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The author’s previons paper” was somewhat imperfect, because the ratio con-
sidered there xV#n—1/s, as simple it appears, yet differs from the ordinary Stu-
dent ratio (E—m)\/?z——l/ s. In the present note, he would deal with the properly
called Student ratio and also the case of an upperly truncated non-negative va-
riable, e.g. as the rectangular distribution®.

1. A Rectangular Distribution as Universe. If the universe be f(x)=1in
0 << x <1 with its true mean m =%, Student’s distribution is readily obtainable

from the volume element discussed in the previous paper: If the sample be {x,

Koy vrreee } with a sample mean ¥ and a S.D. s, its probability is simply f(x:)

Fxg) oeeee dx, dx, --- =dv. Hence, if s be transformed into Student’s ratio =

(x—m) yn—1/s, and the joint probability g(¢, %) | J| dx d¢ with Jacobian | J| =

| x—m|Vn—1/#, then the fr. f. would be given by

Vu—1
t2

sat)= S;x—mig(t,x)dz,

where the integration is extended over the whole domain of variables, such that
23 x=n%, > (x;— x)" = ns® under the condition that all x,’s remain within the
n-dimensional cube of side 1. Thus

Case n=2. We have dV = 4 dsdx, however now confined insides the square:
0= <1, 0<x,<<1. As the sample mean x must lie in the interval (0, 1), so

the Student ratio t= (E—%) / s becomes =0 according as 0<x <—;— or % <x=

1. First, let 0<J?<é—, t<<0. Then the Student’s fr.f. is s,(#) = 4S|x—%ldx/t2,

where the integration must be taken insides the rectangular triangle 011 (Fig. 1)
with sides 0<<x,<<1, 0<<x,<<1 under condition v 2s << V¥ 2%. Consequently

(Fc—é— /tsz, if §<é—, t<<0, so that 1/2(1—~#)<<#<<{1/2. Therefore

6 —25”2 (1—2x0)dx = —L _ (t<0)
52 N yaa-ny S * me(l——l)z )

1) Y. Watanabe, Some Exceptional Examples to Student’s Distribution, Journal of Toku-
shima Univ., Vol.X, 1959, p.11.
2) H. Cramér, Mathematical Methods of Statistics, p.244.
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Next, if 1/2<<x<<1, we should consider only those points insides unit square,

such as V2 s<v2(1—%) (Fig. 1). Hencs. (E—%)/t<1—§ with %> % , £>0,

so that % <x<<(1+28/2(1-+¢) and we obtain

2 S(Hzn)/z(l +1)

sz(t)=22- x—1)dx = (t>0).

1
2(1+1¢)7

As usual Student s,(¢) yields Cauchy distribution, so also the present fr. f.
has no mean, and besides its first derivative is discontinuous at the origin, yet
still distributes symmetrically (Fig. 2).

le
N

‘\

N

Sa(#)

2% 0
Fig. 1 Fig.2

VedsyZdsr

The significant limits with level « are found from

1 _«a _1
S sg(t)dt—? 75 =2 as tH= » 1,
and thus e. g. for « =0.1, 0.05, 0.01 tobe £, = +9, +19, +99, respectively,
which are of larger magnitude than those of the classical Student’s ratio:
+6.314, +12.706, =+ 63.657.

Cace n=3. We shall only consider the lower half 0<E<%,

other half % < x<<1i, t>0 may be immediately obtained by symmetry.

<0, since the

I. Subcasey 2 s<<¥. In this subcase the whole s-circle can be adopted and
consequently d V=64 3 sds dx. Transforming s into t= (E—%) V2 /s, we get
dP=3+3n(2x —1Y*dx dt]/ | t|% so that, denoting the partial contribution to the
Student’s fr. {. s;(t) by s;(¢), we have

s,(t)—sl\i?;g (2x—1)dx,
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where the limits of integration are found to be x,=1/(2—#) and x, =1/2 from
conditions ¥ 2 s <%, 0<% <C1/2 and consequently

(1.1) s1(f) = V—23— Gy (t<0)

II. Subcase \% << s<<V 2% We shall further subdivide two cases 0 <<z <
1/3 and 1/3<<x<<1/2 still with ¢#<0.

Fig. 3

II: 0<x<<1/3. In this case the radius of s-circle GL =+ 3 s (Fig. 3) is

between GM = 1/ % ¥ and GA =+ 67,s0that x<<v\ 2 s=(2x—1)/t<<2x and thus
1/(2—#) > x>1/2(1—¢). But, now assumed 0<<%¥<1/3, these inequalities will
hold if 1/3>1/(2—¢), i.e. << —1, while, if on the contrary 1/ (2—#)>1/3, i.e.
0>¢>—1, we must take 1/3 as the upper limit, in which case however it should
be the lower limit 1/2(1 —#)<<1/3,i.e. —1/2>#> —1. On the other hand the
volume element, as described in the previous paper loc. cit., being given by dV

= 18 V?s( '?: = cos‘lﬁ> dsdx, the contribution from this region is

93 (= xt
s (t) = T LO (2x —1)* (% — cos™! Ex_;_i_> dx,
where x,=1/2(1—¢), while x,=1/(2—1#) if t<<—1, but x,=1/3if —1/2>¢> —1.
Consequently we obtain if << —1
~V3x 33 (e
(1.2) su®= 55—+ 35 Slm_o h(x, 1) dx,
where x is merely an integration variable and the integrand % (x, ) denotes the
function (1—-2x)*/V (2x —1)>—x*¢* and alike in the below. However, if —1/2>t>
~—1, we have
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V3 T 1 343 (s
(1.3) S;;(t)=w(—3* — Ccos (-—t)) + Efgllzu—w h(x, t)dt.

Ir'. % < %< =. In this subcase also the portion of equilateral triangle ABC

D[

X3

C

Fig. 4
that lies outsides the cube with side 1 should be rejected, so that the radius V3s
must be taken between GM = l/% x and GN = 1/%(1~—E) (Fig. 4). Accordingly

¥<V2s<1—Z%. Or, substituting s= (E—l> V2 /t, we obtain now inequalities

2
éi—t>i>;—i—§. However, for (1-+1)/(2+¢t)=1/3, when ¢ =-—1/2, the lower
limit shall be 1/3 or (14£)/(2+¢) according as —1<t<<—1/2 or 0>¢t>—1/2.

Hence, we get for —1<<t<<—1/2

-9 sur ) = — g — Tagye (5 — o0s7(=1)
33

1/(2-1) d
2t2 8113 h(x’ t) x;

while for 0>¢> —1/2

VX W3 _
(1.5) ur0) =~ Gipy + Taaay (% —cos™ (1+1)
33 rue-
+-\/?—Sl e hix, t)dx.
2t (A+))241)

II”7. It remains still to calculate the contribution from 6 remaining arc pieces,
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such as PQ (Fig. 4), which lies between the segment HH’, and arc K NK', such
that GN = 1/% (1-H<V3s< GH=V6xr -6x+2, or 1—5<V2s=(1—27)/

(—8)<2/¥®—~x+1/3 with 1/3<%<1/2 and whence it follows that 0>¢>—1/2.
Now, if ¢4 = ZMGP and &' = 2 NGQ (Fig. 4),

PQ=4V3s (% — —19'>=x/§s (% — cos'x/V2s — cos‘l(l—E)/\/fs)

and consequently

(1. 6) dV =18 3s [% — cos™ T/%— — cos™! b%f] dx ds
S

7t  (—®¢

=9\/?|:~7§- —cos oz 7 — cos oy g ](1—2})2d2dt/ 113,

so that

3\/3 gml d _1\3 T . -1 xt _ _1 (1 x)i
SI[//(t) . thls 0%(236 1) [:§ COs 2x—1 2 — 1_’ x’

‘where the limits of integration are found from the foregoing inequalities to be

X = 1+¢ and x,= 1( 7 (1t t“’)> both of which lie between%-and %, )

far % <x<< % Hence, on integrating by parts, we get

W3 (7’:

1.7) Sy t) = — m 3 os ! (1+ Z‘))

T Ed 1-3
+3“/§ Slh(x, t)dx+S n(x, t)dx]
2t z 1-my ’

in consequence of the equality cos™ - («/ 31—+ t)) + cos™t5- <\/ 3a-1) - t)

1 .. . . t
%When [] 4—2—’ and the limits of integration are x, =?<1+ Vg,(_l—_ft_?))’

1 1+¢ 1
1— = ___ _ 7 _ =,
T (1 \/3(1 )) 2 1T T o4y

On summing up all the above (1)—(7), we have for — oo <t<<—1/2

g (e _@olrdr
Sllzu—t)\/ 2x—1y— 2"

dx1=

(1.8) s;(8) =

and for —1/2<<#<<0

3\/§S1“2‘” (2x—1dx  3y3 Sl % (2x—1)dx
(1. 9) S3(t) = 2t2 % \/(Zx_l)z‘—xztz + 2t2 1@+1) \/(zx 1)2 x t2,

where x, and 1—x, are % [1 +t/y3(1— 12)] respectively.
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We should further integrate (8) and (9). First, from (8) we find for — co <<
t<<-2

(1.10) s;(t) =

94+3t—4) W32+ /(7 .
AF—aya—ty T 2yp_a° (2 — sin 2(14))

(= sin ¢23((f t?)

Secondly for —2 <t <<-—1/2

94 +3t—4") | 3V3(2+1) 4—1+3(4—1)

(1.11) $s(t) = Yy + 2Ji_° og 201=%)
V34—
(= sinh™ 50— )
And when = —2, we get directly from (8)
3y3 51/4(2x—1)2 dx 7
1.12 —2)= = _
(1.12) s:(—2) 8 Jus i1, —ig0 = 0-0583.

It can be shown that both (10) and (11) do approach to (12) for t——27+0, res-
pectively.

