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AN IMPRESSION OF A MATHEMATICIAN.
Y. WATANABE.

The Journal of Gakugei, Tokushima University (Mathematics) has
been published just to its tenth Volume. It should be congratulated at any
rate.

However, even a certain authority once blamed though pertinently in
some respect that there are so many publications of mathematical essays,
that he cannot look over one by one. But, behold how plenty mass com-
munications of compositions not only on sciences, but much more on
criticisms, literatures, pictures and musics &c.! Is not it rather a proud
of the present age inspired with creative genius of the world, to have gone
far above the Runaissance, especially in natural sciences ? Accordingly,
as mathematicians, we ought somehow to contrive to contribute to the world
of knowledge following the general tendency in the academic field so as
our studies rarely adapt to promote the proper course. Furthermore, as
the great Cantor claims, the essence of mathematics exists in its freedom
of thinkingways. What seems sometimes to be trifle or injurious conven-
tionally, might be a germ of a good flourishing towering tree. To say the
privilege of a scientist, it is merely to delight himself stealthily when he
could accomplish his research by displaying his own creative instinct
artistically, yet through Dante’s purgatory, i.e. not without suffering
under the intolerably heavy pressure of immense classical conventions,
whose obstacle is only surmountable for a genius. Therefore there is little
need to restrain scientific works too particularly. As A. Josano, a Japa-
nese poetess, sings “I also will nail a small gold stud at the eternally ex-
tending palace of beauties,” so also we would make some contribution if
minute to the forever constructing palace of truths.
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ON THE COMPLETE TENSOR PRODUCT OF MODULES
By
Motoyoshi SAKUMA

(Received September 30, 1959)

In our previous paper (2], we introduced the notion of the complete tensor
product of modules. Namely, let £ and E’ be, respectively, finite modules
over an M- and an M'-adic Zariski rings A and A’. Assume A and A’ contain a
common subfield K. Put G, = E/m"E Qx E'/m™E'. Then the system {G,, ¢.}
(n=1, 2, ...) constitutes an inverse system of A & A’ -modules, where ¢,
denotes the canonical homomorphisms G,— G,-;.. Its projective limit E ®KE’
is referred to as a complete tensor product of £ and E’ over K. In this note, we
shall mainly investigate, following closely the recent work of Sat6 [4], the re-
lation between the multiplicities ez (q), ez(q') and ergq-((q, (A A7) in the
case when A and A’ are, respectively, local rings, where we denote by q
and ' primary ideals belonging to the maximal ideals of A and A’ respectively.”

This relation was studied first, in a restricted case, by Samuel [3] and con-
tinued by Nagata [1] and Satd [4] in the case of rings.

1. General remarks on the complete tensor product of modules.
We start with the following proposition which is fundamental in this note.

PROPOSITION 1. Let A and A' be, respectively, an m-adic and an M'-adic
Zariski rings which contain a common subfield K and let E, F and G be finite
A-modules such that

0—-F—E— G— 0 (exact).
Then, for any finite A-module E', we have the following exact sequence of
finite A QxA-modules :
0— FQxE — EQxE — GRxE' — 0.
And we have
EQxE ~ (E @ B') Quex(4® A).”

For the proof we refer the reader to [2].

1) For the notations and terminology we refer the reader to [2].
2) In the following we shall omit K and AQRA’ if any confusion does not occur.
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COROLLARY. (With the same notations and assumptions). For any sub-
modules F and G (resp. F' and G') of E (resp. E'), we have
) FrOQEF+GC)=FRF+F® G +GCRF +GRG.
ii) (E/G)® (E'/G)~ (EQE)(GCRE+ERG).
i) FNGOREFE NG)=FRFNFRGCNGCRFNCRG.
iv) (F: Q)QA'=(FRA": (CRA) and AR (F': G =(AQF): (ARG

Proor. Since the functor T(F, F") =(FQF") Q.. (A ®A’) is a covariant
additive exact functor in both variables, we can prove the corollary in the same
way as was given in Lemma 2 in [2].

Remark: Let again F and F' be submodules of E and E’ respectively, then
by Proposition 1, the canonical mappings F®E’ - E @E’ and F®F’ — F®E’
are injective. Therefore the composed mapping F®F’ — E®E’ is also injective.
Hence if we restrict our attention to submodules M,(1 €1I) of EX E' such that
M, is a finite sum of type F & F', the functor T(-) = - ®A®A,(A®A’) is exact.

PROPOSITION 2. Let E and E' be finite modules over an M-adic and an
mladic Zariski rings A and A’ respectively, and assume A and A' contain a
common subfield K. Then, for any submodules F of E and F' of E' and ideals
aof Aand o' of A, we have

i) FQ® F!' is a closed submodule of E X E'.
ii) (0, YFRQF)NERQF) =(a, ¢)FRF).
i) FRF =FQE)N(EQF)and FRF = (FRE) N(ER F).
iv) @)FQRF) = @F)Q@F) = @FRQE)NEQF) and
@NFQF) = @HR@F) = @FRE)NERF),
We assume further that Ajm & A'/m' is Noetherian, then
v) (@ o) (FRF) = (aF)®F +F® (aF).
vi) (F®F)/(a, a)FQF)~ (FlaF)® (F'/a'F),

Proor. i) Consider the sequence of submodules of EQE': EQE'DFXE'
DF®F'. Then, to prove i) it is enough to show F Q) E’ is a closed subspace
of E E'. Since we proved in the proof of Proposition 3 in [2] that there exists
an integer r such that

(m, wy(F QE) S (", m")(EQE)N(F QE"N S ™, m" ") F & E')
C (m, m)*"(FQ E")
for any n = r», F E’ is a subspace of E &) E'!. Therefore it remains to show
F® E' is closed in EQ E!. To see this we remark first that

ﬂ (F+m"E)QXEN =FXE' and f\ (FRE)+(EQm™E")) =FRX E"

In fact let £ be an element in ﬂ ((F + m"E) & E'), then it can be written as



On the Complete Tensor Product of Modules 5

E=9»QQ»w+ ... + %Xy with y, € E and y/' E E,
and we may assume 3/, ... , ;/ are linearly independent over K. Therefore
yEF-+m"E for any #n, hence £ € F ®E' since N (F + m"E) = F which proves
the first equality. As for the second, by pass"ing to the residue module, we
may assume F = (0 and by the consideration similar to the first part, we get
NEQmEN = (.
' Now, by virtue of these remarks, we have
closure of FRE' in EQE' = N(FQE') + (m, m(EQ E"))
= NEFQE + (v, m") (EQE)) = N(FRE) + (WEQ E) + (EQm"E")
f\ (F+mE)YRXE'+ EQmME" C ﬂ f\ (F+mE)RE'+ EQmM™E')
= ﬂ((F +ME)YQRE)=FXE".
11) This follows from (o, a)(F® F) N (F ® F') = closure of (a, a’)
(FRF)in FQF' = (a, a)(FQ F') by i).
ili) We take a base {x:}cr (resp. {x./}icr) of F (resp. F') over K and extend
this base to a base {x;, y}icrjer(resp. {&', ¥';}icr jerr) of E (resp. E') over K.

Thel’l the Set {yi ® xi” yj ® yj’, X3 ® yj” yj®xi’}'£€1, €1/, JET, JJET’ meS a base Of
EQE' over K. By making use of this base we see easily that (FQE)N(EXF’)

C F®F'!. Converse inclusion is obvious. The second equality follows from
(FRF) = (FQF) QueslAR A") = (F QEYNEQF) R (4 @ A"
= (FRENQARANNIERFYR (AR AN) = (FRENYN(ER F)

by the remark stated after Corollary to Proposition 1.

iv) We have ad'(FQRQF) =(@QR@RANARAINF K F') = (a F) Q(a! F')
= (@ FRE)N(E®a F') by iii), and a ¢(FQ F") = a ¢'(FRQ F) X (AR A")
= (OFHREFNRURA)=aFRa F =@FRE)N(ERQa F).

v) Clearly it is enough to show that a(F@F') e (aAF) ®F’. Since A®A’
is complete in an (m, m') -adic topology, and since A/m &) A//m’ is Noetherian,
A®A’ is also Noetherian [3, Corollary to Proposition 1, p. 21], therefore a
Zariski ring. Hence a(F® F") is closed in F ® F'!. Whence (a F) ® F' =
closure of (a F) QX F' in F ®F’ c a(F® F"). The coverse inclusion is obvious.

vi) Since (F/a F)® (F'ja' F') ~ FRF'/((@ F)Q F' + FQ (@' FY), by
Corollary to Proposition 1, the assetion follows by virtue of v),

2. Multiplicities.

In his paper (4], Sat6é studied the relations between prime divisors and
primary components of ideals a and a’ of Zariski rings A and A’ and those of
(a, a) (4 ® A"). For our purpose, the following lemma, due to Sato, is neces-
sary.

LEMMA 1. Let (A, m) and (A, W) be, respectively, local rings of rank

3) By a local ring (A, m) we mean a local ring A with the maximal ideal m.
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d and d' which contain a common subfield K. Assume A/m @ A'/m is an
Artin ring. Then AX A' becomes a semi-local ring® of rank d + d', (q, a')
(A ®A’) is a defining ideal of A@A’, any prime divisor of (q, q’)(A@A’)
is isoloted and the lengths of its primary components are the same and are
equal to 1(q9)I(9)c where 1(q) (resp. 1(q")) stands for the length of primary
ideal q (resp. ') and c stands for the common length of primary components of
(m, ) (AR AY).

Remark that in the case when A and A’ are fields, we have A@A’ =ARA"

LEMMA 2. Let E and E' be, respectively, finite dimensional vector spaces
over the fields L and L'. Assume that both L and L' are the extensions of a
Sield K and LR L' is an Artin ring. Then

I(EQE'") = dim; E dim; E' I(LQ L")

where [(E Q E') (vesp. (L QL") means the length as the finite module E Q) E'
over the Artin ring LQL' (resp. the length of the Artin ring L Q L').

Proor. Put s =dim; E, s’ =dimy E' and [ =/(L @ L'). In the case when
s =1, we can proceed by applying induction to s’ as follows : Since our lemma
is trivially valid in the case when s’ =1, we may assume s'>1. Let E’ be a
subspace of E’ such that dim;, Ey/ =s'—1. Then E'/E,' = L' and by our induc-
tion hypothesis we have /(L Q E,/) = (s' — 1)/. Therefore

HLKE) =I(LIE)+I(LIE/E) =I(LYE) +I(LKYL) = sl,

which is to be shown. General case follows from this in the same way by apply-
ing induction to s.

PROPOSITION 3. Let q and o' be, respectively, primary ideals belonging
to the maximal ideals of local rings (A, m) and (A', ™) which contain a common
subfield K. Assume A/mQ A!/m! is an Artin ring. Then, for any finite A-
and A'-module E and E', we have

I(E/q E)® (E'/q" E) = I(E/q E) 1(E'/q' E") I{A/m® A'/w),

PROOF. First we consider the case when q = m and proceed by applying
induction to the length of q'. Since our proposition is true, by Lemma 2, in the
case when /(q") =1, i.e., q'=m/, we may assume [(q)>1. Let m'=g¢q,/ D

43D ... Dq'/ =q’ bea chain of m'/-primary ideals and asuume that each inclu-
sion is strict and no n'-primary ideals can be inserted between q;' and q;.,/ ( =
1, ..., t—1). From the exact sequence

0— Ch—l’ E'/C{z' E! — E’/qt’ E! — El/qlt_l E' - 0,

4) In this case A®A’ is Noetherian as we remarked in the proof of v) of Proposition 2,
hterefore semi-local [3, §1 e, p.7].
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we have, by Proposition 1, the exact sequence of A ® A'-modules :

0 — (E/mE)® (4 E'/q E") - (E/mE) ® (E'/q. E')
- (E/TITE) ® (El/ch—lEl) - 0,

hence  [((E/mE) ® (E'/a/E") = I(E/mE) ® (4, E'/q. E"))
+ I((E/mE) ® (E'/ . EY)).

Since m'q,_,/ < q,/ and q,-+ = (q./, x) for any element xE q.—,/, x&q.', q_1'/q'
is isomorphic to A’/u/, hence q, /E'/q./E' = E'/m'E’. Therefore
[((E/mE)& (q.'E'|a/E") = I(E/mE)Q(E'/m'E") = I(E/mE)I(E'/m' E")1
where [/ = [(A/m & A'/m'). On the other hand, by our induction hypothesis,
we have
I((E/ME) ® (E'/ Qs E")) = I(E[mE)I(E'/ 6w E')L.
Therefore, by combining these relations, we get
[(E/mE)® (E'/q' EY)) = [(E/mE)I(E'/q' E')L.
Now the general case follows from this relation by applying induction to
the length of g in the same way as above.

COROLLARY.  /((A4/0) Q (A'/4)) = I(A/q)I(A'/q) I{A/mE A![n).

LEMMA 3. Let E and E’ be, respectively, finite modules over an m-adic
and an W-adic Zariski rings A and A' and let 0 and o' be ideals of A and A’
respectively. Assume A and A' contain a common subfield K and A/n1®A’/m’
is Noetherian. Then we have X

(a», a o/, ..., antH el a0 D aa™) o) (EQ EY)

n (aﬂ.—ia/i)(E@) E’) g (an—-i+] Cl“, an—i a/i+l)(E ® E’).

