—3]]:.

C As to the limits, it may happen
that GN<=GN*, which occurs accord-
ing as 1/4<x=3/8=0.375. Hence, if
3/8<x<<1/2, GN<<GN*, we should
consider the contributions from
(i) GM*=2(1—%)/V 3 <2s<GN*

=2v(x—1/2)*+1/8<GN
and (ii) GN*<2s<<GN =2x.
For (i) we get

Fig. 9

311"(1)<t> = {]4*3]1] §/8 if *0.6<t<—0.577,
=[, I if —0.577<¢<<0,

where h= 3+2t = 1[ 2

AU . I I S mit 0.6 i )
203+0)’ 5 1+1/2(3~t2)] and the lowest limit 6 is ob

tained by solving the inequality after f. Also for (ii)
soan() = [Ju—=3i+ X1} for —0.577<¢<0,

where the rejected calottes over the new faces overlap, so that some X>0
must be added in the integrand, of which the exact evaluation shall be per-
formed by the direct method, as done in III of (I). However, our main
purpose being to detect the significant limits #4(«<<0.1) and they are really
1”3 in absolute value. Therefore we may ignore those s(¢) for [#]<1.
Hence, the above obtained partial s(f), or also those in below, whose argument
t is =<1 in absolute value, need not be investigated.

I x<<s<<v/ 3 x. We consider first the case 0<Z%<Z1/4 with unbeheaded
Ss (Fig. 8). Then III implies that 2%=GN<2s<<2v/ 3 x=GA and we have
by (1]

P =108zl (-2 SN 3s. . J1(; %
dezz—szu—lZst{?<1/§ ?C>+ }tan 11/§<1 Z )
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- 7 N\
~v'3 tan“ll/?(’;é’*l)}dxds
— {32y 3 ax(2%—1)%/|t|3—24v 3 =|2x—1|3/t*
+96v 3 n(2x—1)*T/|t|* dxdt ,

where
— =3 —1‘/i< _ ,1,,)_,1_ —1]/_.3; 21y  _2E—2__S
T=T() ﬂtan 5 1 38 7rtan 2(37 1, 2% 373"
Hence we obtain
LD su@®=Lh- Rl =203 v@a— 1T,
where x,=1/2(1—¢)=g>>0, %,=min(d, 1/4), so that
(11.8) S =1 Lo—Ji+]sl} for *00<t<—1/§,
:[ 2 ]1’/4 for ‘1/3 ‘/\/t/\—‘l .

11T Secondly for 1/4<<x<1/2 with the
beheaded S; there arise 3 subcases:

) %<a‘c<‘/§21:0.366,
GN<2s<GM*<GN*
G) ,, GN<GM*<2s<GN*
(Fig. 10)

(ii)  0.366<-x<-3/8=0.375,
GM*<<GN<2s<-GN*.

We get for (i)

(11.9) Sur'(8) = o= i+ Jslin Fig. 10
if —v'3 <t<<—1,

= ~ L if —1<t<<—0.634,

=L ~» ™ if —0.634<¢<20.

Hence, summing up the second of (8) and the first of (9), we get
(11. 10) 3111<l>:[]2_]1+]3]2 for —oo<Cf<—1.

However, for (ii) (iii), we ought to reject the calottes over the new faces, as
in (6), so that e.g. for (ii)
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SZORIRAS TN AR i —1<t<<—1(3—v/3)/2=—0.634,
= o if —0.634<<t<—1/v'3 = -0577,
= sy if —0.577-<t<0.

Thus these in (ii), and also those in (iii) (in which really |#]<20.634), all of
them may be ignored.

So far we have exhausted all 2s<<max(GN,GN*). To speak minutely,
there still remain some corner cases with those 2s, such that (iv) GN<GN*
<25<<GC* for 1/4<x¥<3/8 and (v) GN*<<GN<2s<<GC* for 3/8< x<1/2.
However here the upper bound of |#| is 1 in (iv) and 0.577 in (v). So that
all partial s(#) for these argument values may be neglected.

Now we proceed to evaluate s,(f)=s(¢), confining the interval as —oo=<t
<1.098 or <<—1v/3. We get in view of (1), (5), (8)

AL11) s :?34%% A ATEEY Ay iy AT
= e + l]z*]1]7"| []a”

B 2 2 3
wco[a—_—t>§ €EDE (1~t)4]+lt}3gx(2x 1)2Tdx

=p(t) +q(1),

where co=n/v" 3 =1.81380, ¢,=961v" 3 = =522.3742. Also p(t) being a sum of
plain binomials, it can be immediately integrated:

: 3 111 .
ar12) P@={ pdt=c i gy (—e<t<—v ).