Lastly, on integrating (9) and simplifying it, we obtain for —1/2<<¢<<0

V3(2—5¢) 3W3(2+8), V4—FHV1-2
CL18) S O=" gy * - %8 a1 F
Or since *<C1/4 here, expanding in a power series, we have

Ss(t)—\/i< +%10g 3) 31\/22 (10 - log 3) I

=0.3949--+ — 0.2052-£2 + -+,
and s,(0) = 0.3949. Also, as a check, it may be shown that (13) and (11) yield

1 8 12 2
33(_?i0) 75+ 255 log3— 75 =0.3133

coincidently. The fr. f. for #>0 shall be given by changing only the sign of # in
(10), (11) and (13) itself as it stands, and the distribution is quite symmetrical
with respect to the origin. In general si(¢) is regular in the whole interval, except
that the derivatives become discontinuous at {= +1/2, where however s;(¢) itself
still remains continuous (Fig. 5).

1,1

Furthermore, it is noteworthy that really in —§<t< 5 s''(#) is negative

and the fr. f. is convex upwards, while in |#] >% it is positive and concave

upwards, so that there are points of inflexion at £ = %
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Now we are to find the distribution function

¢ { sa(t) Sa()

S = S si(t) at,

—o0 0 0.3949 0.5

for which it needs also to be treated piecewise. - (1)"5 8'?;’3 3'2283

. . . . = . .201

Firstly, integrating (10) in — o <t << —2, we get 15| 0002 0.1409

114 _ -2 0.0583 0.1042

( ) S{0) ) — 3 0.0243 | 0.0613

9 =t Sm_lx/?»(ﬁ 4) 1 — 4 0.0153 | 0.0413

4(#—4) L V3(—4) 20—¢t)  1—¢ —5 0.0094 | 0.0297

with 5,(—2-0)=5/48=01042. Secondly, for —2 | ~ o | 00 0028

_<t<—1/2, on integrating (11) and taking Sy(—2) s I [
into account, we obtain

9 t 4—t+V3(4—F) 1 ]
115 SO=37=p [v3(4—t2)’ log l 21— | 71—
s 1 3+V5

Thirdly, for —1/2<C#<<0 integrating (13) and using Sg( 1/2) we obtain

V3i—¢£ 33t VE—£+V1-F
L16)  SO= 5+ Sy g By

We are now able to determine the critical limits -+ t,,'for a significant level
a. Since S)(—2)=0.1042, we may take (14) for a <<0.2 and put

; 9 —t LV3(FE-4) 1 a
(1.17) S3(t)=g»_w83(t)dt—4(t2 AR 4)sm 51=1) t] o

We obtain by successive interpolations #,= =3.59, +5.74 and - 14.85 nearly for
a=0.1, 0.05, 0.01 respectively. These are again greater in absolute values than
the corresponding classical Student ratios +2.920, +4.303, +9.925. However,
comparing Cases #=2 and »=3 it is plausible that their differencés shall become
gradually smaller, when # is greater than 3.
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Provided that the original universe has the fr. f. f(x)=1/(b—a) in a<< X<b
with the parent mean M=(a-+b)/2, we may standardize it so as x=(X--a)/(b—
@) and f(x)=11in 0<x <1 with mean m=1/2. Let the original sample be {X;}
with a mean X, a S.D. S and Student ratio 7 =(X—M)Vn—1/S. From these
data, we get 2=>2,/u=3(X,—a)/n(b—a) = (X—a) ]/ (b—a), x—m=(X—M)/
(b—a), =, —%)?/n=5/0—a) and t=x—m)Nn—1/s=(X—-M)Vn—1/S=
T. Hence, we may apply all the results obtained above about ¢ and x directly to
T and X, as it stands.

Remark. Incidentally the fr.f. f(x) may easily be found from dV=dP. In fact for n=2,
0<% <1/2, integrating dP=4dsdx about s under condition s<¥, we obtain f(§)=4S:ds=4§
(O<E<%); or else 4 ‘ ;_i ds=4(1—=%) for 1/2<x <1, s<1—x. Thus, we get a symmetrical
triangular distribution with discontinuos derivative at x=1/2.

Again, if n=3, for 0<< ¥ < 1/2, integrating [: dP=6V 3 7sdsdx about s under condition
1V 25 <%, we get firstly fz(£)=3y/3722/2. Also, if 0<Z<1/3, from II dP=61/3(mr—3 cos~1%

/5V2)sdsdx with x/1/ 3 < s <%/ 9 and secondly frr(x) = ‘_/ " 61/ 3(r—3 cos—1%/sV/2)sds=

-3 27 _
#ﬂ 2 + 27 -2, Therefore
(1.18) FZ) = f1+ f11 =2752/2 for 0<F<1/3,

However, if 1/3 < x < 1/2, the portion swelling out of the unit cube must be rejected so that as

(A= 9

II’ we shall take fr; — SEIV? 18,73 ( P 12]/ )d _ 1/3[(1 oF )3 (1—F) cos-1
x N —— . R . . ’n’ -

13 +x1 1_2,;]. Besides it requires, corresponding to (6), frr’=18y"3 S’”o (F —cos~1 SV—Z_

=1/2x2 —x + 1/3. Consequently, we attain

1—x
—cos—1 —"- —
cos ) )ds where xp= 1/2

9v'3 x T 1
Sfrpr= 5 [(l—x)2 cos—1 1—% —xV1—22 —g (x—1)2 EVAY (6x2—5x+1). Hence

(1.19) FE)=f1 + frrr + fror = 9(3%— 3%2 — 1/2) for 1/3< < 1/2.
Thus the two parabolic branches of f(x) for =3 at =1/3, the point of conjuction, actually

possess the same values f(%) = %,f’(%) =9, while f” ( )are yet different, as f” ( 1 0)
21+ f ”(%— + 0) =—54 (Cramér loc. cit. p. 245). The curve is symmetrical with respect to the

mode ¥=1/2 with £(0)=/(1)=F"(0)=£"(1)=0 and f(%) =9/4, £ (%) =0. Evidently the central
moments are pi1=p3=0, while p3=49/2880 and u4=2639/254016, so that p4/w92=3.92; thus it re-
veals already somewhat normal-like appearance.

Those cases with #=4 may be similarly argued by aid of the previous paper,
although the computations shall become more cumbersome. However, as # in-
creases, f,(x) rapidly approaches the N.D. and the corresponding Student func-
tion also approaches the classical one, it is of little value to study s,(¢) for large #.

2. Truncated Laplace Distribution as Universe. Let the universe be f(x)=
e~*(x>0) with the true mean E(x)=1, and the sample be {x;, %, ---} with mean
%, S.D. s, Student ratio £=(x—1)Yn—1/s. The probability being e~ dV, it is
required to find out the fr. f. s,(¢).
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Case n =2. Here dV = 4dsdx and d P = 4¢ > dsdx. Or, transforming s into
t, |J|l=|x—1|/# and we get

sult) =—:gg4e‘25|1~iidf.

By the condition 0<<s<¥, 0<{(¥—1)/¢t<<x. First, when f<C0, 0<<x<<1, we

have Ti—t <<x<<1. Hence

2.1) s = Suu ., e (1~x)dx== 1 |: ]+t g2 ”]( o<t << 0)

with s,(—0)=2¢7? sy(—1)=¢"% Next, when 0<<#<C1, the condition gives x —1
<t#%, so that 1<%<<1/(1—¢) and accordingly still the same expression as (1)
holds

@.2) sty = Lo 1 o] 0<t<)
with sy(+0)=2¢"% Lastly,  when 1<<t#<< oo, the condition s=(x—1)/#<xis sati-
sfied by itself. Hence, we are to integrate about all values of x>1:

(2.3) sq(t) = %ST e (x—1)dx= ‘%2 (1<<t<< o).

Thus s,(¢) is continuous and continuously derivable throughout the whole interval
and even at the point of conjunction t=1, the two branches have the same deri-
vatives, since hm exp (—2/(1—1¢))/(1—¢#)" vanish for n=0,1,2, -+---

However, since £s,(1)=~ O(1/t) as ¢— =+ oo, it cannot be integrated there and
has no mean, similarly as the classical Student’s distribution for case n=2. Of
course, in the contrary to the classical case, our s,(¢) has no symmetry. To show
it, we shall investigate its mode by putting

28’2[1—t+t2+t3 21—
2.4 = 2<% 2t/(1-t) =0,
(2.4) s,/(#) 7 A=) e 1 l— 0

Solving this equation by Newton’s successive approximation, we find that the
mode is about m,= 0.4234 with a maximal value s;(m,) = 0.3258.

Further, the distribution function Sy(#) being given by g so(t) dt and thus
for +<<0 as well as 0<<¢<<1, we get

-9 _
(2.5) Sy(f) =1 _eT + 1 . t p2a~D

with S,(£0)=0.5940, S(1-0)=1 — ¢ 2=0.8647, S,(—10) =0.09644, &c. Or, if
|t] be tolerably large, expanding in a power series of ¢}

-2 -2
2. —q_ € 1=t/ 2 2 N_1lte 2 i
2.6) S(=1 : + ; (1 i + A7y ) = ; nearly
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Naturally, if #>>1, we have by (3)

t ,—2 -2
@.7) sz(t)=5(1)+51ft2—dt=1-et—
and S,(cc)=1 as expected. The median is found by equating (5) to 0.5, and solv-
ing that equation again by Newton’s successive approximation to be m; = —0.3974,
with Max s,(¢)=0.3258. Thus the asymmetrical feature is remarkably manifested
(Fig. 6).

