ON GROUPS OF SPECIAL MOTIONS IN A SUBSPACE OF A RIEMANNIAN SPACE

By

Yoshihiro ICHIJYO

(Received September 30, 1960)

§ 1. In the first place let us consider the tangential infinitesimal point transformation

$$\bar{x}^{\lambda'} = x^{\lambda} + B_i^{\lambda} v^i dt \tag{1,1}$$

in L_n with coordinates $x^i (i = 1, 2, \dots, n)$ which is an *n*-dimensional subspace of an affinly connected *m*-dimensional space L_m with torsion and with coordinates $x^{\alpha}(\alpha = 1, 2, \dots, m)$, where we denote by B_i^{λ} the tangent vectors $\partial x^{\lambda}/\partial x^i$.

By Prof. K. Yano [5]1, rewriting (1, 1) as

$$\bar{x}^{\lambda} = x^{\lambda}(x^{i}) + \frac{\partial x^{\lambda}}{\partial x^{i}} v^{i} dt = x^{\lambda}(x^{i} + v^{i} dt),$$

we may consider this transformation as a change of parameters

$$x^i \to \overline{x}^{i'} = x^i + v^i dt. \tag{1,2}$$

Although in general the Lie differential is defined by

$$\pounds T^{\lambda\mu}_{\cdot\cdot\nu} dt = T^{\lambda\mu}_{\cdot\cdot\nu}(\overline{x}) - T^{\lambda'\mu'}_{\cdot\cdot\nu'}(x), \tag{1,3}$$

in our case we shall define the Lie differential of composite tensors $T_{\dots u \dots j}^{\lambda \dots t \dots}(x^i)$ as

$$\pounds T^{\lambda \dots i \dots i} dt = T^{\lambda \dots i \dots i} (\overline{x}) - \widetilde{T}^{\lambda \dots i'} (x), \tag{1,4}$$

where $\widetilde{T}_{...\mu}^{\lambda,...i'}$; (x) is parallelly displaced quantities of $T_{...\mu}^{\lambda,...i'}$; (x) by (1,1) with respect to the affine connection of L_m .

Calculating (1, 4), we have

$$\begin{split} & \pounds \, T^{\lambda \dots i \dots i}_{\dots \mu \dots j} \, dt \\ & = T^{\lambda \dots i \dots i}_{\dots \mu \dots j} \, (x^i) + \partial_k \, T^{\lambda \dots i \dots j}_{\dots \mu \dots j} \, (x^i) v^k \, dt - \widetilde{T}^{\lambda \dots a \dots i}_{\dots \mu \dots b} \, (x^i) \cdots A^i_a \cdots A^b_{j'} \cdots^2) \\ & = T^{\lambda \dots i \dots i}_{\dots \mu \dots j} \, (x^i) + \partial_k \, T^{\lambda \dots i \dots j}_{\dots \mu \dots j} \, (x^i) \, v^k \, dt \\ & - \left[T^{\lambda \dots a \dots i}_{\dots \mu \dots b} \, (x^i) \cdots - \Gamma^{\lambda}_{\rho \nu} \, T^{\nu \dots a \dots i}_{\dots \mu \dots b} \, (x^i) \, B^{\rho}_k \, v^k \, dt - \cdots \right. \\ & \cdots + \Gamma^{\nu}_{\rho \mu} \, T^{\lambda \dots a \dots i}_{\dots \nu \dots b} \, (x^i) \, B^{\rho}_k \, v^k \, dt + \cdots \right] \\ & \cdots \times \left[\delta^i_a + \partial_a v^i \, dt \right] \times \cdots \times \left[\delta^b_j - \partial_j v^b \, dt \right] \times \cdots \end{split}$$

¹⁾ Nunbers in brackets refer to the references at the end of this paper.