PrROOF. We take a special base of the vector space E over K as follows :
First we take a base {x,.; A€ 4,} of a"E over K, and then extend this base to
the base {%.x, ¥n1n; A E Auy p € Ana} of a»'E over K. Continuing this process
we obtain a base {%.n Xu_tw Fuegw - AE dny pE Apyy vE Ay, ...} of E

over K. In the same way, we construct a base {x',x,, %'n 1y Znsy, ... ; N E A,
pe A,y veEA,.y ...} of E'over K. By making use of these bases, we see
easily that

(Cl", a1 C[’, e, qr—i+ a/i~]’ qr—i1 a/i+]’ .., a aln—l’ al‘n) (E ® Ef)

m (aﬂ-—i a/i) (E ® E’) g (an~~i+] a/i, an——i a/t+i) (E ® El).
Operating ®A®A,(A®A') to the both side of this relation, we get a required
relation by virtue of the remark stated after Corollary to Proposition 1.

LEMMA 4. Let E be a finite module over a Noetherian ring A and E,,
eo., E, be submodules of E. And let a be an ideal of A such that corank a
=0. Put F;=aE;(i=1, ..., n). Assume (E,+... + E;y+Ei,+ ... +E,)
NE,CF,i=1, ..., n). Then we have
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I(E+ ... +E)/(Fy+ ... +F))=I(E/F) + ...+ I(E,/F,).

ProoF. Consider a sequence of submodules of E;+ ...+ E,: Ey + ...
+E.DE,+...+E, 4 +F,DE+ ...+ E, s+ F,,+F,D...DE +F,+
.. +F, D F+ ... +F, Since

I(By+ ... + Esx+Fiyy + oo +F)/(Ex+ ... +Ei+ Fi+ Foq+ ... +F,)

=l(Ei+ ... +Ei g+ Fi+ ... +F)+EJ(E+ ... +E +F+ ... +F,)
=I(E,/EN(Ey+ ... +E4+F,+ ...+ F)
=UE/(EsN(Ey+ ... + Ey+ Fiy + ...+ F,)) + F) = [(E/Fy),

by our assumption, therefore we have

[(Ey+ ... +E)/(Fy+ ... +F,,))=§l((E1+... +E;+ Fi+... +F,)/
(E] 4. +E¢~1 - Fi -1~ F‘+] T o Fn)) = El(Ei/Fi).

Now we shall prove the theorem which is the main purpose of this note.

THEOREM. Let (4, m) and (A', W) be local rings which contain a common
subfield K and assume Ajm @ A'/m! is an Artin ring. And let E and E' be
Sfinite modules over A and A' respectively. Then, for any m-primary ideal q
and W-primary ideal o', we have

ende (0, 0) (AR AN) = ex(q)ew (07) 1(A/MmE A'jm).

PROOF. We first show that Z(EX) E'/(q, a)"(E R E) =¢+,E<f (@*E/dVE)®

(9”E!]q’TE")), for any integer n. In fact, since (E ®E')/(q, q’)(E®E’) ~(E/qE)
® (E'/q" E'), by Proposition 2, our assertion is true in the case when n=1. We
assume our assertion is true in the case when » =7, and consider the case when
n =y + 1. Then
I(E Q E'/(5, o'y *(E & E")

= I(EQE'[(a, a)(EX®E") +I((q, ¢'V(EXRE)/(q, a')"(EQE")
= E< (" E/q" EN) R (QVE'|q"VE") - 1((q, ') (E ® E")/(a, ') (E Q E"))

+ j<lr
(by our induction hypothesis)
= S U@ E/TB)Q @V Ea" EN) + S 1" E/aM E)® (0" B/ EY)

i+ Jj<lr stt=r
(by Lemma 3 and 4) R
= 3 Id*E/d"7 E)Q (@7 E'[q"* E")).

i j<r+1
Therefore, by Proposition 3, we have

HERE'@ o) (EQE)) = 33 IWE/d"E) IqE'[a" "EI(A/m @ A'/nv)
= 3 fOgL,
where f(i) = I(*'E/q" E), g(7) = I(q” E'/q”"" E') and I = [(A/m & A'|m").
This formula enables us to calculate the multiplicity of the defining ideal (g, q)
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(A @A’) of the semi-local ring A ® A 'in E ® E’ in the same way as was given
in [3] replacing e(q) and ¢(q") by e (q) and ez (q').
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SOME EXCEPTIONAL EXAMPLES TO STUDENT’S
DISTRIBUTION

By

Yoshikatsu WATANABE

(Received March 30, 1959)

The famous Student’s test in stochastics is only applicable so far the popula-
tion distribution is normal. In the present note the author intends to show
that, if the universe is not properly normal, e. g. it may be truncatedly normal’
or Laplace’s truncated distribution, the Student-like ratio of the sample mean to
the sample S. D. ¢ = x/s, distributes quite differently from the ordinary -
distribution.

§1. Some Preliminary Remarks on the Simplex. Let some sample taken

from an universe with a non-negative variable be {x1, %5, ..., %.f and its sample
mean be
1.1) x = > x;/n (= determinate > 0).

1

The space occupied by these sample-points forms a simplex of the (# — 1)-th
order, S,—;, whose vertices A;(: =1, 2,... , n) have co-ordinates such as all
x; = 0 except only one x; = nx. Really every point P on any side A;A; has two
positive co-ordinates x,=#%x/(1+2), x;=2n%/(1+2) with 2>0 andP ¢ S,_s, while
for every point @ on produced parts of A; A;(1 <<0) at least one of x;, x; becomes
negative and @ ¢ S,.;. Hence the length of one side is ¢ = nx /2. In general,
let S,_1(0<<m <<n) be the simplex formed by all points whose non-negative

m
co-ordinates x;, ..., x, amount to >} x;=nx, but x,..= ... =x,=0. If a vertex
1

A;(j >m) be adjoined to S,_;, the simplex thus obtained S,. C S,... For, P
being any point of S,_;, the co-ordinates of any point on the join PA; are X; =
x/(1+2)(=1,...,m)and X;= 1nx/(1+2), but the remaining X, =0 (k 541, 7),

so that E X, = nx. Moreover, X;, X; are non-negative so far 1>0, while if
1

2<<0 at least one of X; X; becomes negative. Hence all points of S, ¢ S,_1.
Similarly S, S,, if /<<m<<n-—1. Consequently

1.2) S, (vertex) C S, (side) C S, (face) C S;(tetrahedron) C S, C ... C Sn

cC... C S
Clearly all simplexes S;, S, ... , S,_; are compact and convex. In fact, if
Py(%yy, %1, «.. , %) and Py(%s, ... , %.,) be any two boundary points of S,_;,

i. e. all of these co-ordinates be non-negative and > x;; = > %o = nx, but x5, =
Xow = 0 (f 5 k), %; >0, x>0, then every point @ which lies on the join
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P, P, also belongs to S.—1, but every point @' that is on the produced parts of
P, P, cannot belong to S,,_ ], because, the co-ordinates of Q' being xl= 3‘%

. . = Xoj X1k ’
with 1<<0, either x/; 1+} 1+/1

Further G,-; the centroid of S,,_; has as its co-ordinates n—m zeros and
m co-ordinates with each #nx/m. Specially for G,_; = G, the centroid of the
whole S,_;, it is(x, x, ..., %)

Now, on excluding one vertex, say A;, we obtain a subsimplex S,-, formed

or x/,

by all points whose co-ordinates are x; = 0 and > x;, = nx with non-negative x,,

.., %, To find the minimal distance from A; to S._., we have to ask the
relative minimum of the squared distance

y=mxP?+x+ ... +x2
under condition that L x; = nx, or making use of the undetermined multiplier

2, the absolute mlmmum of
= };—2/1(2o X — nX).

Hence, on putting —}— = 2x4;—21 =0(=2,...,n), weobtain 1 =%, =... =
2 %:/(n—1) = nx/(n —1). Therefore the required point is G,_.(0, 2, ,A),
i. e. the centroid of S,_,, and the minimal distance becomes
V(nz)l+m—1)2 = 22 Vn/(n—1).
Moreover, this line A;G,_, is really normal to S,... For, if P(0, %5 ... , %)

be any point on S,_,, we have

= ﬁ(ﬁq——/l)2 = z%‘)z_,‘;rcf—(n—l)i2 and PA} = (nx)® + 50_.‘ 27

while A G, = (nx)’+(m—1)2% sothat A;Gi.,+ PG:,= PA.

Thus A;G,-, being perpendicular to every line PG, _, drawn through G, . in
the base simplex S,_,, it may be called the height of S, ; against the base
simplex S,. and its length is

1.3) hoei = 0% Vn/(n—1) -

Further, if the straight line A,G,_, be divided internally in the ratio n—1
: 1, the point of division @ has the co-ordinates
=1 wx+0)/n=2% x=[0+mu-1)]/n=26=2, ... n),
and thus @ coincides with G. Consequently
GGz = hns/n = EVn/(n—1),

which should be the shostest distance between G and S,_,, because GG,_, is
perpendicular to S,_.. More generally, if we treat a subsimplex S, ;(m <<n),
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we can prove that the shortest distance from G to S,._; is the central join GGy_4,
which is normal to S,_;, and

(14) GGt = X Vuln—m)m

whereG and G,_; are the centroids of S,_; and S,._; respectively. Thus the cen-
troids of each in set (1.2): S,.1, Sies «vv » Sm_y, ..., So(= A) are apart
away from the whole centroid

(1.5) 0, 2Vu/(n—1), xVon/(n—2), ... sy XV m—mn/m, ..

2Vun—2)/2, *Vnn—1),
respectively. .

Lastly let us find the volume of the simplex S,_;. If we join A4; into all
points of the base simplex S,_, and divide all of these joins in a same fractional
ratio 7 :1, all the resulting points form again a simplex S’,_,, which is parallel
to S,_, and accordingly its measure is 7" S,_,. The height # = A,;G,_, being
normal to S’,_., we get as an elementary volume »"*S,_, 4 . Hence the re-
quired volume shall be

S,,_I = lim E 7"”_‘2 n—2 dh.

4 0

Making » =m/ N, 0<<m <N — oo, Ndh=h, we obtain

n—2 1
(1- 6) Sn—] e n—2 h lim % 2 (_17.\’;}) = 71—2h SO rn—Zdr = Sn——Z hn—j/(n_ 1)-

Ah—0

This formula holds equally good for n—2, #—3, .... upto 2. In fact, when
n=2, it reduces to S;= Soh,. But, (1. 3) renders, #; =%\ 2, what can be translated
as the height of a linear simplex S; with two vertices, because its length #x1/2
may be conveniently deemed as its height with one end point S, as base. On the
other hand the zero-dimensional S, may be measured as S,=1°=1. Consequently
Si=nx1/2 = I S, is still consistent. '
Now, writing down the recurring formula thus obtained (1. 6) successively,

we get

Sut = Sua b/ (n—1),

S,,_g e S,,_g h,,,__g/ (n—2),

S, = S h2/ 2,
S] = So h].
Multiplying all these equations sides by sides, cancelling the same factors and

applying (1. 3), we attain

(1.7) Soit = bot bns ... Boby]/(n—1)1 = (mx)"vn/(n—-1)!
Or, if the length of one side a = 1/2#nx be substituted, we obtain
(1.8) So1 = (a/v2y— val/(n—1)"

e.g. S,=a’1/3/4, S;=d’/61/2, which may be readily verified directly.
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§ 2. The Distribution of the Sample Mean from a Positively Truncated
Universe. Let f(x) be the frequency function of an universe U with a non-
negative variable x, e.g. as a truncated Laplace distribution

2.1) flx) = e®lo/s (x>0)

whose mean and S.D. are both ¢. Now take a random sample {x;, ... , x.}
from U, and form the sample mean and variance

2.2) %= ﬁ:x,/n>o,

2.3) s? = 2 (x:— %)%/ n.

We are to discover the frequency function f(x), the probability element being
(2. 4) dp = flx) Flxw) ... flx,)dx.... dx,.

Firstly we assume that the product f(xy).... f(x,) reduces to some function

of x alone, g(¥) say, what is the case for (2. 1). Ignoring s, therefore, we may
only evaluate

dP = f(x) dx = g(x)dV, dV=de;... dx,,
where the integration is extended over all {x;, ... , x,} satisfying (2. 2) only,

and the volume element dV has, as its base S,_;, and height d(1/% x). Really
(2. 2) being a n-dimensional hyperplane H, it may be written as

(2. 5) Sx/ v =V,

so its normal from origin has direction cosines 1/v/n, 1/v#, ... , 1/v/# and
the normal length 1/# ¥. Naturally this normal is also perpendicular to S,_,
because S,_; C H. Indeed, we see that the co-ordinates of G(, ... , %) satisfy
(2. 5) and on joining the co-ordinate origin O into G and any point P(x;, ..., %.)
on (2. 5), it follows that

0G + GP = @+ (xi—%F = S22 = 0P~
1 1

Furthermore, since for a second hyperplane H': > %,/ /#n = /n(x +dx), the
1

same holds, so H and H' are parallel to each other, and the normal from origin
is common in direction, only their lengths differ by 1/# dx. Therefore dV has
its base S,_; and height d(1/% x). Accordingly we obtain

(2. 6) dV=3S,,d(y/nx)= (n2)""'ndx/(n—1)!

in view of (1. 7). Thus, e.g. if f(x) = ¢™*/°/s, we have

@7 aP=e* (") g (M2 jiu—1)1

and

(2.8) f(x) = ef”;(ni/a)”"n/a(n—l)! (n=12 ...)

which is a gamma distribution and gives the frequency function of the sample
mean x. Consequently
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E@) = S:Ek @) dE = %:)k) %)L (=012 ...).
ntl o

In particular, E(x) = ¢, E(x?) = ¢, D*(x) = ¢’/n, so that ¥ is still an

unbiased estimate of the population mean. For the normal population, we know
that not only the sample mean x but also the sample median % is an unbiased
estimate of the parent mean m. However, now with the truncated Laplace
distribution, this would not hold, e.g. for n = 3, we get

—~ ' —; a ; ——;tf o —x|o bl -~ —~ i~
f(x)=—3o;e / S ¢ " dx)a S_,e " dxls, S xf(X)dx=—Z~0'(7éo'=m)_
0 3 1]
The critical lower and upper limits for a significant test would be found from

S:" f(@)d% = « and SB f@dE = B,

where «, 8 the levels of significance are e.g. 0.05, 0.025, 0.01, 0. 005, &c.
For the truncated Laplace distribution (2. 8) these limits may be found from
Pearson’s tables of the incomplete gamma function by

L Sm"g—t Pldt =« and - S e " dt = P,
F(n) 0 F(n) nzyfo

assumed the parent mean ¢ as known.