Student’s Distribution for Truncated Laplace Distribution.

t sa(t) Sa(t) | t s2(t) Selt)
-—300 0.0000 0.0038 +0 .2707 .5940
—231.1 low. 1% pt. .0050 +0.4232 . 3258 .7283
—200 5 0.0000 .0056 (mode) (maximum)

—100 .0001 .0111 +0.5 .3215 7477
—50 .0004 .0219 1 .1353 .8647
—43.68 low. 5% pt. .0250 1.5 .0601 .9098
—40 .0007 .0277 2 .0338 .9317
—30 .0014 .0358 2.707 up. 109 pt. .9500
—20.78 low. 10% pt. .0500 3 .0150 .9549
—20 .0024 .0519 4 .0085 .9622
-10 .0082 .0964 5 .0054 .9729
—6 .0187 .1007 5.41 up. 5% pt. .9750
—5 0245 .1673 6 .0038 L9774
—4 .0336 .1959 10 .0014 . 9865
-3 .0487 .2364 20 .0003 .9932
—2 .0723 .2849 27.07 up. 1% pt. .9950
—1.5 .1001 .3413 30 .0002 .9959
=51 .1353 .3996 50 .0001 .9973
—~0.5 .1899 .4799 100 .0000 .9986
—0.3974 (median) 5 200 .0000 .9993
—0 L2707 .5940 300 .0000 .9995

The upper significant points #(>>1) are readily found by (7) on putting
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o -2
@.8) S e’dt _e’ _a

to be 2,707, 5.413, 27.067 for significant levels «=0.1, 0.05, 0.01, respectively.
As to the lower significant points #, in virtue of (6)

2,9 Sa(t) = 1 iet o t% = % approximately

and solving the quadratic equation about ¢ and taking the larger one, because for
the smaller the expansion (9) becomes less exact, we obtain #,= —20.782, —43.578,
—231.12 for a=0.1, 0.05, 0.01, respectively. Comparing all these results with
the classical 10-, 5-, 1-% points, i.e. +6.314, +12.706, +63.657 for n=2, itis
noticeable that the critical values are extraordinarily enlarged in magnitude at
the truncated side, while on the contrary at the side of the reserved part they

are rather lessened.
Case n=3.

I. Whenv2s<Z%, i e. 2(x--1)/t<X the whole s-circle can be adopted
and d V=12V 3 z(%—1)*dZds/ |t|°, so that, denoting by s;(f) the contribution to
s5(¢) from this region,

123
s:(t) = —Ii”:}gir LO e ®(x—1)dx,

where the limits of integration shall be determined from the condition 2(x—1)/¢
<C%. Now, for the sake of later convenience, writing the integral

@. 10) L (= 1o dz= L9 (x— 17 +6(r—1) +2] = (),

so that G'(x)=(x--1) e *. First, if <0, 0<<x<<1, the previous condition yields
2(x—1)>tx, so that 2/(2—f)<<x <1 and we get

12V73. 2
2.11) s () = T‘a—nl:G(l)— G(Z——?)J’ (— o<t <C0)
where G(1)= — 527 e %= —0.00368793 (¢~*= 0.04978707 --+). Next, if 0<<#<<2, the
condition gives 1<<%<C2/(2—1) and consequently
123 2
(2.12) s;() = e T [G (5_7> - G(l):l o<<t<2).

Lastly, if £>2, the condition 2(x —1) <<Zxt is satisfied by itself, so that

2.13) )= 3T () - 6] = F, @<t< o)

where c=—12V 3 7 G(1)=8Y 3 z¢?/9 = 0.2408100. The auxiliary function G(x)
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is negative throughout the whole interval 0<<x<Coo and non-decreasing with
G(0)=—5/27, G(c0)=—0.

II. x<v2s=2(x—1)/t<<2x. Now the volume element being

1243 (x—1)* %t _
dV = \;3 (Lﬂ3cos 2(5_1)>dxdt,

their contribution to sy(¢) is

12 : _
sir(t)= I\il?; S Gl(x)l: 2 cos™! Z(xxi 1)] dx,

2

where the limits of integration are e. g. for £ <C0, x0=I—i7 and x,= 54

Integrating by parts, we get
12y 3~ ( ) 3643 (22t G(x)dx
!
(2 11) Sn(t)—— It|3 G 2. ¢ i3 t2 Slll t(x 1)V4(1 x)z P% tz (t<0)
with a positive integrand because of G(x)<<0 and x<C1. Next, if 0<<¢t<<1, x>1
and after conditions xf<<2(x —1)<<2xf, we have

123« 36 11 G(x)d
(2. 12)’ Sn(t)=’— \/3 G(z_t> £52:2 L(x__l),\/4((j;)__1x)2_x2t2, (0<t<1)

where the integral really becomes negative. Further, if 1<<¢t<C2, the condition
x(1—#)<<1 holds by itself, but by the remaining condition 2<C(2—#)x, so we
obtain

% (2__24) 36x/§r G(x)dx

(2. 12)” S[I(t)= == Iz = T 2/2—5(x~ 1) '\/4(.76—1)2—'.7621‘2 (1 <t<2).

Lastly, when £>>2, a part of conditions 2<<x(2—¢) becomes impossible, so that
the value > 2 is inadmissible in II.
To sum up I and II: In view of (10), using the notation

36y 3 — G(x) 4 e %[1+(2—3x)"]
GV —1) -2 = V3F G-DViG—1y—p 2 & b

we obtain, as the fr. f. for Student’s ratio in respect to the truncated Laplace
population,

(2.14)

@2.15)  st)=s:0)+su(®)=c/f— Y;tH(x dx (= 0o <t<0)
(2. 16) —c/f— SI;” H(x, f)dx 0<t<1)
(2.17) =c/t3~S;2AtH(x, Hdx (1<t<?2)

(2.18) =c/# with ¢=0.2408100. (2<t<<oo)
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Since the above integrals seem not to be expressible in any finite combination of
elementary functions, so we give up to execute the integrations. However, the
distribution function

t ¢ t %1 (&)
2. 19) Sy(f) = S s(fydt=— S — S dtS H(x #) dx
e 2t e %0 ()

can be computed by interchanging the order of integrations, so as deSH (x, t)dt,

where the limits of integrations should be adequately determined for each case.
Subdividing 3 cases: 1°—oo<<t<<0, 2° 0<<¢<<1l and 3° 1<<¢<<2, we shall
investigate them separately. We utilize an evident indefinite integral

dt __ N@—bF
tNE—b' T —at

1° — oo << <C0. Using (15),

) 4t0d yz-t ¢ *(14(2—3x)")d
(2.20) St = |* sat=—g + 75 |5 S 95)41((1 x)’ﬁ)) = (¢<<0).

By changing the order of repeated integrations, we get

2/2—¢ 1f1-¢, 1-1/% 2/2~t0 ty . ..
(2.21) S dtS dx=S 0dacg dt+g deZ / dt = (i) + (ii).
0 0 —2/x

2-2/m 11—t

Since the lower limit of the new inner integrals makes the integrand vanish, it
needs only to substitute the upper limit. Thus

11—t A1 N2 242
=5, e @3 x{%]/

I xdx
= S ., ¥ (A+(2-3%)) aA—x)
which, on integrating by parts, yields

(i)=1—(1—i0 Dexp it

I 14"
Hence,
(i) = ——+1 127 e+ 0(t), as £,=0,
while
"~ 9 1 1 o
"= 2;:0 et O(tﬁ ) et
Similarly

-1 3% N VA1 — 2V — 28 dx
(11)—737()&/1~ (U+@=32P) VA -2 — "8 [ e
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which is not so effectively integrable as in (i). However, by taking a new variable
0 so as x=1/(1—7¢t,), it yields

G \/%to Suz\/_‘liés—l"dﬁ [exp (= — Gty ] LH( 0to>2]

When |#,| is small, we may expand the expressions under brackets in power
series of ¢t, and then integrate about # and obtain

-3

V3 ¢
R PACCES

-3

2e 27
W) =737 (

while, if [1/#,| is small,
5 (2 3\, 27 1,189
W= y35 (33 )+ 7 +t0< +2/m3),

Hence, when ¢~ —0, (i)’ and (ii)’ together with the first term (0)' = —c¢/24,
yields

(2. 22) Syty = 0) 22 1—17¢~%/2=0.5768 >0.5.

Thus, the area under 1° is greater than 1/2, which shows that the distribution is
never symmetrical.

Also, (0) (i) (ii)" combined all together, we can determine the lower signi-
ficant limits, so as

1 _
(2.23) %=_% _%+%3%>+§_§+%3<L§9+2/ﬂ\/3> nearly.

Thus, for a=0.1, 0.05, 0.01, we obtain #,= —8.75, —13.08, —32.45, respective-
ly. These are again larger in the absolute value compared with the corresponding
classical Student ratios for case n=3: +2.920, +4.303, +9.925, while the upper
limits are smaller, as will be described later on.

2° 0<<#<<1. Since in this domain by (16)

sf)= ¢ -W3 Sl““ ¢ [1+(3x—2)"]
£ 12 Jye—t (x-— 1)V4 (x— 17 -2

letting 0 <<z, <<t <<1, we have

(2.24)  S(z)= S(—0) +lim S“

"o

1/1—-10 2-2f® 2[2—1-1 2-2{% 1/1»11 T
+S de dtﬁ‘g de dt—l—S de dt
7o

2/2*70 7 1—-1fx 2/2—7‘1 1-~-1/x

! - im (6. — € V(=
si(8)dt 0.5768+171()r3) [(2:3 2'_f)( (0))

(=) + () + (iii))].

Because the integrands in (i) as well as (i) vanish for the inner upper limit, we
get
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-1
V'3 7o
Or, on putting x=1/(1—0xz), it becomes, as in (ii) of 1°,

W —2e” 3S \/4a2 1 ( 397, \ 1+67+5573/2
M= NERZIRIT 2239 1—010)' (1—fzy)?

When -,2=20, 'expandincr the integrand in a power series of Az, it yields

@)=

o~ —zfﬂ_dL
[ e a2 B 7

2r N3 e
= .
== 2 (B V3 106 = — i+ 5 + 0.
Therefore, together with the first term: 0) = %
21'0 2T1
. e 8
0+ 0 == — 55 +0G0.
To 2 1
Similarly
()= — L S“‘H e”*(1+(3x—2)") I:\/4(x—1)2——x2t2:|
N e

The expression between the square brackets becomes simply v 3 x. Hence, on
writing x=1—y and integrating by parts, we get

7/2—
(i) = —e"3g t (2 4 8y 155"+ 9y3)
Toll—7y

71— "1)

= exp (—3(1+2)). \:—2 + ~—+ 3]
Tl =T

(&) ”+3]GXP(2 =25y e e (25)

-3
where the sacond sguare brackets bacome for -, 220, (ii),= —~e—2 + %e'3+0(_—0).
To
Hence, as ¢,—0,
N/ AN 17 o
0) + @) + (i) = — 2 satge + O(zy).