²⁾ $A_a^{i'}$ and $A_{j'}^b$ stand for $\frac{\partial x^{i'}}{\partial x^a}$ and $\frac{\partial x^b}{\partial x^{j'}}$ respectively.

$$= \left[v^k T^{\cdot \lambda \cdots \iota \cdots}_{\cdots \mu \cdots j : k} - \cdots - T^{\cdot \lambda \cdots \alpha \cdots}_{\cdots \mu \cdots j : k} v^{\cdot i}_{\alpha} - \cdots \right. \cdots + \left. T^{\cdot \lambda \cdots \iota \cdots}_{\cdots \mu \cdots \alpha} v^{\cdot a}_{j} + \cdots \right] dt,$$

where we put

$$\begin{aligned}
v_a^{\cdot,i} &= \partial_a v^i + \Gamma^i_{ja} v^j = v^i_{;a} + 2 S_{ba}^{\cdot,i} v^b, \\
S_{ba}^{\cdot,i} &= \frac{1}{2} \left(\Gamma_{ba}^{\cdot,i} - \Gamma_{ab}^{\cdot,i} \right).
\end{aligned} (1, 5)$$

Hence we obtain

$$\pounds T^{\lambda \cdots 4 \cdots i}_{\mu \dots j} = v^k T^{\lambda \cdots 4 \cdots i}_{\mu \dots j}, _k - \dots - T^{\lambda \cdots a \cdots i}_{\mu \dots j}, v^4_a - \dots$$

$$\dots + T^{\lambda \cdots 4 \cdots a}_{\mu \dots i}, v^i_j + \dots$$

$$(1, 6)$$

Similarly we obtain

$$\pounds \Gamma^{i}_{jk} = \partial_{z} \partial_{j} v^{i} + v^{h} \partial_{h} \Gamma^{i}_{jk} + \Gamma^{i}_{hk} \partial_{j} v^{h} + \Gamma^{i}_{jh} \partial_{k} v^{h} - \Gamma^{h}_{jk} \partial_{h} v^{i}
= v^{i}_{j;k} + R^{i}_{jkh} v^{h}.$$
(1, 7)

and

$$\pounds (\delta u^k) - \delta (\pounds u^k) = (\pounds \Gamma_{ij}^k) u^j dx^i. \tag{1,8}$$

§ 2. In this section we consider *n*-dimensional subspace V_n immersed in an *m*-dimensional Riemannian space V_m , then we have

$$S_{jk}^{\cdot \cdot i} = 0$$
, $\Gamma_{\mu\nu}^{\lambda} = \{ {}^{\lambda}_{\mu\nu} \}$, $\Gamma_{jk}^{i} = \{ {}^{i}_{jk} \}$,

and

$$\pounds T^{\lambda_{i}}_{\mu} = v^k T^{\lambda_{i}}_{\mu} = v^k T^{\lambda_{i}}_{\mu} = \cdots - T^{\lambda_{i}}_{\mu} = \cdots - T^{\lambda_{i}}_{\mu} = \cdots$$

$$\cdots + T^{\lambda_{i}}_{\mu} = v^{\mu}_{i} + \cdots ,$$

$$(2, 1)$$

from which

$$\pounds g_{ij} = v_{j:i} + v_{i:j}, \tag{2,2}$$

$$\pounds B_i^{\lambda} = v^k H_{ik}^{\cdot \lambda} + v_{:i}^a B_a^{\cdot \lambda}, \tag{2,3}$$

and

£
$$H_{ij}^{..\lambda} = H_{ij}^{..\lambda}_{;k} v^k + H_{aj}^{..\lambda} v^a_{;i} + H_{ia}^{..\lambda} v^a_{;j}$$
, (2,4)

hence, we see these results coincide with Yano's [5] and Hlavatý's [4], where we denote by $H_{ij}^{\cdot,\lambda}$ Euler-Schouten's tensor, that is,

$$H_{ij}^{\cdot\cdot\lambda}=B_{i}^{\cdot\lambda}$$
:

Now we attach to any point x^i of V_n in V_m a frame $(B_i^{\lambda}, B_P^{\lambda})$ $(P = n + 1, n + 2, \dots, m)$ in such a way that B_i^{λ} are n tangent vectors of V_n and m - n vectors B_P^{λ} are orthogonal to V_n and mutually orthogonal, then we have

$$H_{ij}^{\cdot \cdot \lambda} = \sum_{P} H_{ijP} B_{P}^{\cdot \lambda},$$

$$\pounds B_{P}^{\cdot \lambda} = v^{k} B_{P \cdot k}^{\cdot \lambda}.$$

By Weingarten's formula

$$B_{P,k}^{\cdot\lambda} = -g^{ij}H_{jkP}B_i^{\cdot\lambda} + \sum_{Q}L_{PQ|k}B_Q^{\cdot\lambda},$$

where we put

$$L_{PQ|k} = g_{\alpha\beta} B_P^{\alpha} B_{Q,k}^{\beta} + [\gamma \delta, \beta] B_k^{\gamma} B_Q^{\delta} B_P^{\beta},$$

we obtain

$$\pounds B_P^{\lambda} = v^k \left[-g^{ij} H_{jkP} B_i^{\lambda} + \sum_Q L_{PQ|k} B_Q^{\lambda} \right], \tag{2,5}$$

