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Let S be a zero-semigroup by which we mean a semigroup defined as
xy=e for all x, yeS. S satisfies the following conditions:

(1) Any subsemigroup contains a definite element e.

(2) Any subset of S which contains ¢ is a subsemigroup of S.
(2) is equivalent to

(2") xy=x or y or e for every x, yeS.

However these conditions do not characterize zero-semigroups, for the
following counter example is given:

e a b
e e a e
a a e a
b e a e

In this note we shall determine all the types of semigroups which satisfy (1)
and (2) simultaneously. Such semigroups are called g-semigroups.

Lemma 1. A subsemigroup T of a B-semigroup S is a B-semigroup.

Proof. Since a subsemigroup U of T is a subsemigroup of S, U contains
e because of (1). If a subset V of T contains ¢, then V is a subsemigroup
of S because of (2), and hence a subsemigroup of 7.

Lemma 2. A homomorphic image of a B-semigroud is a B-semigroup.

Proof. Let S’ be a homomorphic image of a B-semigroup S under a
mapping f: f(S)=S5’, and let U’ be a subsemigroup of S’ and U be the
inverse image of U’ under f. Since U is a subsemigroup of S, it contains e
and hence U’ contains ¢ =f(e). Next, letting M’ be a subset of S’ which
contains ¢’, since the inverse image M of M’ contains ¢, M is a subsemigroup
of S and so M'=f(M) is also a subsemigroup of S'.

Lemma 3. x%=e¢ for every xeS, and hence S is a unipotent inversible
semigroup [1].

Proof. By the definition, x2=x or e. Suppose that there is an x=%e such
that x>=x., Then we have a subsemigroup {x} of x alone outside which ¢
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lies. This contradicts (1). Hence x*=e for every xeS.
Accordingly the element ¢ is a unique idempotent. By [1] a unipotent
inversible semigroup S contains a group G as a least ideal (i.e. kernel).

Lemma 4. A subsemigroup H of G is a group.

Proof. Clearly ¢ is an identity of H and the existence of inverse is
assured by Lemma 3.

Lemma 5. G consists of at most 2 elements.

Proof. Suppose that G consists of 3 elements or more, and take e, «x,
yeG such that xs~e, y=~e, x5~y. Let X={e,x} and Y={e,x,9}. X and Y
ars both subsemigroups of S or subsemigroups of G, and hence, by Lemmr 4,
subgroups of G; in particular X is a subgroup of order 2 of a group Y of
order 3. This contradicts the familiar theorem of groups. This lemma has
been proved.

In consequence of Lemma 2, the difference semigroup of S modulo G, in
Rees’ sense [2], is a B-semigroup and a z-semigroup at the same time. We
call it a @-z-semigroup. By a z-semigroup we mean a unipotent semigroup
whose unique idempotent is a two-sided zero.

Lemma 6. S is a B-z-semigroup, if and only if S is a zero-semigroup
defined by xy=e for all x, yeS.

Proof. Suppose there is an a=%~e¢ such that ¢z=a for some zeS. Then
the subset Z= {z; az=a} is a subsemigroup which does not contain «. This
contradicts the condition (1) of B-semigroups. Therefore we have proved that
xy=£x for every non-zero X, yeS. Similarly we can prove xys<y for every
non-zero x, yeS. Consequently we have xy=¢ for every x, yeS.

Next we shall determine a @-semigroup which is not a zero-semigroup.
By Lemma 5, we may assume that G is of order 2, that is, G=/{e, a}, ¢*=a’=c¢,
ae=ea=a. By [1], G=eS=Se and the difference semigroup of S modulo G
is a zero-semigroup by Lemma 6. From this fact we see easily that

xe=ex=e¢ for x7-a;
accordingly we get xa=ax=a for x+a.
Thus we see that a B-semigroup S is given as follows:
for every x=*a ax=2xa=a
otherwise xy=e

By the theory of [1], it is assured that such a system S is a semigroup, and
clearly S is a @-seigroup.

Theorem 1.. A semigroup S is a p-semigroup if and only if S is either
(3) a zero-semigroup xy=e for all x, yeS
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or (4) a semigroup which contains a=<e and which is defined by
ax=zxa=a, if x=*a
xy=a’==e, if xs%a, y+a.

It is interesting that each of (3) and (4) is uniquely determined within
isomorphism by the cardinal number.

Now we shall replace ¢ in (1) and (2) by subset E:

(5) any subsemigroup of S contains a subset £ of S.

(6) any subset of S which contains E is a subsemigroup of S.
Let us consider a semigroup S satisfying the above (5) and (6). As is easily
seen, E is a subsemigroup of S, and by the definition £ contains no proper
subsemigroup, hence no idempotent. It is impossible that £ is of order =2,
because a semigroup of infinite or finite order =2 contains either an idempotent
or a proper subsemigroup. Hence £ must be of order 1, and thus we have

Lemma 7. The conditions (6) and (6) are equivalent to (1) and (2).

Let L(S) be the subsemigroup semilattice of a semigroup S, that is, the
system of all the non-void subsemigroups of S. This forms a semilattice with
respect to inclusion relation. If S is a g-semigroup, then L(S) is the Boolean
algebra of all the subsets including e. This property will characterize B-
semigroups.

Theorem 2. L(S) is a Boolean algebra of all subsets of S containing
a non-empty subset of S if and only if S is a R-semigroup.

Proof. Let E be the least subsemigroup of S. We can see easily that
S is a semigroup satisfying (5) and (6). Therefore, by Lemma 7, we con-
clude that S is a @-semigroup. The converse has been shown already.

According to Theorem 6, p. 159 in [3], every Boolean algebra of finite
length # is isomorphic onto the system of all subsets of a set of # elements,
we have easily

Theorem 3. L(S) is a Boolean algebra of finite length n as is given
in Theovem 2 if and only if S is a p-semigroup of ovder n+ 1.
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Errata

In the paper “Semigroups of order <10 whose greatest c-homomorphic images are
groups” this Journal Vol. X (1959) p. 51, we add the following list to Table 1

Order No. defining matrix l Remark l c-decomposability ’ self-dual or not
8.11 4.4, 2—1 c-dec
8
8.12 4.5, 21 c-dec