Thus, making -,— 0 in (24) it is of no affect. Lastly

e ey

For its lower inner limit, we have, as in (ii),
(iii)o=[( )+5( TTI>+3]eXP<1 3 )
L _
_ - 2—7r 6 )
l: ) ( 71 )+3:Iexp (2——‘[1

(i) =

1-1/x
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of which the latter half just cancels out with the first brackets in (ii), while the
_17

73 2l
As to the upper inner limit in (iii), again putting x=1/(1—@r,) similarly as in (i),
it becomes

= 20! VT g (2202)] S ]
(iii), 733 1/Z—exp(l 7 ) 1+ 67+ 2 n | Aoy

3 6% —ft;

e *+0(z;) as -— 0, but to naught as r;—1—0.

which approaches

o 2e* (27r NEY e”®
= 2 : Y3 0@ = 21— as 7m0,

Consequently the full sum (0) + (i) + (ii) + (iii) approaches 0(1) as t;—0. But, when
717—1, the sum (0) +(j\) -+ (ii) + (iii), amounts to

17¢® ¢ _
2 —7—0.3028.

On the other hand, on computing (iii), for r; =1 by means of Gauss’ method of
numerical integration, we obtain

- =37 [ 5 z] iy 47 _
@25 J=200 exp (7). (14045 0 NEToT gy =0.0058-.
Therefore, all the above taken into account, (24) amounts to
(2. 26) Ss(1) = 0.5768+0.3028 + 0.0058 = 0.8854,

Consequently the area under the fr. f. s5(#) in 2° 0<<#<<1 is 0.3086 by (22).
3° Further, for 1<<#<{2, we have

& c_ ¢ _ 4 “ﬂg"' e (1+(3x—2))
Sl si(t)dt = 2 2 \/—I;’.'Sl £ Jap-e (0 —DVA(x— 1) — 2%

The repeated integral becomes

L[ L G2 VG TP

V3 Jz (x—1)° £ - 9

1 oo
* 7?52,24

In particular, for #,=2, the second integral J; reduces to naught, while the first
J. coincides with J of (25)—Really, either when #=1/(y+1) in J or when x—1
=1/y in J;, both become a same integral:

2¢7°
V3
And thus ]1—0 0058 when #,=2. Therefore, the area of the whole domain 3°

becomes % - § —0.0058=0.0845. Consequently

t
[:the same integrand:|11d~x= Ji+ Ja

Soexp( p ) l:(y—f 1)2+(y—l—1)+ ]\/m
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2.27) Ss(2) = S5(1) + 0.0845 = 0.9699,
and finally

(2. 28) Si(o0) = Si(2) + rf dt = 0.9699 + 0.0301 = 1.
2

Lastly we shall find the upper critical limits #,. In fact, it was already by
(18) evident that

0.2408 0.1204 _ «
2. 29) g 08 ar= 0120 _ o
And accordingly #,=v0.2408/«. E.g. for a=0.1, 0.05, 0.01, we get immediately

4, =1.552, 2.195, 4.907, respectively. Here the latter two «/2=0.025, 0.005 being
less than SZ t—ca dt=0.0301, the determination is legitimate, but it is not so for

«/2=0.05, the first one. Hence it seems to require some correction: namely in
view of (17) we should subtract the following integral resembling to J of (25)

L e

\/3 tltz 2j2—t (X — 1)\/m

_ 1 r (1 +(3x—2)%)
V3t 2j2-t; (x—1)

However, on computing numerically the above correction J,(1.552) actually, we
get J,=0.00000 005, which is practically immaterial. Hence the upper limit for
a=0.1 will do still with 1.552.

dx

]l(tl)

V4(x —1) — 2°f* dx.

3. Truncated Normal Distribution as Universe.
If the parent distribution has the fr. f. such that for x >0

where
p=[o(0) T 1= (5 )T =1-0( ) =0 (5)>0,

then the d. f. becomes

rio = [swar = 5 {(552) 5 = G ewa =0 (4) -0 (1) ]I

and F(0) =0, F(o0)=1. This is the so-called truncated normal distribution®.
Its first moment, the parent mean m is positive and given by

2
G s () ra=ata,

3.2) m =S xf(x)a’x—x/2 DS X exp {—

1) H.Cramér, loc. cit.,, p.248.
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where 1 =¢'(—a/s)/D>0. However, for the sake of simplicity, we shall
write simply, as ¢ =1, below. Thus the parent fr.f. is

(3.1) f(x) =¢(x—a)/D (x>0) with D=1-0¢(—a)

and the parent mean

3.2) m=gqg+i(>0) with 1=& (—~a)/D(>0).

Now, from the universe f(x) a sambple {x, x, =+ } bzing drawn with a sample

mean x and a S.D. s, it is again required to find the distribution function of
Student’s ratio t = (§—m)Vn—1/s. The golden identity x!= ns’+nx® would be
always of use.

Case n = 2.
dp = fla) flxn) dz d, = ﬁ exp {—s'—(F—a)*}dndx, and dV = 4d7ds,
7T,
= 4 — g2 2 2 _(}_m)z— 72
so that dP = S Dr exp{—s'—(¥—a)}dx ds = g exp{ 5 (% a)}
ix—;mi dxdt. Hence, we get the fr. f.

s: () = _DZTES |x—m|exp { (& tzm) (x—a)z} dx
where the limits of integration should be determined from the fundamental con-
dition for the positive argument : s <<x. First, if t<<0, x<m and we have by
condition (E—m)/ t<x, so m/(1—¢t) <<x<m. Therefore

3.3) () = S (m x) exp{ (x_r_n_)_ (x—a)“} dx (—oo <<t <<0).

aD*¢
Next, if 0<<t<<1, x=>m and the condition gives ¥ —m<<xt so that m<<x<<m/(1-—¢)
and

“(} m) exp —(-x:m—)z—(x—a)z} dx O<<t<<l).

(3. 4) Sz(t) = £

o
However, if 1 <<t <Coo, the condition s = 5—7@ <x is satisfied by itself, so that
m<i<oco and
& _ 2 .

3.5) &) = 7575 (—m) exp{— E=M' _xgylar A <i<oo

Omitting other details, we proceed straightforwardly to obtain the lower and
upper significant limits only. For this purpose it requires asymptotic formulas
of the d. f. S,(¢) for large —#,(>0) and #(>0). We shall content ourselves with

some approximations taking few terms in expansions by power series of #7%,
Firstly, for f<<0, taking (3. 3) and integrating by parts, we get

= I N S Ve L E—m)’ -
y=D’ns;(¥) = 7 Sm“_%(x a—Ae exp{ 7 }dx (a )
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2 m _ —m)?
1 {e~}\2_e—a2exp (Zam _ 2m ) N S oo Z(Jct2 m) exp (__ (x tzm)) A

& 1—1¢ ¢ _t)2 mfl—t
m _ 2
+21S /S(p l:—(x—a)z— —my tZM) :l dx (=z, say)}
= % [e™ — e Expy(t) —y + 242],

where

(3.6) Expt) = exp[

2am 2m’ ] —1_ 2am _ 2am +2m® —2a°m’
1—¢ (1—1y t I

for large |#|. Hence, we obtain

e~ — ¢~ Expy(f) + 212

3.7 y= D’zs:(f) =

1+# ’
where
m . 2
ZES exp[-—(x—a)z—%—(x 2m>:ldx
mil—t t
2
=Smflzlx¥)[ (1—1— x +2(a+ ) (a + = )] dx
_ =i B 1 _m+at 2]
= eXp(1+t2> Sm?ff?[ (1+t2)(x 1+t2) ax.
Or, writing
— Jof1. 1 _ m+at2]
w 1/2(1+?) [x 1+
N2 2 m1+1/t
V1+1/8 Ll 1+1/8 [“+71--1/t],
2 is expressible as follows
'\/w /12 wy 1 o2 dw \/7; 2
3.8) z=J131/p eXp(1+t2) S 2z =V1+1/F eXP(1+t2) [¢(ws) — (wd)].

Furthermore we expand every factor by Taylor to some power of #say, to 73
and we obtain

(3.9) (b)) = Eyzz

Ni 1 —A2__ ,—-a2 ey ) sy _ 2m2 —a? 1
= {? [e™ — ™ + 207 (B(22) + D (Za) " 05}

Therefore, the distribution function S.(¢) is, if #<<0 and {¢| be large,

L gy o) T @WE ) + 0(Ba) —1)] — T ~a2}

3.10) S L {-1 tz

+ 0(%



30 Yoshikatsu WATANABE

Accordingly this equated to «/2 :
13
(3.11) Sity) = S" sipydt =%

and solved for #, we can determine the lower significant limits.
For examples, if the N.D. be truncated at centroid, then ¢=0, D=1/2,

A =m = y2/z= 0.79788. If the term of ¢/ only taken, [we ‘get a linear equa-
tion, which yields ¢, = —14.69, —29.38, —146.9 for « = 0.1, 0.05, 0.01. Yet, if
we take up to the term of #72, the quadratic equation shall give a pair of negative
roots —13.48, —2.31 and —28.23, —1.14 and —145.6, —1.12, corresponding to
three values of «. Howewer, those of greater magnitude only must be selected,
since the approximation is the less exact with the smaller |#|. Again, if the
N. D. be truncated at its left quartile, then « = 0.6745, D = 3/4, 1 = 0.42369,
m = 1.09819. Solving the corresponding quadratic equations and taking larger
|#], we get {, = —10.92, —22.67, —116.4. Further, if the N. D. be truncated
at its right quartile, we have @ = —0.6745, D = 1/4, 1 =1.27108, m = 0.59658,
and t,= —23.71, —56.72, —186.6. Thus, the more truncated, the enlargement
of lower limits becomes the more manifest.