£
$$H_{ijP} = H_{ijP;k} v^k + H_{kjP} v^k_{;i} + H_{ikP} v^k_{;j}$$
. (2, 6)

As in general, we call a point transformation of V_n in V_m a motion if it satisfies

$$\pounds g_{ij} = 0. \tag{2,7}$$

§ 3. In this section we consider the case m = n + 1, then we have

$$L_{PQ|k} = 0, \ B_P^{\cdot \alpha} = B_{n+1}^{\cdot \alpha},$$

from which we can put

$$B_{n+1}^{\cdot,\alpha} = \xi^{\alpha}, \ H_{ij\,n+1} = H_{ij}.$$

Now we call a motion an absolute motion if it satisfies

$$\pounds H_{ij} = 0. \tag{3, 1}$$

Then the condition that a point transformation (1, 1) is an absolute motion is given as

$$\begin{cases} v_{i;j} + v_{j;i} = 0, \\ v^k H_{ij;k} + H_{kj} v^k_{;i} + H_{ik} v^k_{;j} = 0. \end{cases}$$
 (3, 2)

By multiplying g^{ij} to the second equation, summing up with i and j and using the first equation, we get

$$v^k \partial_k H = 0, (3,3)$$

where we put

$$H=\frac{1}{n}\,g^{ij}\,H_{ij}.$$

Thus we have

Theorem 3.1. If an infinitesimal tangential point transformation in a V_n immersed in a V_{n+1} is an absolute motion, then the vector $\rho_i = \partial_i H$ must be orthogonal to the Killing vector v_i .

As a motion in V_n in V_{n+1} is, however, a motion in a Riemannian space V_n , we consider a group of motions of order r which is generated by those r Killing vectors $v^k(a=1, 2, \dots, r)$, if V_n admits such a group of motions.

Now let us consider a group of motions which satisfy (3, 1) and call it a

group of absolute motions. Therefore if V_n admits a group of absolute motions and the rank of (v^i) is n, then we get

$$H = \text{const.}$$

Hence we have

Theorem 3.2. If a V_n in a V_{n+1} admits a group of absolute motions of order r ($r \ge n$) and the rank of the matrix (v^i), is n, then the V_n must be a hypersurface with constant mean curvature in V_{n+1} .

§ 4. Here we consider the order r of a group G_r of absolute motions of V_n in V_{n+1} .

Since G_r must be a group of motions in V_n , we get

$$r \leq \frac{n(n+1)}{2}.$$

If the equality holds, V_n is a space of constant curvature. In this case it is clear that $G_{n(n+1)/2}$ is a group of absolute motions if V_n is either a completely totally umbilical or a totally geodesic hypersurface in V_{n+1} . Hence we have

Theorem 4.1. In the case where a V_n is a space of constant curvature and either a completely totally umbilical or a totally geodesic hypersurface in a V_{n+1} , then V_n admits a group of absolute motions of the maximum order n(n+1)/2.

Now applying the analogus method of proof of Egorov's theorem [2] [7], we have

Theorem 4.2. The maximum order of the group of absolute motions in those V_n 's which are immersed in V_{n+1} and are neither completely totally umbilical nor totally geodesic is less than or equals to $\frac{1}{2}$ n(n-1)+1.

And again we have

Theorem 4. 3. If the V_n in V_{n+1} admits a group of absolute motions of order greater than $\frac{1}{2} n(n-1) + 1$, then the V_n is either a completely totally umbilical or a totally geodesic hypersurface in V_{n+1} .