And this may be also expanded in powers of 7' as Laurent series when
[#]<<8. In fact
3,21 98,390 1437 5075 17460

(11.13) P(t):~co[t3+t4+t5+t6+ T T ] (1¢1>3)

which however is invalid for |f|<C3. The second part Q(t):gc g(H)dt is

comparatively small, yet enough complicate to compute. Upon writing
11.14) g =[]a1 ltl?j—ltlggx(Zx D T()dx,
where

_l}z‘ i <_ 1 _1%3 B ) _1|/1<__f
T() tan 1/ 1 30 > tan (3¢? 1) T ()= tan 5 1 31_),

vV'6 2xt de 1
T —_ — e e
(=) (92—1)v32—1 fTox—1" dx  2tx®
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We have r=1/v"3 or 1, when x=56(¢) or g(¢) and T(1/v/ 3 )=T'(1/v3 )=0,
TA)=1/6, T'(1)=1/2. Hence, on putting
4 1

u(x)= %<x4 —xd

oty S ) _vV 6
3 5 2x2+-x), €y

), ”O‘)_L‘zt( 2

and integrating by parts, we get

(11.15) j=-—ul(g)t+v(g)+ ;Z Sz<x—2—%é%><972_1‘;3372,_,,1(=w, say).

To compute the last integral w, we transform x into r=(2x—1)/2xt so that
x=1/ 2(1—#r) and obtain

: :E%_ . 6 —_ 4 e 1 dT
(11.16) 41t|&w[1~tr <1~tf)2*<1~tr)3]<972_1)1/3,z_1'

We desire to rationalize this w’s integrand. For this purpose we write its
factor as a sum of odd and even functions, so as
o ng l: 6 9 4 } rdr
R o I Ry o B ’)z (1) | (92— 1)1/ 3e2 -

- Sl [_19,7 oo 4 _] dr
T —ath s A A0 - DV 31

Further, puttiing v/3r*—~1=2z or zc in w, or w,, we get

w:%g“[ 2 4 9 v 12 ]J’;L
Tl P23 (B 3)¢ (P -3)¢ |32 +2”

_ (L, dz
o ‘4t80 [3+'<22+t2—3>2]22+6'

These can be formally integrated, which are of use to obtain the fr. f. s(¢).
However, what is more required, is their integrals

| ¢ owdt_ (¢ 3dt@’f[_g_ S
12 } dz

(1222 +1*—3)° |322+2

wo(t)dt

(11.18) Wo(t):csgb e

N e 4t 7 dz
*c"‘gmﬂg L3+(z—+t2 3)2-(z2+t2—3>3]z2+6’

where ¢;=c¢1¢,/4=18v" 2. But, e.g. in the domain B( —oco<f<< —2, 0<r<<y 2)
all these integrands are of magnitudes with definite sign =0 respectively (the
latter being factorized by 1—1/(22+¢*—3)) and uniformly bounded (more in
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details <69c¢3/16 and <10c;/16, respectively. Therefore after Fubini the
order of the repeated integrals may be interchanged, what is also true for the
whole W= W, + W,. But, we are concerned with the d. f.

119 @ =\" qwar=c\ (—urv+w L= UV W),
where
U =af wg®fy,  Ver=af vew) %, ad

(1200 Wy=el w ICL{T‘*

:Cgc _dig <6 _ 4 .1  dr
Vet Jy T \1—tr (1—1r)? (1—tf)3><9f2~1)1/372T1

It is easy to integrate the first two: In fact,

v =i _a(e—ge+ )i

== X-iZ(ll Dk 3(12)“4(12}’]%"

vi=af (g2 Se)lb=—0f [%‘TZ*T +2<1'1:f>%]%lf-

Thereby making use of simple identities

1 1 1 1 1,1, 1
- 1= BO=H 1—¢ ¢ g
11 3 3.2 1

P-p d-pf 14 f et

11 3 6 .6 .3 .1
B A—0F a1t e tE &0
we obtain
(11.21) U@:co[ZiﬁﬁZ(ll—tja_(lit)si{’ (meo<t<=v'3)
(11.22) V(t):3c0[—21tf2~2—<—1—1:b2-1«;3] ( 2 ).

These together with (12) yields
(11.23) P()-UW+ V(B =cd = — et e | (et )

For example, if t=—3

»
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(11.24) P(—-3)-U(-3)+ V(- 3)~——§é—~—005038<0,

which should be compensated by W(—3). Returing to (20), interchange its
order of integrations

W= S/ F(9¢2 —1§Z:/37 — S «.[137_(1:1;7)2*'(1—1;,‘7)3]%'

Again availed here simple identities, similar to those before used,

i _ 2 2 1
(1—=to)tr 1—tr ¢ tEteta

1 T+ 4r4 43 3% 2r 1
A=t (At 1t ¢t Tp T tE &

the above inner integral reduces to

b T‘L T . 3 p 4h—1d
S—m[(l—tr)3+ }dt 2(1 tz-)2 2L B
Hence

wt)=cs Sl/”(z(ljtf)z 2;2_L>ﬁ7ﬁ

Or, writing the integrand as a sum of odd and even functions, we get

W(ﬂ = Wl(t) + Wo(ﬂ:

where
ma=5 ], () i
Woty=e,, (it )oatyr/aa—s

Further, on transforming the integration variable ¢ into z by V' 3c*—1=z or
ze in W, or W,, respectively, we obtain