Secondly, to obtain the upper significant limits, it requires another asymp-
totic formula, this time, for S(#,) = St syi(#)dt, in which however a pretty more
number of terms should be taken upl, since now the magnitude of # is not so
large : indeed it becomes even less than that of the untruncated case. Taking (5)
for 1 <t << oo and integrating by parts, we get

y= D’rs,(t) = r &‘t;;ﬂ) e~ exp (— (x ;27”)2) dx (m=a+2)

=%SM(R8-(m_a)2)" exp (_(xﬁ M)z) dx— %Swexp!:'(x—a)zf(i_—mx] dx

m tz m tZ

=z, say)

= % fe—y—222],

Therefore
(3.12) 9= Ds,(x)= (¥ —222)/ (1 41,

where z is just similarly to (8)

2= S;exp[—— (x—a)— Lx_szj:ldx = exp (%)S:exp ]:— (1 +—}§)(x - ‘lzf:{")2:|dx.

Or, on writing

_ 1 _M] —1y/ 2
w 1/2(1+72‘)[x +1 1, T Hirie,

it follows
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= el S e el ) =0 (o )

Expanding again every factor and argument into power series of #7%, but now
taking possibly a pretty many number of terms,

(8.13)  z=ya(l— (1)(\/21))[ (A'“r ;) o 14 §+%*2+§8—>

(" TR 156>]

221 2245 1/ 2 19] (
+ae [272 gt TP (12 48’1 )+0 )

This expression being substituted in (12), we attain finally

(3. 14) &UL_Dz{IE‘“—mJH1~¢wm»]
-—?[u+wﬁf“—@f+$xwﬂL—wwm»]

+ 1 [(1+i,12 514)e”kg—(z4+5/12+ 17?)2«/5(1—40(«/21))]}

7 4
_A C
(_ £ t* + Say)
Hence we have
A B . C
@15 Sey={swar=A- B4 C

from which the upper significant limit can be determined. We obtain the follow-
ing upper significant limits #; :

a=0 a=0.05 a=0.01
a=0 411 8.26 41.40
a=0.67450 4.74 9.58 48.00
a=—0.67450 3.52 7.35 36.63
N. D. 6.31 1271 63.66.

Thus, again, the more truncated, the more departure from the complete N. D.
results.

Case n=3.
L 0<<s<x/V2, i.e. 2(x—m)/t <%. In this subcase, the whole s-circle can
be adopted :

dV =12J3x(x —m)dxdt/ |¢|® and d P = (J2zD)* exp[ —(s +x— az)]dV

Hence, denoting by s;(¢) the contribution to s;(¢#) from this portion,
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@16 =7 S (x—m)e—0dx,

where

= 3—m) 3w __6_‘/3
- +2(x a) and = V2,

and the limits of integration are determined by condition I. First, fot #<<O,

Q

0 < x <wm by condition 2(x—m)>xt and we have x,= _2m_ , xi1=m. Next, for

2—1¢
0<t<2, x>m and condition gives x,=m, x,=2m/(2—¢). Lastly, for {>>2, the
condition holds by itself, and we have simply x,=m, x,=oc0. Or, to simplify the
writing, let us put

3.17 S:(y—m)ze*‘zdy‘:“ G(x), 0<<x<<oo, sothat G'(x) = (x—m)e %

Then
s:(8) = ¢|#] 7 (G(x;) — G(xo))
and consequently

sl(t)=l§l3[G(m)—G(§2_%>] for —oo<t<0,
3.18) - [G(%)—G(m)] for 0<t<2,
=% [G(oo)—G(m)] for 2<t<< oo,

Evidently G(x) is non-negative and monotonic increasing about x with G(0) = 0,
yet it contains f as parameter and indeed an even function of #. In particular,
the value of G(m) as well as G(oo) shall be actually computed later on.

I, <25 = 2(x—m)/t < 2x.

The volume element being now
aV = 6y3rs(1— 2 cos™5/v2s )dids,

the contribution from this portion to s;(#) is

_ Cc\ —Q': _3 —I_L]
(3.19) su(f) -—Il‘|3Smo<x m)’e™?| 1— — cos 5 —m) dx
c ! 3 = xt
B e G' [ - ! :! ’
\ \3Sxo G108 Gy |97
where the limits of integration are e.g. for #<C0, x,= 1—3 and x, = 57

Integrating by parts, we obtain

c_ G( 2m ) 3cm Sm’“ G(x)dx
[¢]® 2—t¢ at’ Jwn-t | x—m| VA (x —m):— 2% -

SII(t) =
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Similarly, for 0 <<¢#<C1, we have

_ L Bem il G(x)dx
SII(t) B t3 G(Z"“ t) 7'L't2 S27n/2—t (x——m)\/4(x_m)2 .__x2t2 .

And for 1 <<t <2
sp(t) = —[G( 00) — G(Z-—t ] 3em Sw G(x)dx

amiz—t (X —m) 4 (x —m)® — 26 -

However, for 2<<{<Cco, the inequalities x/y2<<s<<x 2 yield x/2<<(x —m)/t<%
and consequently the left half becomes impossible because of 0<<x—m<<x, {>2.
There is no portion for II and s;;(¢#) = 0.

Summing up all the above we obtain

(3.20)  84(t) = $:(8) + 502(t) = - G(m)+S /’2 "H, Hdx  (t<0),

1£[?

B.21) ()=~ Gom) + S e H(x, Ddz 0 <i<1),

2m [ 2

(3. 22) sg(t)=%[G(OO)~G(m)]+Szm/2‘tH(x, Nt (Q<t<?2),

(3.23)  s(®) =% [G(c0) — G(m)] (2 <t < o),
where
(3. 24) H(x, 1) = 3¢m G(x)

wtt [x—mVA(x —m) — 2 f
We ought now to compute G(m) and G(oo) for t==0. However, before com-
puting

3.25) G(m)= S:n(x~m)ze‘9dx with © =3¢~ . m* —(x e

we notice an evident lemma :

m

S S;ne'QQ’(x) ds={"| - S w-m -30 ~a)etdx == T —Exp),

32}
2 .

2
U= —(E )S (x—m)e “dx— 3/15 e dx = B(tht)X——B/IZ say.

0

where

Exp;(¥) = exp

Also, in view of ¢ = m— 1,

Consequently

X = [Exp,() —e T —31 2] /3(1+2/2).
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Now we can easily compute G(m): Putting G(m)=# Y and integrating by parts,
we obtain

Y= Sml: exp( 3(a— m)z):l (x—m) exp(—i(x~é)2)dx

1]

]+ S 'de—lg (x—m) (x—a)e *dx,

=—"exp| — 5

6

what equals by the previous abbreviations

m 1 #

Hence, we get

\yv _ 1 m _ 2
(1+7) Y= 17— 2Expt-4 X

in which X being substituted and solved for Y, we attain at length

3.26) G(m)= 5(1—+1§/t—2)2 {ze’%A (x+ m -+ Zm)EXpl(t)+(3A + 145 )Z}
where
Z=\/1j2/t2exp 5 7 \/Zﬂ ¢£’;—ﬂ5)+‘p(\l&ﬁ‘%—§/nfﬁ@)”l}
and
Exp,(t) = e—% o exp( ) = “2[ — + 92%4 - :l

All these being expanded in power series of ¢72,

(3. 27) G(m);-g-e‘%“ 1(/1+m)e 3“+(A-2+l 1/2E[¢(J31)+¢(43a)—1]

3 3
—%{(i“r%)le z [(X+m)(,x”+m +1)+—/I]e e

+(3:4+642+1) —375 [eW3) + @ (‘Ba)—ﬂ} +0(%7).

Therefore, if [#| great, G(m) may be considered as a constant, whereas, if |#|
not so large, some further terms of #~* should be supplemented by (26) or (27).

Quite similarly

(3. 28) G(oo)=3(1—+12/t—2,)2{ (/1+m+3 )Expl(t) (3xf+1+f2)z}

where

- el ()

Rather it is more desirable to obtain the expansion of G(oo) — G(m) more
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in details. In fact it is

(3.29)  Gleo)—Gm=(2+1)/Fa-oqan- e sn

[(34 +6i° —1—1)]/ 1—a( \/31))—(,1 ““%)}.e—%m]

2t4

1
T2

o] O+ 451+ 450045) /& (1—(0(\/5))—(3/14+14A2+11)xe"%“]
{(9A + 840+ 21044+ 1408+ 3) 27 (1 _ p(J30)

(3, 275 +185 2+31) 2“} +O(F)

—a. B, C D
=A—G o T gs, S

In order to compute upper significant limits #, we have to substitute the
above expression in (23). Thus we get

(- —\14_8,.¢_ D
(3.30)  Sy(t) = Sﬂsg(t)dt— i H R tg] at
—clA_B, C D
= CI:th i Te2n T 1em
This being equated to «/2, we have to solve by Horner the equation for #*:

A _ B C _ D)._ -
(3.31) c(ﬁ ot s~ as) = (=01, 005, 0.01 &e.).

By this procedure we get the following Table regarding upper limits #, for = 3:

species |\ level a=0.1 a=0.05 a=0.01
a=0 (truncated at centroid) 2.09 3.04 6.97
a=0.6745 ( » the left quartile) 2.25 3.38 7.86
a=—0.6745 ( ~» the right quartile) 1.89 2.75 . 6.30
the whole untruncated N. D. 2.92 4.30 9.925

On the contrary the lower significant limits being large in absolute value, it
would be more legitimately treated rather with few expansion. For this purpose
making use of (20), we have for #,<<0

- SO CG(m)dt+ 3cm S”o ﬂgzm’z"‘ Gx)dx a
M T mi-t (m—x)N4(x—m)?: —x** 2>

(3.32)  Si(t) = St" solf)dt

e I?

where

Gx)=G, )= S:(y—m)ze"@dy with Q@ = ?l(y;_mf + 3?(y—a)z.
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For a large |#,], G(m) = G(m, ) might be assumed to be constant and with
the first term of (32) only it may serve as a rough estimation of Si(#,). Thus we
get t, = —VcG/a- However, more elaborately we should take the second double
integral into account. So we must estimate G(x) in the integrand of (32). Since
its integrand contains already ¢°? as factor and besides the integration variable x

is small because m/(1—f) <x<<2m/(2—1), sothat x = 0(%) in — oo <<l

with large |#,|, we may put approximately
x . 2
(3.33) G(x)_ﬁ_SO(y—m)z[l—- ?i(y—tzﬂ] exp(——%(y—af) dy.

