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§ 1. In the first place let us consider the tangential infinitesimal point
transformation

=2+ Bro'dt (1,1)

in L, with coordinates x'({ =1, 2, ---, #) which is an u-dimensional subspace of
an affinly connected m-dimensional space L,, with torsion and with coordinates
¥*"(@=1,2, ---, m), where we denote by B;* the tangent vectors 6x/5x"

By Prof. K. Yano [5]", rewriting (1, 1) as

=2 ")+ g-jgvidt=x*(x‘+vi dt),
we may consider this transformation as a change of parameters
x> 3 =4+ oidt. (1,2)
Although in general the Lie differential is defined by
£ETM dt =T¥ @) — T, (x), 1,3

in our case we shall define the Lie differential of composite tensors T 2,5} (x%)
as

TNy dt=T o550@) — TAov(x), (1,4)
where T 2u¥5 (%) is parallelly displaced quantities of 72,.%5: (x) by (1, 1) with

respect to the affine connection of L,..
Calculating (1, 4), we have

£TN005 de
=T (@) 40, T2 (o) dt — T;?.;:?.’g: (x%) «-+ Ay -+ AY -2
=T858, TG (6 ot dt
— (T2 (%) e — INTY0% (1) B v di— -
e DH TN () Bev  dt + -+ ]

o X [0S F B0t dE) X e X[ — 0,0 AE] X oee

1) Nunbers in brackets refer to the references at the end of this paper.

, oxt )
2) AY and A% stand for o and o2t
@ J G}

) I respectively.



2 Yoshihiro ICHIJYO
=T — o — TS 0 — e ook TS 07 402 dt,
where we put

Vi = 2,0 + I'yv! = 0%y + 2 S;00°,

Sii =% (Fid — o). L 5)
Hence we obtain
ETX = TR g — e — TR 0 — e
v TN O A e (1, 6)
Similarly we obtain
£%=208,0;0" +0"0, Iy + Ity 8;0" + I'y5,0" — I'i0,0°
=0} + R v a7
and
£@0u)—6Eu?)=(ETE) o’ di'. 1,8)

§ 2. In this section we consider x#-dimensional subspace V, immersed in an
m-dimensional Riemannian space V,, then we have

Sit =0, I'i ={bL}, Tu=1{%)},
and

Aeredees e Al e [ O
& TMJ =0 T...“...j.;]c s — T...,,,.t.l.j. U?a e

o TNl A e, 2, 1)
from which
L guy=v5+ vy 2 2)
£ B =v"Hi} + v% BJ, 2,3
and
£ H}=H;} 0" +H 0%+ H; o, 2, 4)

hence, we see these results coincide with Yano’s [5] and Hlavaty’s [471, where
we denote by H;;* Euler-Schouten’s tensor, that is,

A A
sz =B§, 3d .

Now we attach to any point x* of V,, in V, a frame (B, B2) (P=#n +1,
n+2, -+, m) in such a way that B;* are » tangent vectors of V,and m — n vectors
B are orthogonal to V, and mutually orthogonal, then we have

H”}‘ = 2 HijP Bz;}‘,
P

£ B =0v"B .
By Weingarten’s formula
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BiNi= — g H up B + % Leoi: BY,
where we put
Lrqe= gap B:" B -+ 176, Bl B By BY,
we obtain
£ Bit=0"[—g"Hyur B + 3 Leau B3], (2,5)
£ Hp=Hip, V' + Hep 0% + Hypt", ;. (2, 6)
As in general, we call a point transformation of V, in V,. a motion if it satisfles

£g1]‘=0. (2, 7)

§ 3. In this section we consider the case m = » +1, then we have
Leer =0, B =B,
from which we can put
B, =¢&% Hpa= Hi;
Now we call a motion an absolute motion if it satisfies
£ H;=0. (3,1)

Then the condition that a point transformation (1, 1) is an absolute motion is
given as

1)1;j+1)j;1=0,
l)kHij;k + ij Uk;t “‘l‘Hml)k;j = (.

} 3, 2)

By multiplying g“ to the second equation, summing up with / and ;j and using
the first equation, we get

v*o.H =0, (3,3)

where we put
H = —7]/;— g” H'Lj-
Thus we have

Theorem 3. 1. If an infinitesimal tangential point transformation in a
V., immersed in a V., is an absolute motion, then the vector o= 0,H must be
orthogonal to the Killing vector v;.

As a motion in V, in V,.. is, however, a motion in a Riemannian space V,,
we consider a group of motions of order » which is generated by those » Killing
vectors v*(a=1, 2, -+-, 7), if V, admits such a group of motions.

a

Now let us consider a group of motions which satisfy (3,1) and call it «
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group of absolute motions. Therefore if V,, admits a group of absolute motions
and the rank of (»%) is #, then we get

H = const. .
Hence we have

Theorem 3. 2. If a V, in a V,.. admits a group of absolute motions of
order v (r=n) and the rank of the matrix (V%) is n, then the V. must be a

hypersurface with constant mean curvature in Vi

§ 4. Here we consider the order » of a group G, of absolute motions of V,,
in Vn+1.

Since G, must be a group of motions in V,, we get
=5
If the equality holds, V, is a space of constant curvature. In this case it is clear
that Guu-12 is @ group of absolute motions if V, is either a completely totally
umbilical or a totally geodesic hypersurface in V,.;. Hence we have

Theorem 4. 1. In the case wheve a V, is a space of constant curvature and
either a completely totally umbilical or a totally geodesic hypersurface in a
Vi, them V, admits a group of absolute motions of the maximum order
n (n+1)/2.
Now applying the analogus method of proof of Egorov’s theorem [2] [7], we
have

Theorem 4. 2. The maximum order of the group of absolute motions in
those V.'s which are immersed in V,., and are neither completely totally umbi-

lical nor totally geodesic is less than or equals to % n{n—1)+1.