For a large sample, however, in virtue of the central limit theorem, the
standardized variable & = (x — ¢) v n/o distributes asymtotically normally.
Really, on substituting x = ¢ + ¢ &/v/n in (2. 8) and approximating I'(n) by
Stirling, it reduces to

@R~ exp {2} dE (=1/n <E< o),
2r
i.e. a truncated normal distribution, so that the usual normal test may be

applied, at least on the upper side.
Again, let the population be a truncated normal distribution

(2.9) f(x) = V2[rs* exp {—4"/20% (x>0)

oo

with E(x) = 1/ % o and D¥(x) = ¢ (1—%) Given a sample {x;, ..., x,} from
(2.9) and formed (2. 2) and (2. 3), the probability element now becomes

(2.10) dP = (% / g) exp {—2—’22 (E2+sg)} dV = f@, s) d% ds,

where dV denotes the measure of the aggregate of {x, ... , x,} satisfying both
(2.2) and (2. 3), and it contains possibly both of ¥ and s against the foregoing,
and it shall be discussed in the following sections.

§3. The Joint Distribution of the Sample Mean and Variance taken from
a Positively Truncated Universe. Let a random sample {x;, ... , ¥} be drawn
from an universe with a non-negative variable x, and the sample mean and
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variance be (2.2) and (2.3). Now in the probability element dp = f(x,) ...
f(x.) dx; ... dx, assuming that the product f(x;) ... f(x.) reduces to some
function g (%, s) as is the case for (2. 1) or (2. 10) and consequently

3.1) dP = f(x, s)dxds = g(x, s)dV,

and it needs to find

3.2) dV=S dxi... dx,,

where the integration is to be extended over the aggregate of points {x;, ... , %,

which make mean (2. 2) between x and x+dx and variance (2. 3) between s? and
s’+ds’® (or approximately S.D. between s and s--ds). As already mentioned,
dV has its height /% dx. However, now its base is not the whole S,_;, but
only its portion whose points besides (2.2) satisfy (2.3). Now (2.3) is a #-
dimensional hypersphere K, (as surface) of the radius 1/z#s with the center
G(x,%, ... ,x). Hence a boundary of dV is the intersection of S, ; and K,
which is a (#—1)-dimensional sphere K, ; still with center G and radius 1/#s.
The second sphere K',_: of radius y/ns -+ d 1/#ns being concentric with K,_;, the
required base is a (#—1)-dimensional spherical shell with thickness 1/zds. The
volume of the (» —1)-dimensional sphere of radius » (=1/%s) being v = (1/z7)"*"

/ r (’%1) , that of the spherical shell is, as differential of v,

Y n—1)r" dr / r(20Y) = v/ —1)s7-2ds / r(*,
2 ) 2
This being multiplied by the height /% d%, we obtain
_ _l/’ﬁn 1/E7z—l _ . B
(3.3) dv TG/2) (n—1) s"? dsdx.
The above is a simple imitation to Fisher’s deduction in case when there is no

limitation about ¥. However, it will equally hold, if s be small compared to %,
i.e. if K, lies wholly within S,_;, or if the radius /%s of K,,_; be smaller than

the central distance GG,_, = V'nx/Vn—1, thatis, if
0<Séf/1/n—1 or O<S/EET§1/]/12—1.

However, if «>1/v/4—1, so K, protrudes partly outside of S,_;, because

then GG,_, < v/ns and consequently GG,_, produced to 1/#s, the points at end
shall have negative co-ordinates. Therefore we must subtract these protruded
parts. Indeed when s increases there occur several circumstances. If the radius
of K, 1 be of magnitude between GG,.; and GGn_,, then by (1.4), TV % (n—m)/m
<Vas<xVnln—m+1)[/(m—1) i e Vi—m)m <t <vV@u—m+1)/(m—1),
where m =#n, n—1, ... , 2,1. Thus there are the following »# subcases :

(3. 4) 0<T<jn—-1?1, Elf—l<f<1/n_fz, o 1/";2<r<1/—n_1 and

lastly vVp—1 <7 << oo,
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Of course, the last n-th case /5 —1 ¥ << s << o means that the whole S,_, lies
within K,_; and there is no point of intersection, that is no point of dV, so
that we have nothing to consider. Among the remaining z» — 1 cases, the first
case I : 0<:<<1l/y5n—1 was discusscd above. Next, if II: 1/vp—1<c<<
1/2](n—2), the protruded parts consist of # calottes (spherical segments) having
no common portion. Hence, to solve this subcase, we have only to refer to the
formula for the (# —2)-dimensional calotte :

Cn»—Q = SOO sec T dK;z-—2

where 5 is the angle between the direction GG,-, (i.e. AG,;) and GP drawn
from G to any point P on the swelling spherical surface of K, ;, while K, _.
denotes the volume of sphere with center G,., and radius » =G, _,P’ where P’
being the projection of P on S,-,, 0L Lro=1vns>— GGos =V n(s’—2/(n—1)).
Thus

r, o =2 _ 2_‘/ 2"—2 6, L.
3.5 Cpoo= S °_vns V= n—20r"3 dy =2V 0SS S sin"~* 0ds,
(8-5) ? o Vns?—r2 I'(n/2) ( ) I'(n/2—1) Jo
where 6, = sin™ »,/1/ns = cos™ x/s1/n—1. Hence, e.g. C; =213 s cos x/
sv/'2, C, = 8rs’(1—%/sy/3), which is the celebrated Archimedes’ theorem, and

- = 41X X x? : o 1.
C; = 10y/5xs (cos 5s 25 1— 1 )’ which shall be verified in (3. 19) later

on; also compare the reference cited at the end of this note®.
Therefore, in the case II: 1/1/%—1 <<t <<1/2/(n—2) we obtain dV by
subtracting »* C,_; dsdx from (3. 3) :

—1 BT
NS n— n—2 nl’ 72___ COS T3 lsvn=1
3.6) dv =YV (a1l [1—___( 2 _> S sin™ 6d7 | dsdz.
F((ﬂ+1)/2) —(n 0 B

To proceed similarly to the subcase III: /2/(n—2) < -<<1/3/(n—3), &c.,
the matters become much more complex, now that the calottes have some
common portions and further corrections are necessary. However, there is
really a general method to find inductively the results for case » =k + 1 with
all its & subcases from those of case n =%k with £ — 1 subcases. But, this is
preferably to be illustrated well by example. Therefore before to show it, we
need to recapitulate each case n = 2, 3, 4 separately, as it would at the same
time make the facts much more clear.

Case n = 2. In this trivial case, the linear simplex S; is a linear segment
of length 21/2% with centroid G(%, %), while the linear sphere K; consists of two
points, either of which are 1/2s apart from the center G (Fig. 1). Hence the
elementar y volume becomes

3.7 dV = 2d(1/2x) d(v/2s) = 4dsdx,
which agrees with what follows by putting #» =2 in (3.3). The series (3. 4)
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reduces to only one adoptable subcase; 0<<s/x <<1.

Fig. 1 Fig. 2

Case n =3. In this case the simplex S is an equilateral triangle of side
31/2% and centroid G (%, %, x), while K, is a circle of radius 1/3s with center G.
There are only two non-trivial subcases :

I: 0<s/x =:<11/2. Observing the concentric circles in Fig. 2 directly,
or by (3. 3), we get

(3. 8) dV = 2n(1/§s) d(1/§s) d(1/§.7€) =6 1/§7TS dsdx = 61/3an dx wd-.

II: 1/2<<:<71/2. The circular arc of K, is cut into three pieces. On
calculating the circular arc directly, or using (3.6), we have

(3.9) dV = 18v/3 s (n/3—cos'x/s1/2) dsdx
= 18y/3x%d%. t(n/3—cos™'1/z1/2)dr.

Case n =4. The simplex S; is a tetrahedron having as face the equilateral
triangle with side 41/2%, centroid G(, %, %, x), while K, is a sphere of radius
2s, center G.

I: 0<s/x=r<<1/vy/3. By (3.3), or directly
(3.10) dV = 47(25)* 2ds. 2d% = 64zs” dsdx = 64z%° dx. *dr.

II: 1/y/3<<<1l. By (1.4) GG, = xy/4/3, so that the height of the
calotte C, swelled outside S; is 2s — 2%//3. Its surface is after Archimedes
2n(2s) (2s — 2%/ 1/3) = 8zs(s—x/1/3) coinciding with (3.5). There are 4 faces.
Hence 1287s(s —x/1/3)dsd% being subtracted from (3. 8), or else by (3.6), we
obtain
(3.11) dV = 647s(2x/1/3 —s) dsdx = 64nx°dx. (2¢/1/3—%) d=.

IMI: 1<s/x<<y/3. Now the radius 2s of K, being between GG, = 2%
and GA = 271/3% only some portions of the spherical surface S; contribute to
integration. Let the tetrahedron S; be ABCD with centroid G, height AG, =
8%/1/3 (Fig. 3). Taking conveniently G as origin, GA as {-axis and GE, a
parallel to G.,G,;, as E£-axis, complete &£7&-rectangular axes. Then the equation
of the face ABC shall be expressed by &/ GE+¢/GA=1. But GE = ¥ G,G; =
V'6%/2, GA=21/3%, so that the equation becomes ¢ = 21/3% — 21/2£, or in
cylindrical co-ordinates & = 21/3x—21/2p cos 4. The equation of K; is p*+&»=
4s® These two equations combined together, express their intersection curves
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Fig. 3

HK, H'K' &c. We are to evaluate 4 X surface HKL or 24 X surface MNK( =
F say), where MN and MK are the intersections of the sphere K, with the
planes AGE and AG,C, respectively. But

I I
F=r@s=[" "1+ (55 ) edar

where § = 1/45*— p? and p; is found by solving p°+(21/3%—2v/2p cos 6)* = 45
to be
p1 =2 [21/6% cos)—1/(1+8 cos? §)s>—3x2] / (1+8 cos® 0),

the double signs + being chosen to be negative, since the larger one corresponds
to H'H"K"K' in Fig. 3. Now the inner integral of the above double integral
reduces to

P e P o o -
Soj 1/1+‘02/(482_‘02) pdp = 9 SOI PdP/ 1/482_102 = 4S~_251/432_P127

which integrated with respect to #, yields

F= 4;3"’ _4s S“'31/32(1~1—8 cos® 0)’— {21/6% cos 60—/ (148 cos® 0)s® — 3%2}> do

0 1-+8 cos® ¢
_ 4z, (™ 1/3%+1/8 cos 61/(1+8 cos? §)s?— 3%
=2 _4s . ds.
3 0 1+8 cos® @

Performing the integration, we attain finally

F o= 2rs <2_§~s) _ 4sx tan_11/3(39:x2) + 48 tan_jl/st?
- 2x° 2s°

3 \\3 V3 2

Hence
(3.12) AF (%, s)2ds 2dx = 96F (%, x:) xdcdx (s = %r)

d
P o LY A T _ -1./3,, - 1 /1 1 _
= 128% dx{z( = r) V/3: tan ]/?(T —1) + 3 tan ‘/E(l—?)}d"
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So far we have discussed the problem geometrically. However, even when
n=2>5, S, and K, being four dimensional, the matter becomes less intuitional,
and mucn less for cases #>5. Hence, we are oblidged to proceed analytically
below.

In Case n =5, there are 4 subcases; I: 0<<r<<1/2, II: 1/2<<:<V'2/3,
OI vV2/3<:<V'3/2, IV: 1/3]/2<<c<<2. For subcase I we get immediately
by (3.3)

(38.13) dV = 501/57% s* dsdx,
and for subcase II (3. 6) may be employed.

However, in order to explain the general method before mentiened methodo-
logcially, let us treat this subcase II by the very general method, that can be
quite similarly applied to any #» = k+1, if the case n =k were already solved.

Putting one variable x; aside for a while, the remaining four variables x,,
x5, X4, %; form, as their mean and variance,

x = 2)‘, x/4, sP= E‘L (x* —=')*/4

with 3 subcases: I': 0<<s'/x'=:'<<1/v/3, II': 1/y/3<c'<<1, III': 1<¢/<y/3.
It is easy to show that there exist the relations

(3. 14) ¥ = % (5E—x), sP= % [4s® — (2, — )],
where %/, s’ being real and non-negative, and
(3.15) 0<x <bx, 2—2s<x<x-+2s(=7).

Given x and s so s/x = = also, we wish to grasp how the variable x; runs its
course. For this purpose, we draw the graph of

(3.16) o= g’ _ V5(4s>— (x; — x)°)
z' 5}“}51

for several values of -(=s/x) (Fig. 4). We need not consider those points outside

(5%, v3)

IZ= 1
AL

0 a E2 KB 7 5x

Fig. 4
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the rectangle with sides 5% and 1/3, because of (3.15) and 0 < ' << 1/3. The
curve (3. 16) has, as its ¢~ and x-intercept, /o =1/(4:>—1)/5 and y = x +2s =
Z(1 -+ 27), while its maximum arises at the point ((1 + ®)¥, V/5¢/ V4 — .
Hence, we obtain the following table :

r o | w2 | vas | vam 2
r’-intercept = /o imag, 0 , 1/v3% 1 v3
xi-intercept = 7 x I 2% 2.63..-% | 3.45.-.x 5%

mode my x 5x/4 5x/3 5%/2 5%
maximum m 0 1/v3 1 V3 )

In particular, if - = 0, the ¢’-curve degenerates to a single point x; = %, and
it grows up larger and larger as r increases up to r=2, in which case, however,
the ¢’-curve becomes needless.