_§63 < 1 . 2 o kAd{fﬁ “n
arzs) Wi =30 (g ErAmi)aeg <V,
N a ¢ 17 dz =

These being formally integrated on assumption that £<<—1 3, we find

B 27 w(£*—3) 2 Uy
(11.27) W.@) = [175'[{(,52 9) 3(=1)(FE-3) (#2— 3)(7?2 9>X]
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B 18t x 1 3(t2—5)
(11.28) Wo(t)= [61/3@2 9) 7(72 1)(1‘2 3) 2(2‘2\?5@2—_951/]’

where

_Jer . |2 /_ﬁ _1]/2
(11.29) X —F_Btan 73 and Y= tan 5

These combined with (23), we obtain the d. f. for —co<<t<<—7/3

_ V3l 18 27(2—5)
AL30) SO=Tm_gy ta-pE-9E=9) B-B@E-7 1)

Whence evaluated S(¢) for several negative values of £:

(11.31)

t i —V3-0] =2
S(t) . 09505 ] 07732\ 03984\ 02324[ 01474‘ 00993] 00701‘ 00514‘ 00324: 0

!

Ces | ~a | -5 -6l -7 [ -8 | -0 [-e

in which S(—v'3) and S(—3) shall be specially noticed: Although (30)
seems apparently to be singular at {= — v/ 3, it is simply hebbar. It is true
that X and Y tend oo as t——1"3 —0. But, on putting z=1/2/({2—-3)>1,
we have

= Y — _,E,A*’l_,, ,,,]' 000000 >— L — _L_
tY=tztan"'z tz( 5 P 3, zt t+322 :
_ -1 —— 1 ...
X=—tztan"'(—tz) 5 zZt— 1+3 as .
Hence

X+t¥=—1— t+§£2—<t+ >+ O( )
where 1/z2=(t*—3)/2=0(1) as t——1v 3. This substituted in (30) and
making t——v 3, we can readily certify that S(—v'3 —0)=#/12—1/6=
0.09502. Similarly for S(—3). But, this time to examine more in detail, let
us put = -—3-+¢ and expand S in a power series of { about f=-—3: The
terms of negative powers in W disappear at all, as

1~< 5 31) ( 5r . 19 )C ( 2263 F21043><:2 ......

B AP = o~
4873 384 27v'3 128 103681/ 3 110592

5z 27 7 45 731x 795
v ) P~ R
°"\288y 3 192 723 128 (138241/ 3 2048

when |€[<3—v 3. So that
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(11.32) W=W,+ W,

:<~_3§E_~2_5> < 13
288173 192 21613 64

.....

37 13) < 68597 21887) o
—2e+ e +
a7z 5 110592)°

Also (23) yields

o 57 _ 1771Ci_k
3613 10813 432v'3

(11.33) P-U+V=

Therefore, the d.f., as the sum of (32) (33), is given by

3n hzg) < 7 _g) ( 519,17:*‘_21887)@+
3273 192 83 64 41472v/3 110592

=0.03984 4-0.02260 + 0088372+ +--v-ne+-

......

(11.34)  S(O :(

in the vicinity of f=—3. Hence, the significant point for level a=0.1, i.e.
a/2=0.05, lies in the neighbourhood of = —3. Equating the above expression
to 0.05, we get

(11.35) f(&) = —0.01016 +0.02260¢ +0.08837¢*+ -+ =0,

in which %+ neglected, it yields {=0.25, so that #, ;= +2.75 roughly.
More exactly, using the whole expression (30) and by to-and-fro linear inter-
polations, we find S(—2.7)=0.0478, S(—2.6)=0.0510, S(—2.63)=0.0500.
Hence we have approximately f#,,= +2.63. Similarly we obtain S(—3.995) =
0.0285 and S(—3.996)=0.0247, so that fo.os= +3.996 nearly.

To proceed more systematically, we shall make use of Newton’s method
of successive approximations, for which however S’(¢)=s(#) is required for
t<<—v'3 at least. It shall be found by differentiating (30), or else integrat-
ing (17) (18), that

3V 3 z(2+3) |

1y =3V 18(81*— 74° — 512 39¢ +27)
(11.36) §'(O=""5"4,

(A-1)2(E~3)%(*-9)?
27(41°—33¢++54£2+135) X |
et e

}_

+

Thus, starting from the first approximation #,= —2.63, f(¢,)=S(t,)—0.05
=0.000034, S’(f,) =0.0424, we obtain the second approximation # ==f —
S (/S (t) = —2.631 and S(¢;,) =0.05=0.0000014. Hence to..£2.631.