And again we have

Theorem 4. 3. If the V, in V.., admits a group of absolute motions of
1
2
bilical or a totally geodesic hypersurface in V1.

In fact, since absolute motions are motions, if the operator f f is that of an

order greater than = n(n—1)+1, then the V, is either a completely totally um-

absolute motion, we have
£ guy=vi;t0v;,,=0, 4, 1)
£Hij=kaij;k+H/cj7)k;(+Hmvk;j=0. (4, 2)

Using (4, 1) we can write (4, 2) also in the form®

1) Here we have used a new kind of indices Py, Pg also running 1 to # which we assume
that P, Pg for @~ f and that the summation convention does not hold.
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1-vm
£H1j=l)kH;j;]c+ 2 T{_;-Pwpﬂva;pﬂ=0, (4,3)
v Pw>Pﬁ
where
Tifes=40FaHEe, Hf=g"H,. (4, 4)

Now we proceed the calulation by such a method as Prof. Egorov’s. The
(Ps Pg) rank, or (i j) rank, of the matrix (7;;"+"8)® (i < j, P, << Pg) must be
less than

%n (n+1)—(%n(n—1)+1)=n—1,

and we have

H:7r=0,
{Hi1 =H=-=Hpr=p,
that is,
H=4d]p,
from which
Hi;= p gy

Putting this into (4, 2) we have
Uk[)lcgij + pgi; o*, + o &ir vk;J =0,
from which by using (4, 1) we have
Ukp;c =0.

Since this equation must hold for all vectors v*
(a=1,2, -, 7r: 7 <-§— n(n—1)+1)

which are generating vectors of G,,

vk Pr = 0.
The rank of (v*) being #,

p =const, .

Hence the V, in V,., must be a completely totally umbilical or a totally geodesic
in Vw+1-

Moreover from these theorems we have

Theorem 4.4. The necessary and sufficient condition that a V, in V., ad-

. . 1 . .
mits a group of absolute motions of order o " (n+1) is that the V., is a space of
2) We have considered here the matrix Ti}.Png by letting the two lower indices denote

the rows and the two upper indices the columns, and we have called the rank of this matrix
(PaPg) rank or (i j) rank.
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constant curvature and eithey a completely totally umbilical or a totally geodesic
hypersur face in V...

§ 5. Again in this section we consider the order of a group of absolute mo-
tions by a similar method of Egorov’s [3].
The conditions

£ H,y=0 5, 1)
can be written as
EHy;=0"Hiz o+ Tise’ 0%,
where we put D
Tijd = 0% Hia + 0 Hay . (5,2)
From which
Tiid 0% = Tiser 0° =:'2<':2 Tijtpn v

Teeem

=p§ Sijpa 7Y (5, 3)
where we put
2Ticp0 = Sijpe (5, 4)
Hence (5, 1) gives
v Hyya + ;\gﬂsupq p¥is, (5, 5)

Now we consider the (7 j) rank of the matrix (S;;»,), where
Sispe = gas Hip + gt Hp; — 8ps Hia — g1 Haj (5, 6)
Without loss of generality we may consider the case i <7, since
Sijpe = S sing
Here we suppose that the rank of matrix (H,;) is / and determinant equation
| Hiy—2gi;1 =0

has only simple roots . = Hg,, Hyy, -+, Hg except 2 =0. Then for convenience
we choose the coordinate system in such a way that the lines of curvatures pass-
ing through an arbiterary point in V, in V,.; are parameter curvcs of V, — if
!/ <mn, we can take as n parameter curves / lines of curvatures determined by
the above Hy, (1<p=<!/) and »n —/ lines of curvatures which are orthogonal
mutually and also te the former lines of curvatures since the lines of curvatures
are indeterminate in V,_, where 1 =0 [1].
From our assumption

Hyy=x Hy,, for paxgq. 6,7
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Moreover we put H;, as follows :

if 1 <7</, the H j, are solutions of the proper equation, if / < j < #, then
H;, vanish.
Then we have

fl

81 Suy Hiy = 0y Hep, (5, 8)

from which
Sispa = 80509t Hay + 00 0py Hepy — 89500 Hiy — 03ies Hesy. (5,9)

After some calculations we obtain that

* *
Sisig = Ha — Hepyy Sijp = Hyy—Ha

and the other components of S;;,, all vanish.
Then the nonvanishing columns and rows of the matrix (S;;pq) = j) are

(rq)

(i 7)
(1 2) H(l)—“H(z) 0 0
(13) 0 Hy—Ha |

12) @ 3)- Ly (23) 20 (34) - (-1,1)

1 . Hy—Hy O
(2 3) O H(z) ""H(.s)

@0 Hy—He 0

(-1, 0 0 ] Hey y— He,

Hence in our assumption v*** must satisfy the conditions more than /(/—1)/2
adding to Killing’s conditions. Thus we obtain

Theorem 5.1. Leta V,in V.. admit a group of absolute motions, the rank
of (Hy;) be l, and the equation | H;; — 2g:; | =0 have only [ non-vanishing simple
roots in every point of V., then

r§%(n+l)(n—l+1)
From which we have

Theorem 5. 2. When a V, in V,.. admits a group of absolute motions, n
principal dirvections ave determinate and the n principal curvatures H, are not
equal each other in every point of V., then
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r<=an.
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