Now, if e.g. 1/2<<z<<1/2/3, the corresponding z'-curve lies actually
between those corresponding to = 1/2 and r = 1/2/3. It starts from a point
(0, z%), such as 0<<z/,<<1/1/3 and first ascending to a maximum, that lies
between two parallels z/=1/1/3, z'=1 and then descends up to (3, 0). Its points
of intersection with the parallel </ = 1/1/3 is found by solving the equation
(3. 16) for z'=1/1/3 to be

(3.17) @ B =1 5% T V15 =),

Hence, the elementary volume in the x’-s’ distribution is given by (3.10) and
(3.11) as

dV'y = 64zs”d s'dx! for O0<m<a aswellas A< <y,

and
dV!, = 64xs' (% ——s’) ds'dz! for a<<x <§p.

Transforming the variables ¥/, s’ into %, s by (3. 14) with the Jacobian

and integrating about x, in the above described interals, we get

av, = S AV dz = IOOerdeES Sin
] ]

Y
where the integrsals are really S + SB , as well as

0

B _
dV, = S dVydx, = 1007 sdsdx g (2x']vV'3—s")dx.
2‘-] ®

Upon substituting (3. 14) in these integrals and integrating, we attain finally



22 Yoshikatsu WATANABE

(3.18) dV=dV,+dV, = 250 1/5zs P VIF—7+ (% ~ cos ’L) 2] dsd%
4 15) 2s

for the subcase II: 1/2<Cs/%<C1/2/3, and this coincides with what follows from
(3.6).

Remark. If we subtract (3. 18) from (3. 13) which in II may comprise five
3-dimensional calottes, where some x;,’s become certainly negative but still

2" %, = 5% and §* = E (x;—x)?/5 hold, we obtain the superfluous volume
1 1

2501/ 5rs[cos™ x/2s — %1/ 45> —z2/4)dsdx.
Therefore, if this be divided by 5d1/5sd 1/5%, we shall get, as the volume of
the 3-dimentional calotte
(3.19) C, = 101/5ms [s°cos™ x/2s — x V45— 72/4],
which precisely coincides with (3.5) for # —2 =3, and thus the very formula
is not a result of mere formal extension, but has an actual conformity.

§4. Truncated Laplace Distribution. By the results in the foregoing
section it is possible to write down the volume element :

(4 1) dV = 1/77,__] (}, S) = g1 (}) dx. ll,.,-] (T) dr with T = S/E,
where the coefficients are factorized so as to hold for every » the identity (4. 6)
below holds. Therefore, if the universe be e. g. a truncated Laplace distribution

f(x) = e7*(x >0), the probability element for the joint distribution of the #-sized
sample mean % and S. D. s shall be given by

(4.2) dP = fu.1(%,s)dxds = e"g,,(%)d%. ha_(c)dr,
so that x and ¢ are independent. Really for » =2, 3,4, we obtain the following :

(4.3)  fi(®,s) dxds = 4e % dr

_g —3% .2 z —3% 40
(4. 4) Sfolx, s)dxds = 5 ¢ x*dx 3\/5 rdc or 5 ¢ x2dx
(3 - )fd O<c<1/y/3or1]v/2<e<13):

4.5)  f(7 s)dFds = % -5 5 4%, 321~2d or %*59 P dE, 3"7( 2 ﬁ) dr

0<c<1/y/3or1/1/3<c<1), or %%-ﬁxﬁdx, 3?” 3” —~) 33c

tan™! ‘/%(rz —1) +97 tan™ \/%(1” %) (1<v<v3).

And we have

(4.6) SO e g, 1(X)dx =1, where g,(%) = r’(‘n) L

=
as well as So l hni1(z)dz =1, where
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=1 in 0<:-<1;

ho(c) = ?i/; in 0<c<<1/4Z but %f(gﬂ cos™ 1/m2) in 1/42<e<y2;

hy(z)= —izﬁ in 0<c<<1/43 and 3 2 31 —72) in 1/43<<:<1, and lastly
3a(2- ) 5 _1~/ 3,5 4+ 9.2 —1\/7:2 ] 3
AW 3y3c tan _g(f 1) +9tan 5 in 1<r<<y3, &c.

Consequently we may utilize the quantity -=s/x for testing its significance,
whether the universe is really f(x) = e *(x>0) or not. The lower limit <, of
significance level a(=0.01 or 0. 05, &c.) is found by use of (3. 3) from

70 o I'm) gt _
.7 | s (c) ds = Tn+D/D¥ % Vm ¢

to be

_n an F((n—&—]_)/z 1/ (n—1)
To = ?[ P(n) ] -

If however this value exceeds 1/45—1, we must refer to the second subinterval
II, &c. Thus, e.g. for n =4, we shall get

(4. 8) o=0.1853 or 0.4144 according as « = 0.01L or 0.05.

As to the upper limit -;, we have to find it from

=
(4.9) S hoi(z) de = a,

™1

what is a pretty intricate. We shall obtain for case =4 by means of Newton’s
successive approximation

(4.10) - =1.4212, or 1.2513 for «=0.01 or 0.05.

However, the classical Student’s ratio being in fact

t=L =1 if m=o
our - = s/x is the reciprocal of # multiplied by 1/ —1
(4.11) r=11p—-1/t, iLe t=vVu—-1/r=1Vn—-1x/s.

Hence, the previous %, () if expressed by # becomes f,_{(¢) and in details :

(4.12) £ = t‘2 (I<t<oo);
(4.13)  folt) = 7= t* or 73 (— —cos™ é)t‘ C<t<<oo, or 1<t<2);
(4.14) fi(t) = M t™ or 9Y3r (¢/3—1/2)¢t! (B<<t<T oo, or 4Y3<<1<<C3),

or 9\/3[ (~—- —t tan‘1~/2(£_1 w3tan‘1/1 S)Jt*

(1<t<<y3);
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and generally
|ra@at = a1

For the sake of comparison, if the figures of (4. 8), (4.10) be expressed in
¢t by (4. 11), we obtain as the upper limits 9. 347, 4. 180 and as the lower limits,
1.219, 1.384 corresponding to «=0.01, 0.05 respectively, while the Student’s
Table for n=4 delivers +4.541 and =+ 2.353 by reason of the symmetry.

We have argued on such a truncated Laplacian population as: A whole
Laplace distribution f(X)= 21—0' exp { — | X—m|/s} is truncated into half at X=
m, only the part X>m adopted, and the factor 1/2 removed in order to make
the resulting expression furnish a frequency function, and finally the variable
X transformed into x by (X—m)/c = x, so that f(x) = ¢ *(x > 0) holds. Hence,
if the original distribution be regarded, of course, the Student-like ratio

X M /#w—1 should be consulted.

§5. Truncated Normal Distribution as Universe. Lastly we shall con-
sider the sample distribution in case that the universe is, as in (2.9),
5.1) F) = \/ Zexp |~ 2} >0,
The probability element which yields the n-sized sample mean ¥ and S.D. s so
that -=s/x is

dp = 1/ 2 exp [~ 5 P+ g0rs (@D s (o) did,
where g,_;(x) and k. () are those given in (4. 6). Therefore, this time, x and

¢ are by no means independent, However, on considering ¢ as fixed, and in-
tegrating about ¥, we obtain

s 2200+ ) g0 = 3 7000 21"

2 I'(n)
so that the frequency function of r shall be given by
(5. 2) Arn ](7) = i _Ij-(lz‘/-%)— 4” ! hn ](T)

2 I'(n) T A+ )"” ’
More in details :

(5.3) u(c) = 4/z(1-?) (0<e<1);
(5.4) n() = 4=(L+2 or 4=(1+2) (1— 2 cos™ 1/242)

0<z<1/¥2 or 1/V2<c<<y2);
(5.5) () = 22 (147 or (% - ) (@)

(0<<r<<1/43 or 1/y3<r<1),

=722(1 - ) [Q _f —21/3rtan l/3(~—1)

62 tant o/ Lla _1/72)] (1<c<y3).
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Or, if - =1/4—1/t be adopted, we shall get, as the Student-like distribution,
(5.6) fi(t) = 4/=(1+18) I<t<o0);
a2 3 et t £y
_ 2 3/2 S 14 L
(5.7) fulf) = 2v2 (1-+£/2)2 or 242 (1 2 cos 2) (1+ 2)
@C<t<<oo or 1<t<2);
= ﬁ 273)-2 _?i & _ ) 2 j o\ —2
(5.8) Al) = 22 (143" or DL (3 F—1) 1+ £/3)
(B<Ct<<oo or 43 <<t<<3),
(1-+¢/3)2 I:n (% ¢ ——1) —2¢ tan™' V(3 — £)/2¢
+6 tan™' /(3—#9)/6] 1<t<v'3);
whereas the classical Student’s distributions deliver

_ 32
73

S(O) = A slt) = e QE AT sl) = S A,

and in general

__ 1 r(n/2) (. £\ o
el = Jo 1 P((””l)/z)(1‘n~l) ,  (oo<t<eo)

The significant upper or lower limits with level « of our T.N. D. can be
found from

Swfn-ﬂ(t)dt =a or S:Ofn-](t)dt = Q,
Bl

of which the former is readily computed, while for the latter it requires general-
ly Newton’s method of successive approximation. The following table shows a
comparison between the significant lower- or upper-limit #, # of our T. N. D.
and those of Student’s ordinary N. D.

@=0.05 \ & =0.025 \ @ =0.01 | e=0.005
ours Student J ours [ Student ours \ Student ‘ ours Student
to 1.082 | —6.314 1.040 | —12.706 1.016

n=2 | 4 25.452 | +6.314 | 50.926 | -+12.706 | 127.321 | +31.821 | 254.996 | +63.657

—31.821‘ 1.008 | —63.657

to 1.381 | —2.920
i1 5.248 | +2.920

1.261 —4.303 1.161
7.471 +4.303 | 12.805

—6.065
+6.065

1.114 | —9.925
18.130 +9.925

§6. Concluding Remark. Whatever the universe may be if its mean and
variance exist, and when the sample size so large that the central limit theorem
holds for the distribution of sample mean, the ordinary normal test will convert
to use. It is probable that our f,_,(#) shall also follow that theorem just as it is
the case for the ordinary Student ratio. But, to prove this strictly, we have to
find the general expression for f,_;(#), or at least to show the existence of its
mean and variance, what however seems plausible by the general argument
done in section 3. Since, however, with large samples the classical normal
test will do at any rate, there is little need to know the exact form f,_,(¢) for
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large n. On the contrary, the exact sampling distribution with small size forms
certainly a subject of discussion.

Our examples in this note were rather simple. To conceive a little more
copmplex case, e.g. let the universe be

(6.1) f(x) = ™ %™ e~ T (m+1), (x>0, m=1,2, ...),
or more practically, the X? -distribution, i. e.
E-1 _ = & k
6. 2) @) =27 e 2/22r(§~) x>0, k=12 ...).
With the exact sample of size # we have the probability element for (6. 1)
(6. 3) dP = ¢™ T2 dV/I'(m+1) where dV = S]lldxi.
1
We may calculate the sample moments
(6. 4) V,,=;2x§/n E=12 ..., n
or, more concretely the central moments
(6.5) pe=3 (x:—%)/n,

which, namely, give the sample mean x = »;(y;= 0), variance s’=, skewness
;= m3/s® and kurtosis «y = m/s', &c. We should express the probability
element (6. 3) so as

(6. 6) dP = f(x, s, ptsy ..., tn) dxdsdpy; ... dpm,

or else, parallel to s =1/, writing k\/‘@ as variables for every k>3 also.
The expression ]:} xi" may be denoted by a combinaticn of x, s, ps, ..., s

while XITI dx; should be expressed as g(%, s, py, ...) dxds dus... dps, and in

particular accessibly” for cases n =2, 3, 4.

However, the present author will leave the remaining work unfinished to
any investigator who is interested in this theme.  Of course, if merely the fre-
quency function for sample mean be required, it could be readily obtained by a
simple application of the convolution theory to the I'- or X*-distribution.

References : 1) Herald Cramér, Mathematical Methods of Statistics, p. 247 (1946).

2) Emile Borel, Introduction géométrique, quelques théories physiques (1914). Using
the notations in that text, pp. 63, 64, we obtain, as the area of the spherical calotte,

_S . m—1,60  m-2 T m—3 T
C ~-2—~S1 = 2wR ,[0 sin @1 det fo sin e1doy... Jo sin @ s de

m—1
TR 6 . m—2
— —M—Z(T‘f"'z—f Jo sin” ¢1dei,

9

m-—-2
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where cos # = /R and ¢ denotes the central distance of the base, and this result really
coincides exactly with our (3.5) if we put m =n—1, R?2 =ns2 and cos 0 =%/s1/n—1.
3) The author has verified that the total probabilities always become unity for seve

ral distributions which were treated in this note. From that point of view, however, it
requires for (5.5)

oo _ 96 (V3 1 ~/1 1 dr  _
j04’3(f)d2'— 77'-’4[] tan —2—(1-—§) m =1,
what could really be ascertained by Gauss’ method of selected ordinates for numerical in-
tegrations. Also he tried to prove it by means of the theory of functions, though yet

without finishing completely: Y. Watanabe, Eine Integralformel, the present volume of
this Journal.