To obtain Z.01, Which is certainly >5.841 (the classical value for N.D.),
we may avail Laurent’s expansion of (30) for [#|>>3. We expand first

X=ztan™'z with z=v2¢2/(t>*—3) >1 as |¢|>3:

Xepgtre 1,1 1 =, 4,1 1
2[2 z+323 525+ ] 22 1+322 52"°Jr ’
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where

a1 -3\ 3 .27 135 ... > _1,,_:L< —i>
Z“/z(l t2> =v'2 (1J“z;:frst‘-ﬁ161,“5r ’ 5\1 :

And accordingly

(11.37) X:<1/7§—A>+%<#?~B +2%<4_%ﬁc>+ﬁ9ﬂ(_@:_p)+...,

where

(11.38) 72 =2.22144, A= Z D =0.87042,

A Cr+1)2m
S (=D
B==3 opr Dz
c—s:(=Lmn—1) 04170,

=0.10188,

S (—De(n—1)(n—2) _
> CENE =0.08083, &c.

These constants can be found by conceiving the real function

1+z1/ ¢
11. 39 A =
St O~ 7 85 e
where =1 —1 and ¢ donotes a real positive variable. Really (39) does not
contain =1 —1 because of 1_*_2;5' . When £=1/2, we have
.
Al LY=L costl — A D P S
4 A<2> J5estye B CA@‘ 5,/3°°% 3 3
C’:CzAII<C>\ , DZAC;';A!H(C)I ,
12 |1/2
Consequenty
(11.40)  X—135102+ 205780, TO0TL 1988024 ..

Next, it holds for [¢|=>3>>v'5, z,—1/2/(t*—3) <1 and

1
3

e .2, 14, 58

(11.41)  Y=ztan 'z, =2]— 5 7 g T

z2t+
Lastly, these being substituted in (30) and further their coefficient as well as
the first two terms of (30) expanded by binomial series in powers of =, we
get after all
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(11. 42) S(t)z‘——*—t—s'** t4 If5 tG t7

_9337.3073 _31390.3168 _109698.1690
t8 t9 th

e (t<<-3).

Equating this to «/2=0,005 and writing —1/¢f=x, solved for x by Horner, we
get 1=—8.809. Notwithstanding, if taken only up to the term of #° and
solved, we obtain a better result = —8.086: For, the whole expression (30)
veields S(—8.809)=0.00408, while S(—8.086)=0.00502. So that we have
fo.01= +8.086 almost. Really the series (42) being alternate (¢<<0), the sum
of the first # terms, S., oscilates about the true sum S  Although both
Sen(<S) and Sy;(>>S) tend to S as #->co, monotonic increasing and decreas-
ing, respectively, yet it gives rise to the above paradox, that S,. converges
slower than Sg.-;.

The expansion (42) being divergent on and inside its boundary circle
|2] =3, it cannot be applied at all for |fe.]|<C3. Also |#o.05] being somewhat
near by 3, the convergency there becomes slow and the result found by equating
(42) to 0.025 is unpleasing; it needs to take much more terms. To evaluate
to.1 by series, we ought to expand (30) by a Taylor-Laurent series in 1/ 5 <<
|#]<<3, which however converges not so rapid, and hence unpractical.

12. An Inductive Method. We have hitherto argued the matter rather
geometrically, so that the calculations for several values of the size # were
disconnectedly made, and it is impossible to attain the general case thereby.
The author imagines that s.(Z) might be deduced from s.-,(¢), if such-like as
the convolution theory could be somehow applied. Really, given a n-sized
sample {%i, %2, -*+, ¥.} with statistics x, s, ¢, if e.g. %, be put aside and the
remaining {x,, -«+-- %n-1} be considered as a (#z—1)-sized sample with statistics
x', s', ', we have the following relations:

(12.1) nx=(n—1)%"+%xu,

(12.2) ns2=(n~1)s’2+n—;-—1—(9_c’—xn)2=(n—l)s’2+£j(%~xn)2,
I—m  (n—1D)% +x—nm

:s/u/n—lA Vs + (& —x,)%

(12.3) ¢

We can compute every single fr. f. for each term under expressions. Yet
unfortunately they are not necessarily independent of others, so that the ordinary
convolution formula is hardly applicable. We ought rather to deal with their
compound fr. fs,, but then the determination of their limits of integrations
become complicated. Here only the simple cases #=2, 3 are introductori-
ly discussed, hoping to accomplish their generalization in some future.