Moreover, neglecting those terms of smaller magnitude than #7% as well as x* in
order, we have

(3.34) G~ ( ~%n212) e“% @ l:mzx = (m = %a)x{!

and consequently —3m?/#* may be also neglected.
Now, changing the order of thé repeated integrations in (32), we obtain

ty 22—t 2m [2—-1, ty mfl-ty 1—-mfx . .
SdtS dx=g de dt+§ dxg dt = () + ().

mil-¢ m/l—-to 2-2m|x 0 2—mf%

—00

We utilize again the formula

g dt VA —m)} —2F
24 (x—m)—x*¢ —4(x—m)’t

Since the new integrands vanish at their lower limits, we have

0= [ [t (m— Sa) ] UG g

mil-t, —4(m-x>3to
Putting x = m/(1—#6t,) and integrating about ¢ from 1/2 to 1, we get
)= 3 (- 34) B
(i) = 813 m\ m 244_%1,

on neglecting those terms whose powers are higher than #;* Also

- e T 3 > 2 | V4 (x—m)2~x2t2]d ~ __ N3m:_ 43 3 )
= —m— = NEW M) XL e~ — NOM NSy m—"a
(11) SO [m X (m 2 ajx —4(fo)3t N 121}? 8t6& 4 R

Therefore, we obtain after all

cGm) 3em® ~2mf3 Jﬁ)
28 4z © (2 Ry

whose last term however may be omitted, unless the term of #?in G(m) by (27)

be taken into account. Adopting the first one or two terms and equating it to

/2, we may compute the lower limit ¢, approximately.
For the sake of comparison, recapitulating all the significant limits above

(3.35) Sto) =

1 _ 9c3m*(, 5 )l
27 16x (m %)%,
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obtained, we get the following Table :

The critical values of Student’s ratios for several truncated N.D.

. level a=0.1 a=0,05 a=0.,01
species .
size n=2 n=3 n=2 n=3 n=2 n=3

I° (truncated at { fo —13.48 —8.26 | —28.23 --11.48| —145.6 —24.15
the centroid) | 4 4411 42.09 | +8.26  +3.04 | +41.40  +6.97
2> (truncated at the { 0 —10.92 —6.38 | —22.67 —8.69 | —116.4 —18.77
left quartile) | , 1474 +2.25 | +9.58  +3.38 | +48.00 +7.86
3¢ (truncated at the { fo ~923.71 —9.00 | —56.72 —13.45| —186.6 —28.19
right quartile) | 4 +3.52  +1.89 | +7.35  4+2.75 | +36.63 +6.30
4° (untruncated N.D.) fo, # | T6.31  F2.92 | TF12.71 F4.30 | TF63.66  T9.925

Among three species, the case 2° the truncated one at the left quartile and
thus reserving almost the original figure, behaves as nearly as the whole N. D.:
The enlargement of the lower limits #,, as well as the lessening of the upper limits
t;, both are rather moderate. However, in the case 3°, the truncated one at the
right qurtile, so that the original figure is almost erased away, the departure
from the ordinary N. D. 4° is very striking.

4. A N. D. Truncated af Both Ends. If a N.D.

o (x_;_z_Z) \/; exp {_ (xzfdf)z} (a>0) with d. £. @ (2) = S_w ¢ (2)dz

being not only at the left negative side truncated, but also at right the part
x> 2a erased out, the remaining portion 0 <<x <2« be considered as universe,
its fr. f. becomes

“.1) f(x)=7)1; (’%) \/ZTlgDexp{ (o= “)}’ (0 < x < 2a)

where
wn  D=[H(50) s = 0(2)-o(-2) -20(2)
and the d. £.

(4.3) F(x) = S:f(x>dx = %["’(? - (”('%)]

with F(0)=0, F(2¢)=1. Writing 1 = 290(—3—)/ D (>0), the first four moments

are given by
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vy = ¢ (= parent mean m), 1, =a’ —dol+o’, v3=a’—3a’sl-+3as’,
vy = @' —7d° 61+ 646" —3as’ 1+ 36

and the central moments

m=0, =0 —as), ps=0, = 30"—3as*s—d’s),

so that
/13 A4 M =3_ ri(3rai—3+ 7%
ps =0 an A > A=z

where » = @/ >0. Hence the kurtosis is =2 3 according as
= 3—-7Y)/3r = (36— a%/3as.

If the original S. D. ¢ be taken as unit, then 27 = 22/s expresses its range.
The new variable & = x/¢s has the {r. f.

4. 4) f) = Wor DeXp {—%(E—r)z} 0<E<2r

where D =22(r) —1. When # becomes sufficiently large, this distribution ex-
hausts almost the original whole N. D. Hence it seems that the critical values of
Student ratio for (4) would approach towards the classical values, as » increases.
This approximation shall be the more nearer, the greater » becomes, as will be
shown below.

Suppose we have drawn from universe (1) a sample with mean ¥ and S. D. s.
If the size be e. g. n =2, all x;, x,, % are between (0, 22) with the probability

1 17 2+ 2 g
dp = f(xl)f(xz) dxidx, = m exp l:“ (= a)zdz(x z) ] dx,dx,,

PRy 2
dP = 29505 exp l:— Eoayts +S]‘
Or, if s be transformed into Student’s # with Jacobian |J| = |x—a|/#, we
obtain, as the fr.f. for Student’s ratic ¢ = (x —a)/s,
__ 2 n|x—al ( (x— tl)
(4.5) s(t) = i Sxo 2 exp{ 1+ ) 5 }dx,

where the limits of integration are determined from the condition that 0<<x,, x,<C

%, = a. Hence, on

2a¢. If 0<x<<a, t<<0, the condition s<x yields x, = 1Cit

writing V2 1/ 1+%2- (a—x) = z(>0), the integral of (5) reduces to
g

— 1 & -2 e /2
50 SO = D So B D2(1+t2)[ e,
where
@.7 = 2N2a+8) (—o<><t<0 ~<zl 42“)
a 1—¢ o /-
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In fact z, becomes y2a/s either when #— —oo or f— —0, while it becomes a
minimum ¢/¢ when ¢ = --1.

Similarly, if @ <<x<<2a, >0 and by the condition that (x;, x,) lies insides
the square formed by two sides 0 <<x, <<2a, 0<<x,<<2a, we see that x,=a<<x<

a(l-+2t)
1-+¢

the same expression for s(¢) as (6), but now instead of (7), only its sign ¢ being
changed,

= x; in (5). We get again on writing ‘4 V2 ‘/ 1_|-l (x—a) = 2(>0), just

“4.98) 2 = &2 +1) (o<t<w,z<zl<@)
c 1+t o c /.

Therefore, we have s(—¢) = s(¢) and the fr. f. s(¢) is symmetrical with respect to
the origin. However we obtain e. g. for £ <<0

_ _ —12/2 2@ 1+¢ ~zz/2]
7rD2(1+t2)[1+t2 =

which is evidently positive, if 0>¢> —1. Also, if —1>¢> —co, rewriting
the above expression as

p _ (—=De Al a, ? 2(1+2)
s'® —nDZ(le+t2)2 [e / _(H%( —1)* (l—t)t)]

4.9) sty =

we see its positivity, because

22 21 _ a@ 1+¢ @ 1+ 2141
R T ey ¢ g L S Iy g s g
21 +1) .
11—t

Thus s(¢) is monotonic increasing in — oo <{f<C0, whereas it decreasing in 0 <
t<< oo, Also

since y = is positive in —co <t < —1, but its maximum is only 0.34---,

2a°
zD’*
and the two branches make a cusp at ¢ = 0.
Further the d. f. is given in view of (6) (8) for #>0 by

s'(—0) = —s'(+0) = e @t > (,

4.10)  S(—t) = S_tls(t)dt - Sjs(t)dt

_1{r1r 1 (_ﬁz_(_l-i-tz)]
_H)“zgtl Tz~ TrE P\ )9

S N I P _S*’ 1 2(1+t2)]
_nDz[Z tan™'f; JI4P exp (1+t)2) dt,

where » = a/s. Expanding all in powers of 7', we have

LU P . S —1l=l_i 1.
g TRnTh= g ot = T gy T T
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1 _ 1 1 1 1+ . 2 4 6 .
ESE AT ’ (1+t)2_1 P ’
so that
_7’2(1 ‘*’tz) _rzl: _2_7'— 4 . U] 4 - 4 2
exp[ Az = 1+ : + (27' 47 + = (3 8r +6r>
+}4<§r—8r+207—87) ------ J

Substituting all these in (10) and integrating we get

(4.11) S s(tydt = { 1—e™) — 2«7” = [l + (2r* —49? —l)e‘”:l

zD? 3t
_r(1 . [ gyt _ ) ]}
t1(3 2 +1 + o] 1 r 870 +187* — 47 +1
114_B _ £ _D EJ
- 7'£'D2 Tl t12 t13 t14 + t15 » Say
Assumed e.g. ¥ =a/o=0.5, 0.6745, 1, 2, 3, -+, all coefficients are known.

The above expression being equated to «/2 (= 0.1, 0.05, 0.01), or what is the
same thing as the last square brackets being equated to

(04 9 ___ T 5 2
Nod = 21 —
o D=« o (27 (r) —-1)
and solved for 1/¢,=x; by Horner, we can determine the critical values £,= +1/x,.
The results are obtained as the following

Table of the critical values ¢, for T.N.D. (case n=2)

r=alo a=0.1 a=0.05 a=0.01
0.5 10.71 20.22 96.95
0.6745 9.93 19.16 93.54
1 9.28 17.89 86.94
1.5 7.88 15.48 76.14
2 6.97 13.81 68.67
3 6.45° 12.83 64.00
4 6.41 12.76 63.67
oo (untruncated N.D.) 6.314 12.706 63.657

The last classical values are readily obtained by putting » = o in (10). In fact,
since for 7 = oo the second term of (10) reduces to naught, it holds

S(tl) = D2 ( 727: — tan“l tl) =
Also D =20(o0)—1 =1, so that

tan™'t, = —% (1—a), i.e. t, = tan ~725 1—a).
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Putting here- & = 0.1, 0.05, 0.01, we obtain the classical values
f,1=tan 81°=6.314, f,4= tan 85°30'=12.706, #, = tan 89°6'=63.657.