4) E.g. the case n =2 for X% -distribution may be readily treated by means of (3.7):

Y k4 _= sk k
The fr. f. for the Xi -distribution being f(x) =22 e 2/22 l”(?) (x > 0), it follows that
after (3.7)

MER
2

4 - pa—
dP =" % (L)Q (%1 x9) e "dsdx (0<s <z 0<x< ), where x1x9= x2—52,
2 I'\3

Or, writing x 1V — 1/s=1, 1<t=2%/s<co for n =2, the fr. f. fo(t) is found to become

sanae= (= BJS R[4 - ar(2) (-4)F 4 vz r(4)

>

:—1
because of I'(k) =12/k—_ Z‘(g)l’(’%l) a multiplication theorem of the gammafunction, and
T )

consequently J;fg(t)dt =1. Hence, the lower- and upper-limit #o and #; for the significance
level 0.05 say, such that

0 £(#)dt = 0.05 and |~ folt)dt = 0.05
1 4y

are found to be

k 1 2 3
tn 1.003 1.053 1.072 | and so on
1 12.745 20.000 25.286

while the corresponding ordinary Student’s ratios are ¢ = F 6.314.

Similarly, with the parent distribution f(x)=2xme¢~%/m ! (x >0, m =1, 2,3, ....) and the
sample size #n =2, it follows that dP = ,4

n 12
4@m+1)! ( _1 )ml : _ =z
o 12 1 +7) 5= in 1<1¢ 5 < oo,

(%2 — s?)me—2% dsdx, and the fr. f. fo(f) =
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In the preceding paper®, we proved the next theorem. Let the family of
Sfunctions {f(x)} from E; to E. satisfy following conditions : (1) each function
f(x) is analytic in | x| <1 in E, and is a one-to-one mapping to a domain D,
in E, and its inverse function f~Nx) is also analytic in Dy, (2) {f(x)} are
bounded, that is, | f (x)| < M, (3) the norms of linear parts {g«x)} of {f ()}
are bounded, that is, |g.| < K, (4) F(0) =3, then each domain D, includes the
sphere whose radius is constant.

In this note, we discuss the case where E; is composed of complex numbers
and E, is complex Banach spaces.

Lemma 1. If x = f(«) is an Ervalued function defined in the unit circle
la|<<1 in complex plane and analytic there, then

I ) | A= [af) = | F(B) | (1 —|BP),

9) = f”"ﬁ) — A=
where F(f8) f( ) and B 1—aa,

Proof. Since 8 = %‘%’ we have 1’ d162ﬁ||2 = 1|d‘fﬁ||2'
- _ _

On the other hand, F'(8) = f'(a) %

Then we have | F/(8) | = |.f'(@)| {Z—‘ﬂ‘} = 7@ 1—|0§=2, Tl

I F(B 1A= 18P = ()| A—]aP).

Lemma 2. If an Esvalued function f(a) defined in |o|<<1 in complex
plane satisfies £f(0) =6, |f'(0)| =1 and is a one-to-one mapping to a domain
D in E, and its inverse function t7(x) is also analytic in D, then the norm of
the linear part g\(x) of f(x)is 1.

Proof. Since f’(x) is analytic in D and f(0) = 4, we have

f(x) = i %),

where g,(x) is a complex valued homogeneous polynomial of degree » for n =1,
2, 3, ..... . Let 8 be complex variables, then

= £7(85) = 3 gu(@) B

Since f7'(3x) is one-to-one mapping and analytic in D, 3] g.(x)8" converges
1
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uniformly for |3]<»<<1 at least and g,(x)%=0. This shows that a neighbourhood
U of B =0 is mapped to a neighbourhood V of ¢=0. If E, is composed of at least
two elements x, x/, where x and %' are linearly independent, we have on the
same way

o« = Sg.e)p

By this relation, we see that a neighbourhood U’ of 8 = 0 is mapped to a
neighbourhood V/ of « = 0. That is, a set 81/, where 8 €U’, is mapped to V.
Then the intersection V. V' is mapped to different sets Ux and U’x' simultaneo-
usly. Ux is a set of Bx, where 83U, and U'x’ is a set of fx', where B U".
This contradicts that f(«) is a one-to-one mapping, and we see that E, is com-
posed of one element which is linearly independent.

On the other hand, we have

y=fla) = > aa
where a, € E,, since f(«) is analytic in |¢|<< 1. Then we have
a = f7x) =X gux)

= [E 2. ]Z‘, a, ")
= ga)a + .....

Comparing the coefficients of «, we have g(a;) = 1. Since @, € E,, E; is
composed of points ;. Then, points on ||x| = 1 are expressed as a,¢* (where
0<< 9 < 2x), so we have

lg:l = sup |g:(@:e”)| = 1.
u=s0=2m

This completes the proof.

Theorem. If the family of functions {f(ax)} from |a|<<1 in complex
blane to E, are analytic in |a|<<1 and one-to-one mapping to {D;} in E, separate-
ly and satisfy {|f'(0)| = 1} and their inverse functions {f~'(x)} are also
analytic in {D;}, then each domain D, includes the sphere whose radius is
constant.

Proof. First of all, we assume that f(«) is analytic on || <1. Since f'(«)
is analytic on |a| <1, |f(«)| - (1—|aP) is continuons on |a|< 1. Then, there
exists a point «, such that

|7 (e - (1 —Jewl) = Mazx. | ()] - (1= |aP).

When |a|=1, | ()| (1 —|af) = 0. Therefore, |a,|<<1.
Put M = f"(a) [ (1 —|af), then M =1, because, | f(a)| (1 —]af)=|f"(0)]|=1,

when « = 0. By the transformation 8 = 1“ —acg , let f(a) = F(B).
- 0

By Lemma 1, we have [F'(8)| (1—|8F) = |f"(e)|(1~|af). Then
[F'() [ = 1f"(ewo) | A~ |ewof’) = M.
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Put ¢(B) = ]l\/I (F(B) — F(0)), we have ¢(0) =0 and |¢'(0)| = ]‘1—4 1F'(0)| =%_ =1,

#(p) is also analytic in |8/ <1 and clearly one-to-one mapping to a domain D’ in

E,, since f(a), X" gpnd i(x-—xo) are one-to-one mappings. From the rela-
1—aa M

tion ¢'()= ]\l/.f F'(B), we see that |¢'(B)| = % | £/(B)| and then

Ip@ = L - L1 0o
M

<

Therefore,

L@ =11 ¢'(B)dB]

< {le'®1 - 14

1+R 1+R _
1-R" 1-R

= (R3), then ¢(J3) is analytic in [3| <1 and one-to-one mapping to D'’ and
¢ ¢

Put log

Put |3 << R<<1, we have |¢(3)| < log K and ¢,(f) =

o/ = % IR = l¢0)] = 1 and ¢(0) = 4 ¢(0) = 0.

Therefore, we have | ¢:,(8)| £ K, when |3] £ 1. Appealing to Lemma 2, we see
that the norm of the linear part g(x) of the inverse function ¢, '(x) is 1, since
¢~ !(x) is also analytic, one-to-one mapping, ¢i(0) =0 and [¢,(0)|=1. Thus,
by the theorem written at the biginning of this paper, we see that D" includes
the sphere whose radius is constant. Therefore, D includes also the sphere
whose radius is constant. It is easy as well as the usual way that the assump-
tion || £ 1 is removed.

References
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In the theory of finite groups, it is familiar as Lagrange’s theorem that the
order of every subgroup of a group G is a factor of the order of G. We should
like to study the structure of a semigroup with such a property. A finite semi-
group S is said to have &;-property if the order of any subsemigroup is a divisor
of the order of S. On the other hand &-property is defined as follows.

If a semigroup S of order n contains no proper subsemigroup of order
greater than n/2, then S is said to have S-property.

Immediately &-property implies S-property. A finite semigroup with S-property
and one with &;-property are called &-semigroup and &;-semigroup respectively.
In the present paper we shall determine the types of &-semigroups, and at last
the result will make the reader see that S-property is equivalent to &;-property.
We add that any semigroup of order at most 2 have S-property and so this case
will be sometimes out of consideration.

1. Notations.

If S is a finite simple semigroup, then S is represented as a regular matrix
semigroup with a ground group G and a defining matrix P = (p;) of type (/, m).

(See [1])
If pys~0 forall 4,7, then
either S={x;if)lxeG i=1, ... ,m; j=1, ..., 1}
or S={x;ilxeG i=1, ... ,m; j=1, ..., [} U {0}
the multiplication of which is
(x5 i) (; st =(buy; i)
0=0(x;:7)=(x;:7)0=0 if S has 0.
If there is p; = 0, then
S={@x;if)lxeG i=1 ... 6 m;ji=1 ..., U{0}
with multiplication
. 0 if p;, =0
NGty it g
Let L=1{1,...,m}, R={1, ..., 1}. R and L are regarded as a right-

singular” semigroup and a left-singular semigroup respectively.

1) R is called right-singular if xy = y for every x, y€R.
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For the sake of convenience, we shall use the notations
Simp. (G; P) and Simp. (G, 0; P)
which denote simple semigroups S with a defining matrix P = (p;;) and a ground
group G. The former denotes one without zero, whence p;; 5= 0 for all 7, j, bnt
the latter denotes one with zero 0, so that if p,;=0 for all 7 and j, S contains
no zero-divisor.
A X B denotes the direct product of two semigroups A and B.

2. Important Examples of S-Semigroups besides Groups.

Let G be any finite group a unit of which is denoted by e¢. The examples
given in this paragraph will be proved to be &.-semigroups and hence &S-semi-
groups.

Lemma 1. Simp. (G; (%)) is an S-semigroup, and any subsemigroup H

is either a subgroup G' of G or Simp. (G'; (l)) isomorphic to G' X R where
R = {1, 2} is right singular.

Proof. Let S= Simp. (G; ()) and let H be a proper subsemigroup of S.
Putting Hy;={(x; 1) (x; 1)) H},
H has one of the forms ; Hy, Hiw,, Hp\JH.?
Further, set Gi;={x|(x; 1) H}. .
Since H;; is a subsemigroup of H, it is shown that x € Gy; and y € G,; imply
xy € Gy;.. Hence Gy is a subgroup of G. If H= H;(j =1, 2), H is isomorphic
to the subgroup G;; of G. If H = H;;\U Hy,, then from Hy Hy, © Hy, and Hy, Hyy
€ Hy;, it follows that x € G;; and y € Gy, imply xy € G, yx € Gy Since Gy
is a group, we get Gy € Gy, and Gy, © Gy, therefore G;; = G;; which we denote
by G'. Thus we have

H={x;1)|x€C, j=1, 2}

that is, H = Simp. (G'; (%)) = G' X R.

Letting g and g’ be the orders of G and G’ respectively, the order of S is
2g and H has the order g’ or 2g/, the factor of 2g.

Similarly we have

Corollary 1. Simp. (G ; (ee)) is an S-semigroup, and any subsemigroup
H is either a subgroup G' of G or Simp. (G'; (ee)) isomorphic to G' < L, where
L = {1, 2] is left-singular.

Remark. Let S; and S, be simple semigroups given by Lemma 1 and
Corollary 1 respectively. When S, and S, have a ground group G in common,
Sy and S, are anti-isomorphic since G has always an anti-automorphism.

Lemma 2. Let 0%4a&€G. Simp. (G; () is an Ssemigroup and any

2)  denotes the set union.
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subsemigroup H is isomorphic to one of the following.

() a subgroup G' of G,

(8) Simp. (G'; (9)) isomorphic to G' X R,

() Simp. (G'; (ee)) isomorphic to G' X L,

(6) Simp. (G"; (22)).

Proof. Any subsemigroup H has one of the forms

(a) Hy G =1, 2),

(“9’) H, UV I-{IL’; Hy\U sz,

(7”) H,UH,, H,\UHos:,

(’?') Hn U fI]g UHQJ U sz-
These are easily shown by considering all the subsemigroups of R X L. Clearly
G, Gy, Gy and Gya are subgroups of G, and Hy, H., H, and H., are iso-
morphic to Gy, Gy, Gy, and Gya respectively. Similarly as Lemma 1 and
Corollary 1, we can prove :

If H=H,,\UH;,, then G;=G;(=G;) and H = Simp. (Gy; (ee)),

if H=Hu\UHy, then Gy =Gy (=G;) and H = Simp.(G>; (%)).
Let us discuss the other cases :

If H = Hy\UHy, we get Gy = Ggpa because Gy C Gra from Hy Hey © Hyo,
and Gya © Gy from Hy H, © H, ; and hence

H={x; 2D)]xeGs} U {(x; 22) |xE Gy a'}.

It is proved that H is isomorphic to

Simp. (Ga ; (i))
under the mapping f defined as
flx; 21)) = (x; 21), flx; 22) = (xa; 22).
If H= H;\UH,, then Gy, = aGs; and H is isomorphic to Simp. (Gy, ; (ee))
under the mapping g defined as
g((x;12) =(x; 12), g((x; 22) = (ax; 22).
Finally if H = H;;\U Hiz\U Hy \U Ha,
we get Gy = Gy = Gy = a Gy, = Gy a(put = G').
Since G’ is a subgroup of G, we can consider (¢; 12), (e; 21)= H and
(@a; 11) =(e; 12) (e; 21) € H so that ¢ € G’ naturally ¢’ = G'. At last
G' = Gy = G, = Gy = Gy, which contains @. Therefore it follows that H =
Simp. (G'; (¢2)). Let g and g' be the orders of G and G’ respectively. The
order of Sis 4g and the order H is g’ or 2g’ or 4g', the factor of 4g.