Case n=2,

Let the parent fr.f. be f(x)=1 in (0,1) and conceive a two sized sample
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{%1, %2} with X=(%;+2.)/2, s*= (x,—%,)/4, where 0<<X¥<1, 0<<s<<1/2. The
Jacobian being

J= a(x, s) Zii

S0, ) T2

we get the probability element dp=f(x,)f(x;)dx,dx., so that it appears that
dp=dzx.dx,/|J| =2dxds and f(X,s)=2. However, with the z-sized sample
statistics usually the arguments are taken as v/ # % and 1/ % S, instead of sole
% and s, so that their differentials are also as d(v/ 7 %), d(v/ n s). Thus the
elementary probability for (V' # vV n x+dv n %, vV n sV n s+dv n s) is
denoted by dP=f(v' n %,v/ n s)dv n %dv n s, which may briefly be written
as f(%,s)ndxds. Hence, the foregoing f(%,s) for n=2 should be 4 instead
of 2. Thus

(12.4) f(x,8)dxds=4dxds for n=2.
Now that s/x=|x,—%,|/(x1+%,)=<1, we get a fundamental relation
(12.5) s<zx,

which we call the lowest inequality when 0<<x<C1/2. However for 1/2<<x<C1,
the lowest inequality reduces to

(12.6) s<1—x(<<x).

For, on putting 1—x,=x;, 1—%=4x;, we obtain 0<<x¥'=1—x<1/2 when
1/2<<x<C1, but s=s’, so that s/(1—x)=s"/%'<1. The total probability=1 is
reassured by

1~

S;S:dxldxz=4S:’2daagzds+4gj/2dicgo “ds=1.
Now the fr. f. of £=(%—1/2)/s is given as
fwar=| f<ic,s<=<ic—%‘>/t)d35-(k«%)dt/tz,
that is
az.m =4\ (3-g)as-F(i-3)

When 0<<x<<1/2, <0, O<ls=(x—1/2)/t<<x, so that x,=1/2(1—-1),
x,=1/2. Therefore

1

*g

1

e <0,
F@ 31—1) for ¢
as shown in [II] and similarly
@ S for 0.

2(1+1¢)2
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Case n=3. (The grouping I, II, --- obtained in [I] is asserted below).
Now writing #=3 and x.=x in (1) (2), we conceive the transformation

(12.8) 3%=2%+x, 352=25’2+%(E'—x)2(=23’2+—3—(§—x)2).
The Jacobian being

J= 0(x,s) _ 4s" o(x',s’, x) _
o(x',s" 9s°’ a(x,s, x) 45’ ’

the probability element becomes

(12.9) dxdxsdrs = 4d7ds'dx = 2? dxdsdx=f(%, s, x)dxdsdx.

Hence, the fr. f. of Student’s ratio = (% —1/2)v/ 2 /s shall be given by

rwar={{7(%s(- <Tc—7>1/t2>x)d?cds<={ -Z‘szdt)dx,

that is to say
210 fo=—a{{s(=(E-1)2 )z-1 1V 2dz,,

- -

where the inner integral becomes after (8)
dx _ d(x—%) . 2 Sd i1 XX
gs’ ‘/_3_[(2,7'_1>2;<x'_@;] V33 =1t .

4 ¢

Subcase I: 0<<v/ 2 s<<%. This condition for s=(x—1/2)v 2 /t, t<0

implies
~2x—1 - 1 1
0<C ; <x, i e. 97 LX< >

Hence the outer integral should be taken from 1/(2--¢) to 1/2. As to the inner
integral, we notice that the above inequalities yield O0<<(2x—1)/t<<1/(2—t)<<x
<1/2, so that 0<<x+- (2x—1)/t<<1. Therefore, we ought to take x’s integration-
interval:

- gf?-:—l-»<x<x+ th ) ie. |x—fc|<2itil :
so that the inner integral reduces to 2z/v 3. Thus we obtain
/2
(12.11) fu(t)=3V'3 @S %—1)dz=Y 3~ for <0,
O W YAl

which agrees with (1.1) in the previous paper [II].
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II: %<1 2 s<<2x. For the sake of simplicity, we shall here consider the
interval —oo<(t<—1 only, so that 0<<x<C1/3 only, because the Student dis-
tribution for any universe distributed symmetrically about its mean, is also
symmetrical about the origin and besides 0>¢>—1 for 1/3<<x<C1/2 in II:
x<<(2x—1)/t<2x, since ,we get whence 2—1/x<t<<1—1/2%, or —1<Tt<I—1/2
when 1/3<x<C1/2. We obtain still the same integrand as in (10)

_3V3 2 o (x—%)¢
(12.12) fa =22 3 3\ ep-1yaal deins ZDF

Now condition II for v/ 2 s=(2x—1)/t, t<—1 (0<<x<C1/3) implies that

1 = 1 =
(a) m<x<§_—t and (b)) x<

2x—1 - 2
; <2x<§.

