ON SEMIGROUP WHOSE SUBSEMIGROUP SEMILATTICE IS THE BOOLEAN ALGEBRA OF ALL SUBSETS OF A SET

By

Takayuki Tamura

(Received September 30, 1961)

Let S be a zero-semigroup by which we mean a semigroup defined as xy=e for all x, $y \in S$. S satisfies the following conditions:

- (1) Any subsemigroup contains a definite element e.
- (2) Any subset of S which contains e is a subsemigroup of S.
- (2) is equivalent to
 - (2') xy = x or y or e for every x, $y \in S$.

However these conditions do not characterize zero-semigroups, for the following counter example is given:

	e	а	b
e	e	а	e
a	а	e	a
b	e	a	e

In this note we shall determine all the types of semigroups which satisfy (1) and (2) simultaneously. Such semigroups are called β -semigroups.

Lemma 1. A subsemigroup T of a β -semigroup S is a β -semigroup.

Proof. Since a subsemigroup U of T is a subsemigroup of S, U contains e because of (1). If a subset V of T contains e, then V is a subsemigroup of S because of (2), and hence a subsemigroup of T.

Lemma 2. A homomorphic image of a β -semigroup is a β -semigroup.

Proof. Let S' be a homomorphic image of a β -semigroup S under a mapping f: f(S) = S', and let U' be a subsemigroup of S' and U be the inverse image of U' under f. Since U is a subsemigroup of S, it contains e and hence U' contains e' = f(e). Next, letting M' be a subset of S' which contains e', since the inverse image M of M' contains e, M is a subsemigroup of S and so M' = f(M) is also a subsemigroup of S'.

Lemma 3. $x^2 = e$ for every $x \in S$, and hence S is a unipotent inversible semigroup [1].

Proof. By the definition, $x^2 = x$ or e. Suppose that there is an $x \neq e$ such that $x^2 = x$. Then we have a subsemigroup $\{x\}$ of x alone outside which e

lies. This contradicts (1). Hence $x^2 = e$ for every $x \in S$.

Accordingly the element e is a unique idempotent. By [1] a unipotent inversible semigroup S contains a group G as a least ideal (i. e. kernel).

Lemma 4. A subsemigroup H of G is a group.

Proof. Clearly e is an identity of H and the existence of inverse is assured by Lemma 3.

Lemma 5. G consists of at most 2 elements.

Proof. Suppose that G consists of 3 elements or more, and take e, x, $y \in G$ such that $x \neq e$, $y \neq e$, $x \neq y$. Let $X = \{e, x\}$ and $Y = \{e, x, y\}$. X and Y are both subsemigroups of S or subsemigroups of G, and hence, by Lemmr 4, subgroups of G; in particular X is a subgroup of order 2 of a group Y of order 3. This contradicts the familiar theorem of groups. This lemma has been proved.

In consequence of Lemma 2, the difference semigroup of S modulo G, in Rees' sense [2], is a β -semigroup and a z-semigroup at the same time. We call it a β -z-semigroup. By a z-semigroup we mean a unipotent semigroup whose unique idempotent is a two-sided zero.

Lemma 6. S is a β -z-semigroup, if and only if S is a zero-semigroup defined by xy=e for all x, $y \in S$.

Proof. Suppose there is an $a \neq e$ such that az = a for some $z \in S$. Then the subset $Z = \{z; az = a\}$ is a subsemigroup which does not contain a. This contradicts the condition (1) of β -semigroups. Therefore we have proved that $xy \neq x$ for every non-zero x, $y \in S$. Similarly we can prove $xy \neq y$ for every non-zero x, $y \in S$. Consequently we have xy = e for every x, $y \in S$.

Next we shall determine a β -semigroup which is not a zero-semigroup. By Lemma 5, we may assume that G is of order 2, that is, $G = \{e, a\}$, $e^2 = a^2 = e$, ae = ea = a. By [1], G = eS = Se and the difference semigroup of S modulo G is a zero-semigroup by Lemma 6. From this fact we see easily that

$$xe = ex = e$$
 for $x \neq a$;

accordingly we get xa = ax = a for $x \neq a$.

Thus we see that a β -semigroup S is given as follows:

for every
$$x \neq a$$
 $ax = xa = a$ otherwise $xy = e$

By the theory of [1], it is assured that such a system S is a semigroup, and clearly S is a β -seigroup.

Theorem 1. A semigroup S is a β -semigroup if and only if S is either (3) a zero-semigroup xy=e for all x, $y \in S$

or (4) a semigroup which contains $a \neq e$ and which is defined by

$$ax = xa = a$$
, if $x \neq a$
 $xy = a^2 = e$, if $x \neq a$, $y \neq a$.

It is interesting that each of (3) and (4) is uniquely determined within isomorphism by the cardinal number.

Now we shall replace e in (1) and (2) by subset E:

semigroups.

- (5) any subsemigroup of S contains a subset E of S.
- (6) any subset of S which contains E is a subsemigroup of S. Let us consider a semigroup S satisfying the above (5) and (6). As is easily seen, E is a subsemigroup of S, and by the definition E contains no proper subsemigroup, hence no idempotent. It is impossible that E is of order ≥ 2 , because a semigroup of infinite or finite order ≥ 2 contains either an idempotent

or a proper subsemigroup. Hence E must be of order 1, and thus we have

Lemma 7. The conditions (5) and (6) are equivalent to (1) and (2). Let L(S) be the subsemigroup semilattice of a semigroup S, that is, the system of all the non-void subsemigroups of S. This forms a semilattice with respect to inclusion relation. If S is a β -semigroup, then L(S) is the Boolean algebra of all the subsets including e. This property will characterize β -

Theorem 2. L(S) is a Boolean algebra of all subsets of S containing a non-empty subset of S if and only if S is a β -semigroup.

Proof. Let E be the least subsemigroup of S. We can see easily that S is a semigroup satisfying (5) and (6). Therefore, by Lemma 7, we conclude that S is a β -semigroup. The converse has been shown already.

According to Theorem 6, p. 159 in [3], every Boolean algebra of finite length n is isomorphic onto the system of all subsets of a set of n elements, we have easily

Theorem 3. L(S) is a Boolean algebra of finite length n as is given in Theorem 2 if and only if S is a β -semigroup of order n+1.

References

- T. Tamura: Note on unipotent inversible semigroups, Kōdai Math. Semi. Rep., No. 3 (1954) 93—95.
- [2] D. Rees: On semigroups, Proc. Cambridge Philos. Soc. 365 (1940) 387-400.
- [3] G. Birkhoff: Lattice theory, Amer. Math. Soc. Coll. Publ. 25, Revised Edition (1948).

Errata

In the paper "Semigroups of order ≤ 10 whose greatest c-homomorphic images are groups" this Journal Vol. X (1959) p. 51, we add the following list to Table 1

Order	No.	defining matrix	Remark	c-decomposability	self-dual or not
8	8.11	4.4, 2—1		c-dec	
	8.12	4.5, 2-1		c-dec	