NOTES ON THE SPACE OF REGULAR FUNCTIONS OF COMPLEX VARIABLES

By

Isae SHIMODA

(Received September 30, 1960)

We consider a set \mathcal{Q} of regular functions of complex variables on |z| < 1. It is clear that this set is considered as the vector space, which has complex numbers as operators. That is, if f(z), $g(z) \in \mathcal{Q}$, $\alpha f(z) + \beta g(z) \in \mathcal{Q}$ for arbitrary complex numbers α and β .

Now, we introduce their norms. Put $||f|| = |c_n|$, where $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Then we have

- i) $||f+g|| \leq ||f|| + ||g||$,
- ii) $||\alpha f|| = |\alpha| \cdot ||f||$,
- iii) ||f|| = 0, if and only if $|c_n| = 0$.

If the sequence $\{f_p\}$ in $\mathcal Q$ is the Cauchy-sequence, there exists limit point f_0 . Indeed, let

$$||f_p - f_q|| < \varepsilon$$

for p, $q \ge n_0$, which depends on an arbitrary positive number ε . Put $f_p(z) = \sum_{n=0}^{\infty} c_{pn} z^n$ and $f_q(z) = \sum_{n=0}^{\infty} c_{qn} z^n$, then $||f_p - f_q|| = |c_{pn} - c_{qn}| < \varepsilon$. The sequence $\{c_{pn}\}$ of complex numbers is the Cauchy-sequence and so we have c_0 such that $\lim_{p \to \infty} c_{pn} = c_0$. Let $f_0(z) = c_0 z^n$, then we have $||f_p - f_0|| = |c_{pn} - c_0| \to 0$, when p thends to ∞ .

Thus, we see that Q is complete. Then we have next theorem.

Theorem 1. Ω is the complex Banach space.

Put $||f||_r = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta}$ for 0 < r < 1. Then Ω is the Hilbert space with respect to |z| = r.

Theorem 2. If a sequence $\{f_n\}$ is a Cauchy-sequence with respect to the norm $||f||_r$ on |z|=r, for an arbitrary r, which satisfies 0 < r < 1, then there exists $f_0(z)$ in Ω such that $f_n(z)$ converges uniformly to $f_0(z)$ on any closed circle $|z| \leq \sigma(<1)$ in |z| < 1, and moreover $||f_n - f_0||$ tends to 0.

Proof. Since $||f_q - f_p||_r$ tends to 0 when p and q tend to ∞ , then there exists $f_0(z)$ in the sence of L_2 on |z| = r such that $||f_n - f_0||_r \to 0$ on |z| = r. Put $F(z) = \frac{1}{2\pi i} \int_{z}^{z} \frac{f_0(\zeta)}{\zeta - z} d\zeta$, where C is a circle whose radius is r. Then

$$|f_{p}(z) - F(z)| = \left| \frac{1}{2\pi i} \int_{\sigma} \frac{f_{p}(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\sigma} \frac{f_{0}(\zeta)}{\zeta - z} d\zeta \right|$$

$$= \left| \frac{1}{2\pi i} \int_{\sigma} \frac{f_{p}(\zeta) - f_{0}(z)}{\zeta - z} d\zeta \right|$$

$$= \left| \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f_{p}(re^{i\theta}) - f_{0}(re^{i\theta})}{re^{i\theta} - \rho e^{i\varphi}} re^{i\theta} dJ \right|, \text{ where } \zeta = re^{i\theta} \text{ and } z = \rho e^{i\varphi}.$$

$$\leq \frac{r}{2\pi (r - \rho)} \int_{0}^{2\pi} |f_{p}(re^{i\theta}) - f_{0}(re^{i\theta})| d\theta$$

Appealing to Holder's inequality, we have

$$\leq \frac{r}{2\pi(r-\rho)} \sqrt{\int_0^{2\pi} |f_p(re^{i\theta}) - f_0(re^{i\theta})|^2 d\theta} \sqrt{\int_0^{2\pi} d\theta}$$

$$= \frac{r}{\sqrt{2\pi(r-\rho)}} ||f_p - f_0||.$$

If $\rho \leq r_1 < r$, then $|f_p(z) - F(z)| = \frac{r}{\sqrt{2\pi}(r-\rho)} ||f_p - f_0|| \to 0$, when $p \to \infty$. This shows that $f_p(z)$ converges to F(z) uniformly on $|z| \leq r_1$ for an arbitrary r_1 such that $r_1 < r$ and we see that F(z) is regular on |z| < r. Since r is arbitrary in 0 < r < 1, $f_p(z)$ converges uniformly to F(z) in $|z| \leq \sigma < 1$ and we see that F(z) is regular in |z| < 1 and so $F(z) \in \mathcal{Q}_0$.

$$\begin{split} ||f_{p}-F|| &= |\frac{1}{2\pi i} \int_{c}^{f_{p}(\zeta)} \int_{\zeta^{n+1}}^{f_{p}(\zeta)} d\zeta - \frac{1}{2\pi i} \int_{c}^{f_{0}(\zeta)} \int_{\zeta^{n+1}}^{f_{0}(\zeta)} d\zeta | \\ &= |\frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f_{p}(re^{i\theta}) - f_{0}(re^{i\theta})}{r^{n+1}e^{i(n+1)\theta}} ire^{i\theta} dJ | \\ &\leq \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} |f_{p}(re^{i\theta}) - f_{0}(re^{i\theta})| d\vartheta \\ &\leq \frac{1}{2\pi r^{n}} \sqrt{\int_{0}^{2\pi} |f_{p}(re^{i\theta}) - f_{0}(re^{i\theta})|^{2}} \sqrt{\int_{0}^{2\pi} d\vartheta} \\ &\leq \frac{1}{\sqrt{2\pi} r^{n}} ||f_{n} - f_{0}||_{r}. \end{split}$$

This shows that $||f_p - F|| \to 0$, when $||f_p - F||_r \to 0$. This completes the proof.