Hence, in order that the inner integral

d( ) _

may be real, as the first factor in radical >0 by (b)), the second factor must
be so also. Hence we get

Ce) o<x<2ﬁ“1

+x=7 say,

whence v<3x<C1 after (»). Moreover we should have the following inequalities
in view of (8) and (5)

3 3, = = 1,.,-
12 _ 2 _ _ 2 12 . 2
(12.13) s't=5s T (x—x)2<x =I (3x—x)?,

and consequently for s2=(2x—1)2/2¢%,

4tZ(Zx 1)2< (3x—x)2+= (x x)2,
i e. x2—3xx+3x2—3(2x—1)%/41>>0 .

This quadratic has a positive discriminant and also positive absolute term

because of (), while its linear cofficient is negative. So that it has two real
positive roots

%&W4+V3/Gx1> iy

Hence we should have either

(1) x>« or (i) g>=x.

On the other hand, we have a<r: For, on squaring the ambiguous ine-
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gualities «=7, where the squaring is permissible without changing the sense of
double signs in view of (4) we reach an absolute inequality 0<<[(2x—1)/2¢-—x1?,
so that only the upper sign is to be chosen. Hence we obtain as the required
interval (i) a<<x<r<1, for which the inner integral in (12) becomes

L(x=0F _ . LV 3 x|t -V (1—2%)— 4%
[Sm 2% — Lfsm 2(1—2%)

(¢=<<0).

This being substituted in (12) and integrated by parts, we get

=3 1/§ ve-o - (1-2x)dx
(12.14) Fiao(E)= o210 o SWM/(1’:253*“4'2:*;@*@-

Next, integrating along (ii) 0<Cx<C8, we obtain

/3 V3V (A-2x)%x
(12 15) fII(ii)(t) 3’<27t7>3+ 2 Sl/z(l_t)_'/tl_z_x)z_xztﬂz'

On summing up (11) (14) (15) all together, we attain finally

, . 33 Sl’@‘” (1—2x)%dx
(12.16) f(t) a 27 121 1) 1/7(714—12x)2-x2t2 ’

which coincides with (1.8) in paper [II]. As the further treatment was done
in [II] already, here it shall be not repeated.

Although the above analytical procedure may seem rather tedious than the
individually before made geometrical method, yet it would suggest the possibility
of the method inducing from # to #n+1. To the present author it reveals an
inkling of hope to advance on the general treatment, which however shall be
prepared in some future chance.

However, to examplify the above case #=3 methodologically, we ought still
to show that the joint fr. f. f(x,s) can be deduced without employing geomet-
rical intuition.

We have by means of (8) and (9) to compute

dx
(x—%)*’

(12.17) f(?c,s):gf@,s,x)dx S—-dx 6v 338 oY

where the limits of integration x,, x, must be determined. The grouping of
subcases I, II, ..... described in paper (IJ would be availed, since it is generally
obtained.

For n=3 we have (confining to the case 0<Cx<C1/2 by reason of symmetry)

I: 0<<y/2 s<<¥,0<<%<1/2. The radicalin (17), V' (x—(x— )V 2s(v 2s+x—%)
becomes real so far 0<x—1 2 s<<x<<x+1v 2 s<2%<<1, which follow from
condition I. Hence we get %o=%—1 2 s and x,=%+1 2 s, and

(12.18) f(x,s)=6v"3 xs.
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I: %<V 2 s<2%, 0<<x<<1/3. Now that x—v 2 s<<0 but 0<<x+1/ 2 s<<3%
<1, we see that

(a) O<x<x+1 2s=r<1,

which is necessary but not sufficient. Indeed, the assumption that x,=0, x,=7
leads to an illusory conclusion f(¥,s)=6v" 3 s(z—cos™'x/v 2 s). We ought
to contemplate another condition besides II. Now that 3x=2x"+ x<C1, so x'-<<1/2
and the lowest inequaliy s'<Zx" holds. This condition being applied to (8), it
yields just the same relation as (13):

o3 3 va g lian e ,
S 5 S i (x—x)*<x 1 (3x—x)%, ie.
(12.19) £ 3% 33@2—%sﬂ>0,

where the quadratic has a positive discriminant 3(2s®2—x2)>>0 and also the
absolute term 3(2x%2—s?)/2>>0, because of II. Hence, the quadratic has 2 real
positive roots «,f= [3%x+1/3(2s2—~x2)]/2. And accordingly we shall have

(b) x> or else (c) x<ZB.