In fact, since absolute motions are motions, if the operator f is that of an absolute motion, we have

£
$$g_{ij} = v_{i;j} + v_{j;i} = 0,$$
 (4, 1)

$$\mathop{\pounds}_{v}^{v} H_{ij} = v^{k} H_{ij;k} + H_{kj} v^{k}_{;i} + H_{ik} v^{k}_{;j} = 0.$$
(4, 2)

Using (4, 1) we can write (4, 2) also in the form¹⁾

¹⁾ Here we have used a new kind of indices P_{α} , P_{β} also running 1 to n which we assume that $P_{\alpha} \neq P_{\beta}$ for $\alpha = \beta$ and that the summation convention does not hold.

$$\pounds H_{ij} = v^k H_{ij;k} + \sum_{P_{\alpha} > P_{\beta}}^{1 \dots n} T_{ij}^{\dots P_{\alpha} P_{\beta}} v_{P_{\alpha}; P_{\beta}} = 0,$$
(4, 3)

where

$$T_{ij}^{\cdot \cdot P} \alpha^{P} \beta = 4 \, \delta_{(i}^{P} \alpha H_{i}^{\cdot P} \beta^{I}, \quad H_{i}^{\cdot k} = g^{ki} \, H_{ii} \,. \tag{4,4}$$

Now we proceed the calculation by such a method as Prof. Egorov's. The $(P_{\alpha} P_{\beta})$ rank, or $(i \ j)$ rank, of the matrix $(T_{ij}^{P_{\alpha}P_{\beta}})^{2}$ $(i \le j, P_{\alpha} < P_{\beta})$ must be less than

$$\frac{1}{2}n(n+1)-(\frac{1}{2}n(n-1)+1)=n-1,$$

and we have

$$\begin{cases} H_{P_{\alpha}}^{\cdot P_{\beta}} = 0, \\ H_{1}^{\cdot 1} = H_{2}^{\cdot 2} = \dots = H_{n}^{\cdot n} \Longrightarrow \rho, \end{cases}$$

that is,

$$H_i^{\cdot j} = \delta_i^j \rho$$

from which

$$H_{ij} = \rho g_{ij}.$$

Putting this into (4, 2) we have

$$v^{k} \rho_{k} g_{ij} + \rho g_{kj} v^{k}_{;i} + \rho g_{ik} v^{k}_{;j} = 0,$$

from which by using (4, 1) we have

$$v^k \alpha_k = 0$$
.

Since this equation must hold for all vectors v^{k}

$$(a=1, 2, \dots, r; r < \frac{1}{2} n (n-1) + 1)$$

which are generating vectors of G_{r} ,

$$v^k \rho_k = 0.$$

The rank of (v^k) being n,

$$\rho = \text{const.}$$
.

Hence the V_n in V_{n+1} must be a completely totally umbilical or a totally geodesic in V_{n+1} .

Moreover from these theorems we have

Theorem 4.4. The necessary and sufficient condition that a V_n in V_{n+1} admits a group of absolute motions of order $\frac{1}{2}$ n (n+1) is that the V_n is a space of

²⁾ We have considered here the matrix $T_{ij}^{\cdot \cdot P} \alpha^P \beta$ by letting the two lower indices denote the rows and the two upper indices the columns, and we have called the rank of this matrix $(P_{\alpha}P_{\beta})$ rank or $(i\ j)$ rank.

constant curvature and either a completely totally umbilical or a totally geodesic hypersurface in V_{n+1} .

§ 5. Again in this section we consider the order of a group of absolute motions by a similar method of Egorov's [3].

The conditions

$$\underset{v}{\mathfrak{L}}H_{ij}=0\tag{5,1}$$

can be written as

$$\underset{v}{\mathfrak{L}} H_{ij} = v^a H_{ij;a} + T_{ija}^{\cdots b} v^a_{;b},$$

where we put

$$T_{ija}^{\cdots b} = \delta_j^b H_{ia} + \delta_i^b H_{aj} . \tag{5,2}$$

From which

$$T_{ija}^{\cdots b} v^{a}_{;b} = T_{ijab} v^{a;b} = \sum_{p < q}^{1 \cdots n} 2 T_{ij \lceil pq \rceil} v^{p;q}$$

$$= \sum_{p < q}^{1 \cdots n} S_{ijpq} v^{p;q}, \qquad (5,3)$$

where we put

$$2 T_{ij (pq)} = S_{ijpq}. (5,4)$$

Hence (5, 1) gives

$$v^a H_{ij;a} + \sum_{s=a}^{1...n} S_{ijpq} v^{p;q}.$$
 (5, 5)

Now we consider the $(i \ j)$ rank of the matrix (S_{ijpq}) , where

$$S_{ijpq} = g_{qj} H_{ip} + g_{qi} H_{pj} - g_{pj} H_{iq} - g_{pi} H_{qj}.$$
 (5, 6)

Without loss of generality we may consider the case $i \leq j$, since

$$S_{ijpq} = S_{jipq}$$
.