3. General Case.

Lemma 3. Let S= Simp. (G, 0; (pn), t=1, ..., m; j=1, ..., D)of
order>>2. S has no S-property.

Proof. Let g be the order of G. Then the order of S is
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n=glm -+ 1.

When / =m =1, Sis a group with zero adjoined ; then g>>1 since we have
assumed »# >2. But the order g of a proper subsemigroup G is not a divisor of
n=g-+1.

When at least one of / and m is = 2 e. g. /=2, there is a proper subsemi-
group T of S

T={x;iNlxeG i=1, ..., m; j=1 ..., [—1}\U{0}?
whose order is #' = gm (!l — 1) + 1. On the other hand, we see
2n'—n =gm((—2)+1>0
whence #' is not a divisor of #. Therefore S has no S-property if » > 2. q.e. d.

Lemma 4. A finite non-simple semigroup has no S-property.

Proof. Let I be a maximal ideal of a finite non-simple semigroup S. Then
the difference semigroup (S: I) = D is a simple semigroup with zero. Set D =
§{G, 0; (psw)i=1, ..., m; j=1 ... .1} andlet g, i, d and n be the orders
of G, I, D, and S respectively. Then d =glm +1, n={+d —1=glm +i.
We may assume n>2, i>1.

First, if Im =1 (i.e. [=m =1), D is a group with zero adjoined, so that
S is the union of I and a group G:

S=IUG ING=@g, IGEI, GIS I

where #n = ¢{ - g. Then S contains a proper subsemigroup 7T of order > n/2.
In fact

T=1 if i>g
T =1\ {e! where ¢ is a unitof G if i = g
T=G if 1 <g.

Second, if /m>1, e.g. [>1, then the proof of Lemma 3 shows that D
contains a subsemigroup D' of order d’ = gm (I—1) 1- 1. Let S be the inverse
image of D' under the homomorphism S— D. Evidently S’ is a proper subsemi-
group of Ssuch that (S’: I) = D'. Then the order »’ of S’ is greater than n/2,
because, from n' =gm ([ —1) -4
we get on'—n=gm (I —-2)-1-i>0.

In all cases S has no &-property.

Lemma 5. Let S= Simp. (G; (pj)i=1, ..., m; j=1, ... ,10). If
S is an S-semigroup, then S has one of the following structures :

(1) a finite group

@ Simp. (G; (5))

(3) Simp. (G; (ee))

(4) Simp.(G; (52)), a=x0.

2) T is not always simple.
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Proof. Let g be the order of the ground group G of S, then the order # of
S is n = glm.

Suppose that S has &-property and at least one of / and m is=3e.g. /=3,
and consider

T={x;ij)lxeG i=1 ..., m; =1, ..., [—1..
T is clealy a subsemigroup of S and its order #' is
n' = gm ([—1)
and 2n' —n=gm (I —2)>0

whence »' is not a factor of ». This contradicts S-property of S. Therefore we

must have the following four cases of S

(i) I =m=1,

(ii) 1 =2, m =1,

(iiil) =1, m = 2,

(iv) [ =2, m = 2.
If (i), Sis a group. According to Rees’ theory [1] the defining matrix is equi-
valent to () in the case of (ii), equivalent to (¢ ¢) in the case of (iii), equivalent

I

to (£7) in the case of (iv).
Combining Lemmas 3, 4, and 5 with Lemmas 1, 2 and Corollary 1, we
have the following theorem.

Theorem A finite semigroup S is an S-semigroup of order =2 if and
only if S has one of the following structures :

(0) a semigroup of order 27

(1) a group of order = 2

2 Simp.(G; (;))

(3)  Simp.(G; (ee))

(4)  Simp.(G; (55))
where e is a unit of G, 0% a € G, and the order g of G is=1.

A subsemigroup T of S is called proper if it is neither S itself nor a sub-
semigroup composed of only an idempotent. As a special case of S-semigroups,
we have

Corollary 2. A finite semigroup which contains no proper subsemigroup
is either a semigroup of order at most 2 or a cyclic group of prime order.

Proof. Let S be a semigroup satisfying this condition. According to
Theorem, if the order g of G is=2, the simple semigroups (2), (3), (4) contain

3) In detail, (0) is either a or a b Besides them, there are 3 types, which

O‘W)h ala a
al0 0 bla b

belong to (1) ~ 3).



38 Takayuki TAMURA and Morio SASAKI

proper subsemigroups e. g. G. Hence, apart from the case of order 2, S must
be a group. The theory of groups teaches us that an €-group is a cyclic group
of order prime.

Added Note Corollary 2 holds even if the condition “finite” is exclnded.
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EIN ADDENDUM ZU “ZUR LAPLACESCHEN
ASYMPTOTISCHEN FORMEL.”, DIESES
JOURN., VOL. IX (1958).

Von

Yoshikatsu WATANABE und Yoshihiro ICHIjO

(Eingegangen am 30 September, 1959)

Der Verfasser fand seines altes Manuskript in welches nochmal die fol-
genden weiteren Korrekturglieder geschrieben sind :

(3. 14. 2)
1y 1 i 1 | 35 }
0( )2 1 e + g |77 13 g aET g L iy
,_L FVII ! ‘_ 8 FVIII :|
F”;l:z FI//" Iv I_SFI/IFIV /IIV (185FIV‘7 I_3FIIIF7 ¢II+FIIIFVI !
IV I wwI i V2 1 1t VII) il
+ (3P S P S FUET ) g
- 77 10 I’lu 1" 12 pIv 1 (i M pIve e V) !
- | 5 FRe FF¢l4FFlFF¢
5 rury 1 "e mvi 1 " oIv V)
BN R e !
(48F16FF12FFF¢]
— %QFQI_SI? [j% FI’I1¢1/ - FIII“FU"SL,I e <g F//I"FIV - FII/::FV) 50:'
+ B [10125 It W} 85085 F"%}
36F”3[ TR 663552 FP

wobei die in Z. 1, S. 4, loc. cit. gemachte Aussage wieder giiltig bleibt.
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EINE INTEGRALFORMEL
Von

Yoshikatsu WATANABE

(Eingegangen am 30 September 1959)

Der Verfasser sich bemiihte um eine kleine Identitit

vy
1 dx _ =
S] arctg ~/ ( 11 » = g = 0.102808 .

die zwar nach einem statistischen Problem? gewil bestehen soll, und tatsichlich

nach der GauBschen Methode numerischer Integration gesichert worden ist,

formal zu priifen. Obgleich es selbst trivial ist, jedoch mag die Denkensart als

eine elementare Aufgabe zur Funktionentheorie fiir Studenten lehrreich dienen.
Wird das Integral teilweise integriert, so ergibt sich

Vi 1\ _ arctg x dx
g] ar“g~/ (1 1+x ‘/ZS Ge—1) VA1

was wieder andere Arkstangensfunktion enthilt. Beachtet man aber den letzten
Integrand ins Komplexe, so ist die Funktion

f(z) = arctg 2/(32°—1) vz -1

eindeutig sogar regulidr im Bereich B welcher von der halbkreisformigen Kontur
C wie in der Fig. 1 begrenzt wird. Wird der Einfachheit halber das Integral

7=\ reax
betrachtet, so kommt nach Cauchy
0= ¢ fl@)dz = 1)+ (2@ +.... +(15),
wobei die Nummern (1), (2), (3), ...., die lings jedem gleichlautenden Teilweg

mit Pfilen in der Fig. 1 erstreckten Teilintegrale bedeuten.
Es seien arc (z+1) = 0 auf Weg 1, und demnach bestehen fiir Teilintegrale

s R—oco

1) = hm SRHf(x)dx =J=()

aber (9) + (14) = 0 sowie (11) + (12) = 0 wegen je entgegengesetztes Vorzeichn.
Ferner stellt das sich in der ldngs die Imaginidreachse zwischen (7, o i)
sowie (—i, — oo {) gesperrten Zahlenebene E, bei z = re'

1) Y. Watanabe, Some exceptional examples to Student’s distribution, gegenwirtiges
Journ. S.27, Fulinote.
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* dw 1[ r—sin 4 r+sinﬁ]
= — !
arctg z gn 1+ 5 arctg s 7 arctg oS 8
7 72+27 sin g +1
+ log | ——a>2
4 = l 7?»—2rsing +1

dar, und also ist arctg z eindeutig und iiberhaupt regulidr in E, auBer dag es
nur fiir »* £ 27 sind +1— 0(d. h. z— =+ i), logarithmisch unendlich wird.
Wenn die Radien der kleinen und grofien Kreise im Integrationsweg p—0, R— co
streben, so werden ersichtlich

@) = (6) = 0 (R™), (8) = (15) = O (p}) und (4) = O (p log p).

Daher verschwinden alle diese Teilintegrale sdmtlich bei p— 0, R— co.

Da aber die Faktoren arctg z in Integrande von (3) und (5) dieselben Imagi-
ndreteile aber verschiedenen Reelleteil + z/2 bzw. besitzen, so betragen beide
Teilintegrale (3) und (5) zusammen

SI-(Sy‘+1) 1/y2+leni/2 J2 g ( 1/2) 205 T g———2\/2 .

Endlich gilt fiir (13), das Integral um den Pol z = 1/1/3, asymptotisch

2

S:_ arctg (%) peiﬂ id 7/3Pe¢9<_%) /% e = _ 1_27572;

und ganz ebenso fiir (10). Also schliift man

2

T 1 7
2] + = arctg == — = = 0,
J 2V2 £22 7 62

uud daraus

SR 1.
]-4\/5[3 arctgz\@] 0.392766 ...

Man soll noch das Integral S:_ f(x)dx versuchen, was getan wird, falls
3
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wir das allgemeinere Integral rf(x) dx (a>1) ausfinden koénnen. Fiir diese

Leistung braucht man den Radius vom groBen Halbkreis R = ¢ endlich und fest
zu erhalten anstatt co zu machen. Das neue iiber diesen Halbkreis erstreckte
Integral ist wirklich gleich

T2
N2 S f(Re*) Re' ids.
0

Oder, sonst, kann man den Halbkreis als Integrationsweg durch zwei aufwirts
gezogene Lote x = + 1/3 mit entgegengesetzten Richtungen ersetzen. Jedoch
werden diese fuuktionentheoretischen Abschitzungen etwas beschwerlich und
weitere Untersuchungen sind als Aufgaben fiir Studenten tibergelassen.
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SEMIGROUPS OF ORDER = 10 WHOSE GREATEST
C-HOMOMORPHIC IMAGES ARE GROUPS

By

Takayuki TAMURA,

Morio SASAKI, Mitsuo SHINGALI, Mamoru NAKAO,V
Yasuo MINAMI, Tsuguyo NAGAOKA, Hiroaki NARUO,
Toshio NoGUCHI, Toshitaka ARAI, Yoshiaki HIMEDA,
Kenji MIKI, Katsuyo MURAMOTO, Teruko TAKAMI

(Received September 30, 1959)

In the present note we show all the isomorphically and anti-isomorphically
distinct semigroups of order <10 whose greatest commutative homomorphic”
images are groups. Especially a semigroup which has no proper commutative
homomorphic image is called c-indecomposable. The purpose of the computa-
tion is to obtain examples by which we test and clarify the theory of finite
semigroups of this kind. Here we shall only show tables of the results, the theory
being discussed precisely in publication elsewhere.

1. On Tables 1 and 2. Since a finite simple semigroup is completely
simple, it is represented as a regular matrix semigroup, which is determined
by a ground group G (or G, with zero) and a defining matrix P [1].

At first we shall explain the notations of Table 1 with examples.

Aot the p-th simple semigroup of order

3.1 {e}. 3—1 the first simple semigroup of order 3 with the ground

group G = {¢} and the defining matrix P = (g)

4.3. {e, «f, 2—1 the ground group: G = {¢, a}, «® = ¢,

the defining matrix: P = ().

6.4 {e,a,B},2—1 G={e,q,8}, f=0a% &’=¢, P= (9.

4.2 {ef, 2—2 G = {e}, P=(%).

Remark. m—I[ symbols the matrix with m-rows /-columns, all the ele-
ments of which are ¢.

5.3 {0,¢}, (% Gy = §0,¢}, P=(%). Of course § has zero 0.
r-sing. right-singular semigroup i. e.

xy = y for every x, y.
3.1/ the dual form of the semigroup 3.1, i.e.

the multiplication x-y of 3. 1’ is defined
as x - y = yx where yx is the multplication of 3. 1

1) “commutative homomorphic” will be called “c-homomorphic”.



44 Takayuki TAMURA etc.

2.2 x 2.1 the direct product of the semigroups 2.2 and 2.1

c-ind. c-indecomposable

c-dec. c-decomposable

comm. commutative

ind. indecomposable i. e. having no proper homomorphism

self-dual anti-isomorphic to itself.
One unfilled in the column of “self-dual or not” is not
self-dual.

Remark. For example, the semigroup 4.3, f{e «a}, 2—1, is composed
of the elements .
(e, 11), (o, 11), (e, 12), (¢, 12)
which are denoted by «, b, ¢, d respectively in the alphabet order ; 4.3 re-
presents

~ QA A

Q > Qﬂ‘lv
O O '8

The semigroup 4. 2.  {e}, 2—2, is composed of

a=1(e 11), b={(e, 12), c¢=1(s 21), d =/{(e 22)
with the table

a b ¢ d
ala b a D
bla b a b
clec d ¢ d
dlc d ¢ d

The semigroup 5.3, {0, ¢}, (&%) shows

a b ¢ d e
ala a a a a
bla b ¢ b ¢
cla b ¢ a a
dia d e d e
ela d e a a

where ¢ =0, b=1(s, 11), c=(e, 12), d =(e, 21), e = (e, 22).
The semigroup 7.3 {0, e}, (§%f) consists of the elements
a=0, b=1_(11), ¢c=(c, 12), d=1(e, 21), e=/(e, 22), f=/{(e, 31),
g = (e, 32).
The semigroup 9. 13 {0,¢, a}, (i§) consists of the
elements a =0, b=( 11), c=(xa, 11), d=1(, 12), e ={(x, 12),
f=1(, 21), g=(a, 21), h=1{(, 22), i=(a, 22).