Further to examine <7, which means v/ 31252 — %22y 25— x(>v 2 s—x>>0).
On squaring both positive sides, we attain 0= (s—1 2 )2, so that a<<r follows.
Therefore, we get

(d) 1>1>a>>0,

and the required intervals are

a<x=<<r as well as O0<x<p.
Consequently
_ = [P x—x 7, . x—x B
.20 = [sm‘l»-———; | AsinTte, ]
(12. 20) f(x,)=613s 1/2sL 1/23\0

N ’1)
61/3S<7r 3cos V5s)

I %<V 2 s<<1—x,1/3<<%<C1/2. Here hold x—v 2 s<<0 and v 2 s +x<1,
so that again (@) 0<<x<<v 2 s+x=7<1 hold as necessary. Also 2s52>x* and
2x%>s? result. For, from 2/3>1—-%>1/2 and v 2 s<<1—%<<2/3, it follows
that $2<72/9(maximum variance). On the other hand 2/9<2x%<1/2 and
whence s2<Z2x% follows. Besides (d) 1>r>a>>#>0 hold again. Consequently
just the same formula as (20) does hold. :

However, to tell the truth, presently in consequence of 1<3x=2x"+x<3/2
it follows that 1—x<(2x'<(3/2—x, so that x'<C1/2 if x>>1/2 and the lowest
inequality is certainly s'<Zx’, where we could avail inequality (19). We shall
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call the set of these points {x} to be of the category C;. On the contrary,
for some x<{1/2, it might occur that x*'=(3x—x)/2>1/2 and the lowest
inequality now becomes s’<Z1—x’. Such points form a second category C,.
The intermediate point x,=3x—1, which lies in (0, 1/2) in the present case,
gives rise ¥'=1/2 correspondingly. Any point x belongs to C; or C,, according
as x=x,, e.g. the point (x=1)eC,, but (x=0)eC,. Now it can be shown that
f>3x—1, so that «, g both €C,. Therefore we have first, as a contribution
from the interval x,<<x<Z1:

x v

o . . r
(12.21) sw/ss{sin—”—‘ o in-t% "% } 61/33'_003‘1% X 2cos—2. ]

vV 2s V' 2s V' 2s

It remains to get the further contribution from O<Cx<Zx,: Now, instead of
(19) we obtain the inequality

%o

(12.22) —(3x—1)x+(1—3x+3x2) > s2>0

with two roots 6,e=[3x— +1/3(2s2— (1—%)%) 1/2 that are imaginary. Hence
the quadratic becomes positive definite, so that (22) gives no limitation about
x. Therefore its contribution becomes

Xo—X X
‘—6v'3 el
1/ sl—ﬂ' COS _/23 COS "/23]

(12.23) 61 3 ssin 1/ 2

This together with (21) just amounts to (20).

II": (x<)1-%<<v' 2 s<2v/x*—x+1/3(<2x), 1/3<<x<<1/2. Now that 1<
%+v 2 s=7, the first necessary condition (@) holds by itself and of no use.
Also II” being a partial interval of II: %/v 2 <<s<\v/ 2 ¥, of course, inequa-
lities x2<72s?, s2<72x% and (1—x)2<2s? all hold. Hence the roots of quadratics
(19) as well as (22), «, B, 3, &, become all real positive fractions. Moreover
a, Be Cy, while 7, 8¢ C, and we obtain finally

&
J

—6y 38[7‘: — 3cos™ 1/% . 3cos-1%]. QE.L

0
5 + 2

1
o

B

_I— »

B0

=0

(12.24)  f(x,s)= 61/3s{s1n'1 s

Making use of the joint fr. f. f(x,s) thus obtained for #=3, we may
further find either single fr. f. f(x) or f(s). Although the former was already
remarked at the end of section I in the previous paper (IIJ, its general form
can be far briefly given, again owing to Cramér”., Namely, the fr. f. of the
sample mean ¥=(x;+x,+ - +xn)/n is

1) H. Crameér, loc. cit., p. 245.
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(12.25) fu(m) =" )”(nx)"l (’14><mz—1>n—1+<g)m_g)n-l_ ...... ]

where the summation is continued as long as the arguments nx, nx—1, nx—2,
------ are positive. In particular

f1(x)=1 in 0<x<1,
=0 outside (0, 1)
(12.26)  fo(%) =4% in 0=E<l,
— v : 1 -
=4(1—x) in —2—<x\1.
) — 25 i \/ﬁ'/‘l_
JSs(x) 5% in O\x\g,
4 1 -\ . 1 - 2
= M- e il =
9 27 ( > x) n 3 Tx< 3
2T e 2
= (1-—-2) in 3 ~x-<71, and so on.

As to the fr. f. of the sample S. D. s, however, it is not so easily obtain-
able. Really for n=2, s;=|x;—x:|/2 and x,, x, being independent, it is readily
seen that f(s,)=4(1—2s,) in its whole interval 0<Cs,<1/2. But, already with
#n=3 the calculation goes enough intricate. This can however be sought in a
similar manner to that used above to find f(¢), which runs as follows.

After the joint fr. f. f(x,s), (18), (20), (24), we recapitulate

L 0<<s<%/v 2 (0<x<1/2): dP=6v 3 nsdsdx,
. x/v 2 <s<v/'2 %(0<z<<13) dP=6v 3 (z—3cos'x/v 2 s)sdsdx ,
' /v 2 <s<(1—-%/vV 2 dP~ . .