Here we suppose that the rank of matrix (H_{ij}) is l and determinant equation

$$|H_{i,i} - \lambda g_{i,i}| = 0$$

has only simple roots $\lambda = H_{(1)}, H_{(2)}, \cdots, H_{(l)}$ except $\lambda = 0$. Then for convenience we choose the coordinate system in such a way that the lines of curvatures passing through an arbiterary point in V_n in V_{n+1} are parameter curves of V_n if l < n, we can take as n parameter curves l lines of curvatures determined by the above $H_{(p)}$ $(1 \le p \le l)$ and n-l lines of curvatures which are orthogonal mutually and also to the former lines of curvatures since the lines of curvatures are indeterminate in V_{n-l} where $\lambda = 0$ [1].

From our assumption

$$H_{(p)} \rightleftharpoons H_{(q)} \text{ for } p \rightleftharpoons q.$$
 (5,7)

Moreover we put $H_{(j)}$ as follows:

if $1 \le j \le l$, the $H_{(j)}$ are solutions of the proper equation, if $l < j \le n$, then $H_{(j)}$ vanish.

Then we have

$$g_{ij} \stackrel{*}{=} \delta_{ij}, H_{ij} \stackrel{*}{=} \delta_{ij} H_{(j)},$$
 (5, 8)

from which

$$S_{ijpq} \stackrel{*}{=} \delta_{qj} \delta_{pi} H_{(i)} + \delta_{qi} \delta_{pj} H_{(j)} - \delta_{pj} \delta_{qi} H_{(i)} - \delta_{pi} \delta_{qj} H_{(j)}. \tag{5,9}$$

After some calculations we obtain that

$$S_{ijij} \stackrel{*}{=} H_{(i)} - H_{(j)}, S_{ijji} \stackrel{*}{=} H_{(j)} - H_{(i)}$$

and the other components of S_{ijpq} all vanish.

Then the nonvanishing columns and rows of the matrix $(S_{i,pq})$ $(i \leq j)$ are

Hence in our assumption $v^{a;b}$ must satisfy the conditions more than l(l-1)/2 adding to Killing's conditions. Thus we obtain

Theorem 5.1. Let a V_n in V_{n+1} admit a group of absolute motions, the rank of $(H_{i,j})$ be l, and the equation $|H_{i,j} - \lambda g_{i,j}| = 0$ have only l non-vanishing simple roots in every point of V_n , then

$$r \leq \frac{1}{2} (n+l)(n-l+1) .$$

From which we have

Theorem 5.2. When a V_n in V_{n+1} admits a group of absolute motions, n principal directions are determinate and the n principal curvatures $H_{(i)}$ are not equal each other in every point of V_n , then

$r \leq n$.

References

- [1] L. P. Eisenharrt: Riemannian Geometry, Princeton Univ. Press (1949).
- [2] P. Egorov: On a strengthening of Fubini's theorem on the order of the group of motions of a Riemannian space, Doklady Aoad. Nauk SSSR (N.S.) 66 (1949), 793-796.
- [3] P. Egorov: A tensor characterisation of An of nonzero curvature with maximum mobility, Doklady Acad, Nauk SSSR (N. S.) 84 (1952), 209—212.
- [4] V. Hlavatý: Deformation theory of subspaces in a Riemannian space, *Proc. Amer. Math. Soc.* 16 (1950), 600-617.
- [5] K. Yano: Sur la deformation infinitesimale tangentielle d'un sous-espace. Proc. Imp. Acad. 21 (1945), 261-268.
- [6] K. Yano: On *n*-dimensional Riemannian spaces admitting a group of motions of order $\frac{1}{2} n(n-1)+1$. Trans. Amer. Math. Soc. 74 (1953), 260-279.
- [7] K. Yano: The Theory of Lie Derivatives and its Applications. North-Holland Publishing Co. Amsterdam (1957).