In Table 2, there are given automorphisms of some simple semgroups and
some non-simple semigroups. The table shows that, for example, the automor-
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phisms of the semigroup 3. 2 are

a b ¢
(a b c),
and those of 5. 4 are
(0 11 12 21 22) (O 11 12
011 12 21 22/, 022211211
c

which are also denoted by (Z [l; i z 2) e Z d ‘g b) respectively.

@ %)

21 22)

With respect to 7. 3, there is an automorphism

(0 11 12 21 22 31 32)

021221112 31 32

besides the identical mapping. The automorphisms are useful for us to exclude
isomorphic semigroups in our computation.

2. General Remark. An ideal I® of a semigroup S is called proper if [
is neither S itself nor an ideal composed of only zero. A proper ideal I of S is
called minimal, if I contains no proper ideal of S i.e. {0} c JC I for no ideal
Jof S. If Sis finite and not simple, then a minimal ideal exists. It is known
that a minimal ideal of a finite semigroup is either a simple semigroup or a
semigroup defined as vy = 0 for all x, y. [2] The latter will be called zero-
semigroup. Since a homomorphic image of a c-indecomposable semigroup is also
c-indecomposable, the difference semigroup D = (S: I) of a c-indecomposable
semigroup S modulo an ideal [ is c-indecomposable. Further if I is minimal
and simple, then I is also c-indecomposable.

Our computation is to find all c-indecomposable semigroups S such that
D=(S: I) and I is a minimal ideal of S when I (simple c-indecomposable
semigroup or a zero-semigroup) and a c-indecomposable semigroup D with zero
are given. In particular the Tables 3 ~11 show the cases where D is moreover
simple.

When I is not a zero-remigroup, S is completely determined by a system of
some right translations ¢ of I:

®» = {¢s| @ E D, a0},
and a system of some left translations ) of I:
W= {ya|a¢ €D, a0}

where the correspondence «— ¢, is a ramified homorphism of D and «— Jry 18
a ramified anti-homomorphis of D.  Let f, and g, be an inner right translation
of I and an inner left translation of 7 respectively :

fo(x) = xa

gu () = ax.

ae I re I

I is called right-regular if the correspondence @ — ¢, is one-to-one; left-regularity

2) By an ideal we mean a two sided ideal.
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is defined dually.
Especially if I is right-regular, S is completely determined by only the system ®.

When [ is a zero-semigroup, S is not always determined by ® and # : and
then there is necessity for giving adequately the product of certain elements in
order to determine S uniquely. We note that we may adopt {¢. | @ € B C D,
a0} instead of ®, {y | E B C D, a5 0} instead of ¢, where B is called
the base of D.

Next, let S be a finite semigroup (c. d. g.) whose greatest c-homomorphic
image G is a group, and let I be a minimal ideal of S. Then I is a simple semi-
group without zero, and G is the greatest c-homomorphic image of I under the
mapping S — G, and further the difference semigroup D = (S: I) is c-inde-
composable. When there are given a simple semigroup (c. d. g.) I and a c-inde-
composable semigroup D with zero, we must find S such that D = (S: I) where
I is a minimal ideal of S. The method of computation is like the case of c-inde-
composable S.

3. On Contents of Tables. Generally I— D symbols the type of a semi-

group S such that [ is a minimal ideal of S and D =(S: I) is simple. L—fz—D’
symbols that [; is a minimal ideal of S and the difference semigroup D = (S: I;)

is not simple but have type iz'—“D’. In other words there is an ideal I, such

that -
(S: Ig) t= D/, (Ig: I]) = Ig

where D' is simple. By Il—I;—fa—D" we mean that (S : ;) is of type I;—I;—
D", namely there is a sequence of the ideals LcLclL,cCS
where (S: L)=D", (I;: L) = I, (I,: I) = L, and D" is simple.

See Contents of Tables.

(r-sing.) — 5 The type in which I is right-singular and D is a
simple semigroup of order 5 with zero i.e. 5.3 or
5.4.

5 (simp. 0) A simple semigroup of order 5 with zero, 5.3 or 5.4.

5 (simp. 0) — 5 I =5 (simp. 0), and D is also 5 (simp. 0)

(z) — 5 I is a zero-semigroup and D is same as the above.

3,—5 I is the zero-semigroup of order 3, and D same as
the above.

(sing.) — 7 I is singular, that is, right-singular or left-singular,
and D=7 (simp. 0) i.e. one of 7.3 ~ 7.6.

2 (sing.) — 9 I is a singular semigroup of order 2 i.e. 2.1 or 2.1/,
and D is one of 9.6 ~9.12,

2 (r-sing. ) — 9.« I'=21, and D is either 9.13 or 9.14.

4 (r-sing. X Il-sing.)—7 I is of order 4 and the direct product of a right-
singular semigroup and a left-singular semigroup.
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I, is the zero-semigroup of order 3, and D has type
3—5; i.e. I,=3, D'=5 (simp. 0)

9 (r-sing. ) —30—30—5 I; = 2.1 and D has type 80—3¢—5; =3, ;=30

c.d. g

(simp. or g.)

2,

c-decomposable and its greatest c-homomorphic
image is a group.

Either a group or the direct product of a group and
a singular semigroup.

the group of order 2.

4. On Tables of the Non-simple. See Table 3, 3.1—5.3. We find three
isomorphically distinct semigroups S denoted by (3.1—5.3)1, (3.1—5.3) 2,

(3.1—5.3) 3:

(3.1—5.3)1
(3.1—5.3) 2
(3.1—5.3)3

¢ou = (a a a) ¢n = (a a a),
¢ = @b b) Pay = (a a a)»
¢on = (acc) ¢ = (a ab),

where 11, 22 form the base of D. The Tables show ¢ or + for the base of D.
As far as (3. 1—5. 3) 3 is concerned, we get

P12 = Q11 Po2 = <

and

11 12 21 22

a b c d e f g

ala b ¢ a a a a
bla b ¢ ¢ b a a
cla b ¢ ¢ b ¢ b
11d|a b6 ¢ d e d e
12e¢e la b ¢ d e a a
21 f a b ¢ f g f g
22 gla b ¢ f g a a

ced) (Gas)=(008), enmveen=(200)

where, if, for example, we set x = e¢f €1, then ¢, = ¢;» ¢»y = (aaa) implies x = a
because I is right regular; the others are likewise found. Tables 3, 4, 6, 8, and
9 are seen in the same manner as this.

In Table 4, we seem that there is only one belonging type 5.4—5. 3, but
(5.3—5.4) 1 may be admitted into the category 5.4—5. 3.

See Table 5. When I is 3; and D is 5. 3, the reguired S={q, b, ¢, d, ¢, f, g}
is completely determined by ¢;; and ¢.. because we can prove that ¢; = (acc)
and @n= (aab)imply xy =a for x =d, ¢, f, g and y = a, b, ¢, and moreover
we get g2 =(22)° =a and hence wv = if wweE I, u = S, v S. Similarly we
have 3,—5.4, 5,—5.4 in Table 5, and 3,—7, 4,—7 in Table 7. In these cases,
xyE], x€I, y€I implies xy = a.

On the other hand, even if ¢u, @, 5, o are assigned, S={q, b, ¢, 4d,
e, f, g, h, i} of type 5,—5.3 is not uniquely determined, but we have (5,—
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5.3) 1 or (50—>5. 3) 2 according as #* = (22)>=a or b.
We add that if *is given, every xy EI (x €I, yE€ ) is naturally determined :
gh=gi=ith=4¢{=a in (5,—5. 3) 1,
gh=e, gi=c¢, ih=d, #=0b in (5—5.3) 2.
See Tables 10, and 11, For example, (4.2—5.3) 3 is completely de-
termined by ¢., @n e, Jm. In fact we calculate

¢r = ¢. on = (aacc), @ = on ¢e = (bbdd),
Yoy = A Afre = (CdCd)’ g = Yre 1}/% = (abab),
and Pay = PPy, ’\If’:uy = \Il‘y 1!/'1; for x € I, y € I, xy € I

from which all xy are uniquely determined :
W=a hg=0b fh=c fg=4d.
In Tables 2~ 11, thus, we have seen the type I—D, while there are the
type I,—I,—D'in Tables 12 ~17, 23 ~26, and the types I,— I,—I,—D" in
Tables 18 and 27.

In Tables 12 and 13, I, is denoted by {abcaa}, {aaabc} etc.,, which
represent

a b ¢ d e a b ¢ d e
ala b ¢ a a ala a a b ¢
bla b ¢ a a bla a a b ¢
cla b ¢ a a > cla a a b ¢ etc
dla b ¢ a a dla a a b ¢
ela b ¢ a a ela a a b ¢

respectively. The automorphisms of I, have already listed in Table 2. ¢ and
< shown in Tables 12, 13 are right translations and left translations of I, We
note that I, cannot be prepared arbitrarily, but is somewhat restricted by I, @
and '\p\.

In Table 14, I, is denoted by

¢. = (aacc)

¢y = (aacc)

Y = (abab)

Jrr = (abab)

This represents

a b ¢ d e f
ala b a b a a
bla b a b a a
clc d ¢ d ¢ ¢
dic d ¢ d ¢ ¢
ela b a b a a
fla b a b a a

which is obtained like (4. 2—5. 3).
Referring to the examples which we have explained, all the tables can be
understood.
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Table 1 Simple Semigroups whose greatest cchomomorphic images are groups

Order| No. i defining matrix Remark :ﬁ)?ﬁgglpo' l self-dual or not
9 2.1 \ (€}, 2-1 r-sing. | c-ind. )
2.2 group | comm.
3 3.1 ‘ {€}, 3-1 r-sing. c-ind. ’
3.2 u, comm.
i group
4.1 | &, 4-1 r-sing. c-ind.
4.2 {&y, 2-2 2.1x2. 1 c-ind. self-dual
4 4.3 {&, @}, 2-1 2.2%X2.1 c-dec.
4.4 cyclic group comm.
4.5 group 2.2X2.2 comm.
5.1 {€}, 5-1 r-sing. c-ind.
5.2 group comim.
> 53| e, (5) ind. self-dual
5.4 | (06, (§7) ind. self-dual
6.1 {€}, 6-1 r-sing. c-ind.
6.2 {€}, 2-3 2.1x3.17 c-ind.
6 6.3 &}, 3-1 2.2%3.1 c-dec.
6.4 | e a, B), 21 3.2%2.1 c-dec.
6.5 cyclic group c-dec.
- 66 | symmetric group c-dec.
7.1 {€}, 7-1 r-sing. c-ind.
7.2 group comm.
7.3 | 0., (%) c-ind.
T | e (5) c-ind.
7.5 | (0,8, (ggg) c-ind.
7.6 | (0,6, (co0) ind.
8.1 e, 81 | r-sing. c-ind.
8.2 {&}, 4-2 4.1x2.1 c-ind.
8.3 & a), 2-2 2.2%4.2 c-dec. self-dual
8.4 | &), (5) c-ind. self-dual
8 | 85 | (54, 4-1 2.2%4.1 c-dec.
8.6 cyclic group comm.
8.7 group 2.2x4.4 comm.
8.8 group 2.2X4.5 comm.
8.9 dihedral group c-dec.
8.10 quaternion group c-dec.
9. 1 €, 9-1 r-sing, c-ind.
9. 2 €, 3-3 3.1x3.1 c-ind.
9. 3 €, @, ), 3-1 3.2%3.1 c-dec.
9. 4 cyclic group comm.
9. 5 group 3.2x%3.2 comm.
0. 6| (0., (ceeo) | c-ind.
9. 7| 0.9, (ze00) | c-ind.
9
9. 8| {0,€, (gigg) c-ind.
9. 9| 10,8, ( gggg) c-ind.
0.10 | (0,6, (5oe) c-ind.
9.11| (0,8, (Sggg) c-ind.
0.12 | 09, (§oo) c-ind.
&e .
9.13 | {0,8,a}, ( 80) c-ind. self-dual
9.14| (0,54, (5 \ c-ind. self-dual
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10. 1 {e}, 10-1 r-sing. c-ind.

10. 2 {€}, 2-5 2.1x5.1/ c-ind.

10. 3 {& @), 5-1 2.2x5.1 | c-dec. )

10. 4 & e, p,7,8,} 2-1 5.2x2.1 | c-dec. I

10. 5 cyclic group I comm. i

10. 6 non-commutative group ‘ c-dec.
1333

10. 7| {0,¢}, (ese) | c-ind. | self-dual
€e0 | ‘
see i |

10. 8| {0,¢8}, (ees) | c-ind. |
€00 ! ‘
gge ! !

10. 9| 0,8, ( sso) | ind. " self-dual
&0e
333

10.10 | {0}, (aeo) ' ind. self-dual
&00 i |
&80 i i

10 10.11 {0, &}, (880) ind.
| &0e ;
! £€0 i

10.12 | 10,€), (505) ind. | self-dual
0ge j
gee |

10.13 10, €}, (EOO) c-ind. | self-dual
&00 i
3] ‘

10.14 {0, €}, (608) ind.
€00° | |
&80 !

10. 15 {0, &}, (660) | c-ind. self-dual
00e | ‘
€0 !