To obtain similar values for 5<Cr» << oo, we ought to take a number of terms of
negative powers much more than 5. But the case » =4 being already enough near
to = oo we omit the further trouble.

In practice, the universe is not necessarily the complete whole N. D. Rather
it is very probable that materially it is a truncated one. Notwithstanding, referring
to the classical Table for the untruncated N. D., to speak particularly the adoption
or rejection of the null-bypothesis by a subtle difference of the decimal figures, it
is quite of nonsense, in case that the truncation is suspicious.

5. A U-shaped Distribution as Universe.
The fr. f. that interested the author, as a little peculiar one, is

1
X) = ———
&) = i—n 0<x<1)
. 1 fx)
w1thS f(x)dx =1, E(x) (=mean=antimode=median) =
0

%, D*(x) =—81—(Fig. 7). Supposing a sample {x,, .} drawn
from this universe with mean ¥ and S.D. s, its proba-
bility is

dp= dx dx, B 2

ﬂz\/xlxz(l - (x1 —+ xz) + xlxz), ’ 0 Il 5 x
2

so that Fig.7
5.1) dP= i—MfWW

N N1 — %) — ¥
Or, replacing s by Student’s ratio 7== (E—%)/ s, we obtain

4 lx— % |dxdt] £
N —(x— 5 )/ PVA =%y —(x— 1 )Y/F,

and the corresponding Student’s fr. £.

4 (= |lx— % |dx
6.2 0= | NG G

The limits of integration are determined, as stated before, by conditions of boun-

daries (cf. Fig.1): For —oo<<t<<0, 0<<x <%and the condition v/2s<<y2x yields

dP=

x,=1/2(1-19), x1=%, while, for 0<<t<oo, %<x<1 and the condition y2s<<
1 1+2¢

Thus

/ 1—— _————— = _— —_ .
V2 (1—x) gives x, 5 o 1 TSRS
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1

_ 4w (% —x)dx
(5. 3) S(t) = TEZSIIZ(I—D)\/E2——(x—— Jz“— )2\/(1*—.’)6)21’2—(]6— %)2’ t<0,
as well as
4w (x— ¥)dx
(5.4) s(t) = n_zg% VAP — G b WP — = 3)" t=0.

Also, on writing x=1/2(1—%1¢), (3) reduces to
1 Fdd

4 S
5.5 =P
A5 O =2l isva_zrr—sr
whereas (4) becomes on putting x=1—1/2(1+3¢)
4" 3dd
5.6 =_S
5-6) B = o 1—9W(A+298)—9” =0,

so that s(—#)=s(¢), and the fr.f. is symmetrical about the origin. Further, from
(5) we obtain

5.7 s ="

2
w

3
Wi—oi—zsr o> <0

4 Sl 49*(1 —29¢8)dt

which informs that s'(2)>>0 and s(#) increasing for #<<0, and by symmetry s'(¢)<<0,
s(f) decreasing for =0,

Moreover, if we make #—0 in (5) and (6) respectively, both denominators ap-
proach to 1 —4* and consequently s(+=0) —oo and the fr.f. s(¢) behaves singular-
ly at the origin (Fig. 8). Nevertheless we have

(5. 8) S shdt = 1.
X
s(t)
o 128 ~2x—1
1 *Taiws O T
——
1
3
17
-~ ",,' t
i -1 : 0
-1 0 1
Fig. 8

Fig. 9
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This fact is evident, since (1) being a joint probability about x, s, certainly (3)
and (4) multiplied by df denote the probabilities that Student’s ratio lies between
t and f-+d¢ and accordingly the total probability should become just unity.

However, it is rather desirable to ascertain this fact analytically. Now, the
integral in (8) becomes, in view of (4) and by changing the order of integrations
(Fig. 9),

(5.9) S; sdt = ZS:s(t)dt = %],

where

_ ﬂlﬁ% (x— %)dx
J‘So tzgé Vel —(x— 3 /A —x)P—(x— L)/

(e o (x— FHdt/#
...S_;— dx‘Lx_l xV1— (x— % )2/x2t2\/(1 X — (x — ,,>2/t2

Further, on writing (x — %) /(1—x)t=¢ and 1_;_x =k, we get

' _ftde {* dt dk S__A_ng e
.10 T=) g Ly € e
Thus the inner integral is nothing but an elliptic integral of the first kind F(k, %),

which becomes oo for k=1. Really, by the binomial expansion and Wallis’ formula
we obtain

N

2

!
22y '2S kalnwnggD 2 T (2 ) k2v guvkzv, say

2 (zv 1)4
This series is convergent so far 0 << k<C1, because the coefficient becomes by Stirl-
ing

1 i
uvgz_;e IV’

and consequently

Uyr1 ~

)
”y u+1eXp(4:(u+1)

as v— oo, Hence, the series >u,k” converges when k’<<1, whereas for £° =1
Raabe’s test yields

—1

y(uv#:l —1);——1,
u

so that 11mF(k —) Sw,=oo, However, when £’<<1, we obtain

k-1

SKF(k i)dk E Uy k2v+1_zvvk2v+1.
0 > 2 S 2v+1
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And this time, as y—> oo,

v "‘——1
VT 4,?

2
holds, so that even >, converges, since Eiz = % Thus y=F< k, %) and ac-
v

cordingly (10) is surely integrable in 0=<<k=<I1. Hence, we may compute it e. g.
by making use of Simpson’s parabolic formula with » (even=18, say) subsections.
Of course, it occurs that in the last subsection the approximating parabola becomes
impossible, because the last ordinate is y,=co. However, this may be easily
amended by taking in the last subsection another approximating curve, e.g. a
cubic hyperbola y=a/yb—F, which passes through (&, 3,) : v=n—2, n—1 and
a>0, b>1. Really we obtain y=1.30/y1.06—% and consequently y,=4.4 as a
substitute of co. In tnis way it was ascertained that in fact (8) is valid.
Now we proceed to find the critical limits +#,, such that

5. 11) sa@={ wﬂndt=S;dﬂdt=§§ (@=0.1, 0.05, 0.01).

In fact ¢, being tolerably large, we may seek an asymptotic expansion for (4) by
taking up to a term of the first negative power, #,'. Rewriting (4)

_irl 1 x— % r— % 27)-1/2
Ry Iy VA= —(x— %)2( xt )[1—( xt ) CE
1+2¢t

1+2¢ 1 ; ( _1
where x,= R When >¢,>>1, > <<x<1, it holds that 0<<( x 2)/xt<1/t<1/tw

<<1. Therefore, w2 may expand the second sgquare root into a binomial series
and obtain

c12 so=50 (55 () S e

for 1<t,<t. Now that it is easy to verify

= dx __2logt+log 2
(5.13) EMQ—@W—@ 1P = t
we may simply pick up the first term only in the large brackets of (12), and thus
4 [x— ¥ dx
(5. 14) s(t>;_/;zgl? o NI g
But, we have also
= dx log t+2 log 2
5. 15 . o~
19 e e

which together with (13), (14) yields

~6logt 1
(5. 16) s= 1%L o)
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Therefore, an approximate form for (11) is

6 logtatl
i :

T tm

(5.17) S(t) = S s(t)dt;ﬁ—zg log 77/~
e P PR &

This expression being equated to «/2 and solved by Newton’s method of succes-

sive approximations, the value of #, would be obtained. Or, putting x=1/¢,, we

have to find the zero-point of

(5. 18) f(x)E%T%(l —log %) — a =1.21585x (1—2.302585 logyot) —a.

Here f/(x)= —1.21585 log x= —2.79961 log,x and f(0)= —a<<0, f'(0)=-co and
F(0.1)=0.1216 —a>0 if ¢<<0.1216. Hence, there exists certainly a positive root
of x between 0 and 0.1. We obtain thus #,,= +62.5, fu=-+145.4, f a==+955.1,
and further #, = +12705 indeed! These figures might be seen as almost oo in
practical statistics, so that the Student’s test becomes here little worthy. How-
ever, it might be applicable in case of the U-shaped distribution, such as Pear-
son’s example about the frequency distribution of degrees of cloudness. However,
to suit this Pearson’s unsymmetrical case, we must further investigate about the
more general universe (the so-called Beta-distribution) :

I'(a+b)

Tore? A= (@0>0, ab, 0<2<),

fx)=

whose investigation however is deferred for future.

6. The Second Kind of Student’s Ratio.
Although the ratio the author had used in the previous paper :

(6.1) r=1Xx/s or r=%n—1/s

differs from the proper Student ratio f=(x —m)\n —1/s, yet both ratios have some
similarity. So to speak, (1) being a short form of the latter, it may be called a
second kind of Student’s ratio. When the parent mean is unknown or ignored or
even does not exist at all, so that the proper Student ratio becomes impossible,
the Student-like ratio (1) can be still defined and may serve, as a first approximate
test, to decide whether the sample does belong or not to an assigned specified uni-
verse, such as N. D, or Laplace, Cauchy- distribution &c. The nature is vast:
there may be a good many of universes. Even Cauchy’s distribution is never an
isolate exceptional one, but may be generalized, e.g. so as

f@=c/A+[x—al)
with 1<<b<<2. Since this kind of functions behaves as O(|x]~?) when x— =+ oo,

it is integrable in (— oo, + o0), so that the constants can be chosen so as to satisfy

(6.2) S‘; Fl)dz=1.
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And accordingly it may define a certain fr.f., e.g. as f(x) =+3/8x(1+ |x|*?).
It is immaterial whether the integral

Si xf(x)dx = E(x)

i. e. the mean exists or not. Really E(x) itself is rather artificially though skilfully
defined. Notwithstanding, it seems that we are liable to lay stress too much on this
ficticious, conventionally made artificial flower, but not natural one. Probably
there remain those fr. fs. with no mean still unawared. Therefore, as one example
of its counterplan, we shall below consider the Student’s ratio of the second kind
applied to Cauchy’s distribution, that is a Student-like distribution regarding the
proper Student distribution for 2-sized sample.