’ 1\ (1 1
11 2 .
1/2<s<1/2< x+3><3<x<2>.

- 2T cost E__4 —1.1__:2)
dP~181/3<3 cos ™~ —cos T sdsdx .

The annexed xs-diagram (Fig. 11) shows distinctly the subdomain I, II, IT’,
II”, each enclosed by the boundary lines s=0, s=%/v 2, s=(1—%)/v/ 2 and
s=1'2(x*—%+1/3). The pencil of rays s=(%—1/2)v 2 /t with slope m=
s/(x—1)/2=1"2 /t exhaust all values of Student’s ratio #<<0, and especially
those rays corresponding to ¢=—oo, —1, —1/2, O interssect straight lines
¥=1/3, 1/2 (xboundary lines) and s=1/v'2, v 2/3, 1/v'6, 1/2v 2,
1/3v' 2 (s-boundary lines) at the boundary corners. Especially the point
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(x=1/3, s=v'2 /3, t=—1/2) yields the maxs=v"2 /3. Of course, for +<0,
we ought to take the interval 1/2<<x<C1 and to draw the whole figure sym-
metrically about the straight line x=1/2.

The intervals over which the integration about x should be performed to

get f(s) would be seen from Fig. 11.

¢

Accordingly we have for

S22
Wz=0.7071 t=-+ o 1=SH7
t=~] N S___lz(zgi.,.%a)
V2=04741 I
_ S=2/
WE = 04082 _7
V5/7= 03536 LD
_IZ
1/312=02335 2<)s a
I I=1-5{5
t=0
0 7
(A) 0<<s<<1/2v 2
o 1/2 . 1 N
I: 63 nSS _ dz=6v"3 ﬂ(‘z——.ﬂ/ 2 )
V2 s
o] (e oos s Yk v/ T (s 7 -2V E)
M& T 6/ 3rs| (rm3cos o Jar=6v 3 s(esv 2 - 2532,

These being summed up, we get the branch of f(s) corresponding to 0<<x<C1/2:

(12.27)

11 u(s)=35(xV/ 3 ~9v/ ),

which denotes a parabola with the vertex at (z/6v" 6 =0.2138(mode), v/ 2 #%/4
=3.4894) whose double ordinate gives really f(s) itself.

(B) For 1/2v/ 2 <s<1/v 6

INI&Il': 6/3 sS 12 (n—3cosx/svV 2)dx

1-
sy o2

~6v/ 3 5] 1=V Z5) (r—00s78(1/s7 2 ~ 1) “31/237/7s—1-3) gs>
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L=\
-1 J— —
/2<3 cos 1/2 cos™t /2 >dx

:181/’3’3[ <su/2 —é~>+3<1—sV2)cos~1< 1/17— ) 3v/2y/ 2 s~ ]

I ¢ %
II": 1843 sS
1-3

so that their sum yields still the same parabhola
(12-28) S () =3s(xV/ T 9V 25).

(C) For 1/v 6 <<s<<v' 2 /3

. pl-sv 2 x
’. — —1 —
& IV: 18v/3 SSM? (5—cos™ T )ax

1835 (£ cos(- Fx 1)) -sv D)+ varEsoi-y/ s

1/2(1~¥ 852~ 1/'3)( T x

—~—cos™ —Cos E)d
3 svV'2 1/ 2

1-57g

. 18v3 sS

= 181/§ns[—g- — (%—cos‘l(g;/%"g (1-sv'2)

= V'6s*—1 ]
_ _ a__ 4V os*—1
V2y 2 s—1+vV6s 2sm romll

f(s)
(12:29) 1 fo(s)=35(xv/ 3 —9v/ Zs)

+9y/ —3—5[:21/ 6s2—1— sin“ﬂ/ﬁz_,)s;—-l

N

where 27/6s2—1 1>sin*y/65~1/3s* and 1/2f¢'(s)= 93
{n/3—2v 6 s+ (41652 ~1 —sin"1v/6s*—1/3s2)}. Thus, the
two branches fs(s) and f¢(s) together with their first
derivatives being coincident at the point of junction s=
1/v/ 6 =0.4082, f(s) and f’(s) are both continuous there.
But, f¢(s) in the interval C deviates from the parabola and
it ends at s=1 2 /3=0.4716, while the prolonged parabola
cuts the s-axis at s=r/3v" 6 =0.4276 (Fig. 12). Consequ-
ently we have

(12.30) f(s3)=6s(xv' 3 —9v 2 s) (parabola)
for 0<<s<<1/v 6,

69re=2r2 4 u

—6s(x1 3 =9V 2 s)

+18v3 s<21/ 651 —si n‘lV%s;_l)

0= zm =S
66 36 3

Fig. 12 for 1/v6 <s<<v/2 /3.