Let ¥ and s be the sample mean and S. D. of the 2-sized sample, which is
drawn from a universe of Student’s distribution

(6.3) so(8) = 1/ 7 (1 + %),
Its probability is
dP= g dx1dx2 — }_ 4d;d$
1+ A+x) L1 +200 48D+ G —sH"

Or transforming s into -=X%/s, we obtain

. 4 ‘xITZdEdT
G b= (T e+ A=

where =0 according as x=0. Hence the fr. f. of ¢ is given by

=22

oo

xdx
o T 221+ B+ (1 — )%t

Writing £*=u and integrating, we get

_i l—f"'rL
(6.5) £ =4 log{ - lrl['

Accordingly the fr. f. is an even function, which becomes logarithmically (hence
integrably) 4+ oo at = =41, but at the origin it behaves regularly and becomes

minimum with £(0)= -2 = 0.20264 (Fig. 10).
T

)
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Moreover, it can be readily shown that

(6.6) | _roae={ roa-={ roae={ sora-= 1.

In fact, we have by successive applications of integrations by parts

1 1
Sof(f>dr=%0%1 14 _ﬁgs log< 4. ——S > logrde

01‘_1' 7w

2 o 1 2 77.'2 1
2502 yid-= 22(2,+1>2 =7

And also
T g 11 c+1, _1(*1, 1+ ., P S N
51 f)d== zzgl ?1Ogr—ld” o nzgo T,logl_t,dr (T ) o

Thus r=+1 are the upper- and lower-quartile, and

©.7) Sl F@de=1.
The d. f. may be found as follows: If -;>1
6.8) F(—1p) =S:zf(r.)df —S f)d= -—S [1 og(1+2)—10g(1-1 :ldf

21,1 1
=_2__+.ﬁ+T_5+ ...... il.

T 1 71 T1

Therefore, the significant limits =+ ¢, are obtained from

211 1 1 _a -
(6.9) [ g ]_ % (@=01, 005, 001 &.).
. They are found, by putting 1/z,=x, as the positive roots of
2
(6.10) %+ 011112 + 0.4 &%+ oooee =3i—a = 2.4674 .

Putting «=0.1, 0.05, 0.01 and solving the resulting equations by Horner, we get
01=14.08, r5= 1812 and o= +40.53. Also for a=2:1, 005 001

4’ 47 4
wo=16.22, 32.44, 162.1, which shall be of use later on.
We have assumed the domain of universe to be — oo << x <C oo, However, if
it be truncated positively as 0<<x << oo, soits fr. f. becomes twice (3)

(6.11) Flx) = 2]z (1+29).
Consequently (4) shall be multiplied by 22 and the fr. f. becomes

we get

(6.12) f@) = S log 1

. )

where =1, because of s<<¥. Hence its graph is given by the last right branch
in Fig. 10, with ordinates multiplied by 4. Accordingly the upper significant limit
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7, for a is given by those obtained above for «/4 about the non-truncated one:
i.e. 16.22, 3244, 162.1 for « = 0.1, 0.05, 0.01.

But, now the distribution being unsymmetrical, we need else to find the lower
significant limit z,. This is found from a similar expression to (9) :

F(r) = S f)de = —S l:l 1+ 10g(1—7)‘J dr
8([1 1 1 _a
=1- |: 9z¢ + 25z¢ - :l 2.
On writing 1/, =%, we solve the equation

2
319 4 o5 7140 1 e _ T ) _ _a
B4 209 + 25/25 + 5749 + . (1 2) 1.23370 (1 2)’

and whence roughly -, =1.07, 1.05, 1.04 for o« = 0.1, 0.05, 0.01 respectively.
In general, if the domain of universe be restricted to be ¢ <<x<<b), so also
a<<x<b. Besides, in regard to s, we must have either 0 <<+2s <y2(x—a) if

a<z< ?__2"17 or 0<<\2s<<y2(b—7x)if é—(a+b)<§<b (Fig. 11). Or, in terms

of 7, either 0<%/r<<X—a, i.e. arl <§<a;b or ¥/-<<b—17x, ie. a—é <x
T ’

<le:1. T":“l- And in that case the fr.

f. of universe shall be

(6.13) flx) =4/zQ+%%), O<x<l)

because x =1 is the right quartile of (3). Consequently, instead of (4) and (5),
we should now take as the fr. f.

fle) = 64 SHT xdx
7’ 2+ 2204+ D+ (1— 5%,

which, after computations, yields (Fig. 12)

X3

J
2% F()
1
O.N—
a ; N . > -
\ 0 1 2 3 4
0 a 2z b * Fig. 12

Fig. 11
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(z+1)

71 (:>1).

(6.14) @) = — log

This being arranged in a series, we can compute the upper and lower significant
limits, as the roots of

61 1 .1 1 ... -
Sﬂf}d’"n w22 o T mat ] 2

and
S:" F(e)de = S:’f(f)df— S;f@) de

161 1 1 1
= S S
o P 2:¢ 978 2578 ]

respectively, and obtain -; = 31.92, 64.40, 323.7 and -,=1.159, 10.50, 1.020.

Of course, this Cauchy distribution truncated in 0 <<x <C1 has its mean m =
(2 log 2)/m, so that there exists its ordinary Student function. In fact, that fr. f.
is defined by

6.15) f(£) = 6_45 %

rl im—x|dx
E—-1 2 +dm(E— 12 +2[¢ = — 1)+ 32| 2 — Am (B + m®) x + (£ +mb

which however is too cumbersome to be computed. Comparing (14) and (15), it is
obvious that the Student’s second form is far simpler and easier to deal with than
the ordinary Student ratio itself.

7. The General Case.

Lastly we shall outline about the general case with #n-sized sample drawn from
a positively truncated universe (x>>0). Denote the parent mean if exists by m
and the sample mean and S.D. by x and s, where, besides s> 0 we have also
x>0, yet x=m, so that c=x\p—1/s>0, but t=&—mWn—1/s=0. To speak
particularly, there occur # subcases, as described in the previous paper, I: 0<s/%
<1/Vn=1, 1 IVn—1<s/x<<N2]/(n—2), -~ , the (n—1)th: V(n—2)/2<s/%
<+p—1, the nth: vy —1<<s/x<<oo, where, the last one being abandoned since
there is no point of the simplex S,_; that lies on the sphere of radius ns>
Vnn—1)%. Or, writing ¢ =y —1%/s = xt/(x—m), we have the following n—1

subcases :
(7.1) It co>e>n—1, H: n—1>c>yun—1)n—2)/2 -
the (#—1)-th: \/m >>1.
However, it seems apparently that the predominant contribution comes from

the first portion I, because it fills almost the whole space occupied by the sample
point (¥, s). Now in the portion I we have Fisher’s elementary volume :
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(7.2) dV = ¢,s" *dsdx, where ¢, ="z (n— 1)/I’<n+1

Or, if s be replaced by =,
(7.3) dV = b,x" 'dxdz/z", with b, = c,Nn—1""
Or, if replaced by ¢
(7.4) dV =b,|x—m| " dxdt] ¢
In particular, if the universe be f(x) =1 in 0<<x <1, the parent mean is
m = —12— In this case, the above elementary volumes denote at the same time the

probability-elements d P (%, s), d P(%, =), d P(x, t), respectively. Hence speaking
roughly, Student’s fr. f. s,(¢f) for the rectangular universe shall be given by

Cbs

S lm—7%|""dx.

To determine the limits of integration, e.g. let # be negative and given as an
inner point of (— oo, 0). We must exhaust all points x, which satisfy

(7.6) s=ETM <0, % <m).

Hence, the upper limit x; is clearly the parent mean m <=%) However, the

lower limit cannot be zero. For, if ¥ =0, nx =>x,=0, so that all x, =0, because
they are non-negative. Consequently ns’= >)(x; —x)* =0, which however makes
(6) impossible. Therefore, there must exist a positive lower bound for ¥. Now,
for a given x, the maximal s in portion I is determined by the radius of s-sphere
inscribed in the simplex S,.;, namely vns = Ju%/vn—1; thus max s = z/¥p—1.

If this max s be less than (6), so also it must be for all s in I, and such ¥ should be
rejected. Hence the lower bound of x is that which makes

Fm—t_ E_ ie  lmEes (=Dm
7.7 : Vu—1 s i.e. limx = x, 1 1.
Accordingly, for f(x) =1, we have in view of (5)

- , by o on=1 \ ._ a,
(7.8) silt) = UVO e Lk i, <0
where
(7.9) Ay = bp/1n2" = "2 g p— 17/ T (] (n+1)) 2"

And hence the lower significant limit #,(<<0) might be determined by

. _ by _ [ _a
7.10) Sitte) = " syt = gt =



The Student’s Distribution 51

For example, it becomes, if # =2, @, = —;— and s;=1/2(1—¢)? which exactly

coincides with the result obtained in section 1. Or, if =3, we get a;= 37/2 and

1) 0= 3 s =

‘e . t dt — \/§71’
2(2—5)>% °°S @

- 42—t
Whence the significant limits #, are found from

7.12) Vs @ ., [ _g

(7. 12) 42—ty 2, * 2a

which yields ¢, = £3.216, +5.377, +-14.495 for ¢ =0.1, 0.05, 0.01, respectively.
The true expression of S;(f) (— co<Ct <<—2) being given by (1. 14), the true values

of ¢, can be computed by Newton’s method of successive approximations. In fact
it is found that

to,1= i3.5894, to,o5 == -{ 57418, to,m == i14.8496.

Thus the short formula (10) for the rectangular universe seems to yield tolerablly
approximate values for #,. so far the sample size is small. However, if the sample
size be a little large, the resulting figures computed from (10) as in (12), %1, %y
for n>6 and ¢, » for #<C8, all become positive against the presupposition that #,<<0.
Therefore, some more contrivance to correct (8), e.g. by taking the portion
II &c., are anyhow necessary. But this paper being already too lengthy, further
discussions are delayed for a future research. '