10. 16 {0, &}, (605) ' ind. self-dual
0£0 i
00& ! i

10. 17 10, ¢}, <6€O> i ind. i
&00 | |
€00 : |

10.18 | {0,¢}, (eoo ) , ' c-ind. ;
Oce | ‘ |
€00 1 ;

10.19 {0, €}, (OEO) | ind. | self-dual
00& : i

Table 2 Automorphisms
(sing.) (singular semigroup) all permutations

(Z) (xy =

0 for all x, y)

abc, ach

0 11 12

abcdef,
chabef,
1efabcd,

abcdef,
PR SR { LR

all permutations which fix 0

abed, badc, cdab, dcba
abcd, cdab
abcd, adch

abcd, abdc, acbd, adcb

d e a e d c b
2122 0 22211211

badcfe, abefcd, bafedc,
dcbafe, cdefab, dcfeba,
febadc, efcdab, fedcba

abefed, cdabef, cdefab,
efcdab




(833 £l50a00000059006000a00a600 abcdef, acbdfe, defabc, dfeacd
(4 50000000006606Aa00000000 (ZdeEf, afed()b
B, Breeeeeeeeeeienns {abcdef} abcefd, abcfde, acbdfe,

acbedf, acbfed
1/ P290800E050600RE0EE0060 011 12 21 22 31 32, 0 21 22 11 12 31 32
Todereenmeennnninie. 011 12 21 22 31 32. 0 11 12 31 32 21 22
T 5eerceiaeieaieneniin.s 011 12 21 22 31 32, 0 31 32 21 22 11 12
To6ereenesnnininens 01112 21 22 31 32, 012 11 32 31 22 21

11 12 21 22 31 32 41 42
11 12 31 32 21 22 41 42
21 22 11 12 31 32 41 42

Sl (021 22 31 32 11 12 41 42
1031 32 11 12 21 22 41 42
103132212211 12 41 42
(0 11 12 21 22 31 32 41 42

N AT /0 11 12 21 22 41 42 31 32

12 31 32 41 42
21 22 11 12 41 42 31 32

11 12 21 22 31 32 41 42
21 22 11 12 31 32 41 42
12 11 22 21 42 41 32 31
22 21 12 11 42 41 32 31

11 12 21 22 31 32 41 42
11 12 21 22 41 42 31 32
11 12 31 32 21 22 41 42
11 12 31 32 41 42 21 22
11 12 41 42 21 22 31 32
11 12 41 42 31 32 21 22

11 12 21 22 31 32 41 42
11 12 21 22 41 42 31 32

11 12 21 22 31 32 41 42
11 12 31 32 21 22 41 42
21 22 11 12 31 32 41 42
21 22 31 32 11 12 41 42
31 32 11 12 21 22 41 42
22 11 12 41 42

11 12 21 22 31 32 41 42

11 12 21 22 41 42 31 32

21 22 11 12 31 32 41 42

21 22 11 12 41 42 31 32

32 31 42 41 12 11 22 21

32 31 42 41 22 21 12 11

42 41 32 31 12 11 22 21

42 41 32 31 22 21 12 11

$@BAGY ++++ervvrreneernresinenins abed, abdc

S@BADBY <+ vveveereeeeennees abed, badc

{Abe@@) +vvvreerreeiieeeans abcde, abced, acbde, acbed
(@BEAD) +vveeenerereneeins abede, baced,

(QBCAQA) -+ vervrenneenenens axyzef, axyzfe (x,y,z == b,c,d)
fabedab) «---oeeeeereiiiiniiiinn abcdef, abdcef, bacdfe, badcfe
(@AADCY +eeeereneeenneeeeinens abede, acbed

. e = (aacc), ¢J~:=(aacc)> ...........

<4.2, Ve = (abab), Uy = (abab) abcdef, abcdfe
pe = (aacc), ¢y = (bbdd)>
Ve = (abab), Yy = (abab)
(2.1—5.3) 1
(2.1-5.3) 2
(2.1—5.4) 1
(2.1—5.4) 2

f
SCOO0OO OO0 OO0 OO0

N

=

[\

[\-)

=

=

coocococooo coococoo O3 oo
0
prart
o0
£
o
—

(4.2; ------------ abcdef, badcfe

3)

See p. 48, this paper.
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-abxyzu ((x y z u) perm. of c¢,d,e, )V

{abcdef, abcdfe, abdcef, abdcfe,

[@BAAAAY -+ vverneeneeeenees

baefcd, baefdc, bafecd, bafedc

{@DAADD} -+ ervveemeveineenens

-abxyzf ((x ¥y z) perm. of c¢,d,e)

{@BAAABY - +veerreerererineenes

--abxyez ((x ¥y 2) perm. of ¢,d, f)

{abaaba)} ----

{abcdef, abcfed, abedcf, abefcd,
badcfe, badefc, bafcde, bafedc

-abcdef, abdcfe

(@baGCd) e ovverveeienniinneens

(x y z ) runs throughout the permutations of ¢,d,e, f.
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Table 9
c-ind. 2 (r-sing.) —9 &
D | 0.13 (g} (¢ g) | 9.14 (5,a) (5 o)
\\ No. ’ Pa 11 ’ ©a 22 ‘ No. ‘ ®a 19 ’ ®a 21
1 aa aa 1 ‘ aa aa
2.1 ‘ 2 \ aa \ b b \ 2 ’ aa ! bb
Table 10
c-ind. (r-sing. X /-sing.)—5
[ B &0
D 1 5.3 (¢ 0) | 5.4 (5 2)
N\ T ! I
f No. j el J ®02 : ‘ No. ’ @12 ‘ e | i ‘ Yoy
ol ) “aacc|  aacc| abab Cabab | 1 aacc “aacc | abab |  abab |
4.2 | 2 aacc aacc cded abab 2 aacc aacc abab cded
) | 3 | b | obdd ‘aacc cded abab | 3 aacc bbdd abab cded
1 bbddff | aaccee | cdcdcd | ababab 1 aaccee | bbddff | ababab | cdcdcd
6.2 2 l bbddff | aaccee | ababab | ababab 2 aaccee | bbddff | ababab | ababab
: 3 aaccee | aaccee | ababab | ababab 3 aaccee | aaccee | ababab | ababab
4 ’ aaccee | aaccee | cdcded | ababab 4 aaccee ‘ aaccee | ababab | cdcded
Table 11
c-ind. 4(r-sing. X /-sing.) — 7
[ cee | 0e0
o 73 (5 ¢ 6) ] 75(508)—*4_#
\\ No. (pn‘ P91 \ 9032~ Y11 ’ 1}122\ \P&z‘ NO.\ e1 i P2 } @31 l Y11 \ Yoy ‘ V31
’ 1 | aacc | aacc | aacc | abab | abab | abab 1 aacc | aacc | aacc | abab | abab | abab
2 | aacc | aacc | aacc | abab | cded | abab | 2 | aacc | aacc 1 aacc | abab | abab | cded
l; 3 | aacc | aacc | aacc | cded | cded | abab | 3 | aacc | aacc ; aacc | cded | abab | cdcd
4 | bbdd | bbdd | aacc | abab | abab | abab | 4 | bbdd | aacc ' bbdd | abab | abab | abab
5 bbdd‘ bbdd | aacc | abab | cdcd | abab | 5 | bbdd | aacc f bbdd | abab | abab | cdcd
LS bbdd | bbdd | aacc | cdcd | cded | abab | 6 | bbdd | aacc ' bbdd [ cded | abab | cded
‘ & geQ
42\ 74(80()) ! 7.6(805)
. ]
! N0~\ Pu ’ P22 ) ®31 ’ i1 ’ Yoo \ Lz 1 No.) it \ o1 \ @31 ‘ i ‘; Yot ‘ P31
.1 | aacc | aacc | aacc | abab | abab | abab | 1 | aacc ‘ aacc | aacc | abab | abab | abab
| 2 | aacc | aacc | aacc | abab | abab | cdcd | 2 | aacc | aacc | aacc | abab | abab | cdcd
|3 | aacc | aacc | aacc | cded | abab | abab | 3 aacc | aacc | aacc | abab | cdcd | abab
4 | aacc | aacc | aacc | cded | abab | cded | 4 | aacc ‘ aacc | aacc abab | cdcd | cded
5 | bbdd | aacc | bbdd | abab | abab | abab | 5 | aacc | bbdd | bbdd | abab | abab | abab
6 | bbdd | aacc | bbdd | abab | abab | cded | 6 | aacc . bbdd | bbdd | abab | abab | cded
i 7 bbdd | aacc | bbdd | cdcd | abab | abab | T | aacc | bbdd \ bbdd | abab cdcdl abab
| 8 | bbdd | aacc | bbdd | cdcd | abab | cdcd | 8 | aacc ‘ bbdd | bbdd | abab | cdcd | cded
Table 12
c-ind. (r-sing.) —3¢ —5
~Z
T S5: 1) \ 3—5.3 \ 30-5. 4
It
l IK No. I o1 ‘ ©22 } No. ‘ @11 ‘ P92
2 1’ ’ {abaa} | 1| aa ‘Ti T aa TT"{W T aa aa
|~ {abab)} L2 ] b b aa 2 aa b b
3.1 | {abcaa}\ 1\ aaa | aaa 1 | aaa ‘ aaa
1| {Gbeab) | 20 555 | aaa | 2, aaa | 55
1 aaaa aaaa 1 aaaa daaa
) abba acaa 2 acaa ’ aaba
{abcdaa) 3 abba acac 3 acaa aabhd
4.1 4 abbdbbd acaa 4 acac aaba
5 abbbl acac 5 acac aabd
6 aaaa bbbb | 6 aaaa bbbbd
l“b“d“b}\ 7 caac \ bbdd | 7 caac \ bbdb




60

Table 13
c-ind. 30—30—5
ENCED 5.3 (% O) ) 5.4 (5 2)
I
Iz\ No.% eu | om o9 ’ No ‘ @ 1 bi2 ) oy
{aaaaa) 1 aaaee | aaaad | accaa | aabaa | 1 aaaad | aaaea | aabaa | acaaa
3 2 accee | aabad | aaaaa | aaaaa | 2 aabad | acaea | aaaaa | aaaaa
{aaabc} 3 accee | aabad | aaaaa | aaaaa | 3 | aabad | acaea | aaaaa | aaaaa
Table 14
c-ind. 4 (r-sing. X [-sing.) —3)—5
INETE 5.3 () | 5.4(59)
II o S — : LA L - S
Iy o NO'J ull J ¢ J a2 J No.. o1 ) Pat Yiz | Y
" [{ee=(aacc))| 1 | aaccff | aaccae | ababaa | ababaa | 1 | aaccae | aaccfa | ababaa | ababaa
er=(aacc)|| 2 | aaccff | aaccae | ababaa | cdcdcc | 2 | aaccae | aaccfa | ababaa | cdcdcc
Ve =(abab) 3 aaccff | aaccae | cdedcc | ababaa | 3 aaccae | aaccfa | cdcdcc | ababaa
4.2 | \Yr=(abab))| 4 aaccff | aaccae | cdedcc | cdedcec 4 aaccae | aaccfa | cdedcc | cdedec
we=(aacc))| 1 bbddff | aaccae ababaa‘ ababaa | 1 aaccae | bbddfb | ababab ' ababab
@r=(bbdd)|| 2 | bbddff | aaccae | ababaa | cdcdcc | 2 | aaccae | bbddfb | ababab ‘cdcdca'
Ye=(abab)|| 3 | bbddff | aaccae | cdedcc | ababaa | 3 | aaccae | bbddfb | cdedcd \ababab
Yr=(abab))| 4 | bbddff | aaccae | cdcdcc| cdedce | 4 | aaccae | bbddfb | cdcded ' cdcdcd
Table 15
c-ind. 2(sing.) —830—7
& Iy (3—7.3) 1 L G132 ( (30—7.4) 1 (30—7.4) 2
| = i |
L N\& eu } @21 ’ ®32 ‘021 P11 l P2t ‘ 32 104‘ o1 ‘ P2 l P31 ?\ e | ¢m | e
{abaa) ‘aa aaiaa}l‘aalaa‘aa"aiz“laaA‘aa 1‘aa aa‘néﬁé
B | 2060 bbb |aa | | 12l bb | aal| bb
{abab} | | Db | b0b |aal | | | | 1 b6blaa] bb i | | |
! |
\ . Yt } Yot t y32 } l Y11 ‘ Yot 1 Y32 ‘ ‘ Yit ‘ Vo2 ‘ d31 4 | v ‘ Y22 ‘ b3l
|1 ea aa‘aéz laa|aa|aa|l aa  aa éza‘ aa aa aa
{abaa}’ | 2! a a bbb | aa | 2 aa ! aa b b
3 bbb | bbb | aa | 3 bb |aa  aa
o . I l 14 bbb i aa bbb
A{ababy | | P Lbb bbb aal | | | | " objaal] bbb
(S Ip) (30—7.5) 1 ‘ (30—7.5) 2 ‘ (30—7.6) 1 1 (30—7.6) 2
12\\\ 3‘! eit | e en “6'2} P11 } ) J @31 Jg/ ez | 2 | a }g P12 ) @t } @31
{abaa)} iflaa’aa Wﬁ]lraa'laa”]ara ‘ a;‘aalr?iaki‘ilﬁdra'! aa | aa
| | 120 bbb jaa | bd ‘ ‘ | ,l,zlfbl’,,,i{’ ],,“a,
V{abab} | "bb | aa b b | ol lbblaalaal | | |
Y | A S
] ‘ Y1t ‘ Y22 et ‘ l Y11 k 1P22 ’ Y31 ‘ 1 Y12 1‘ Yo1 l V31 ‘ \ Y12 ’ Yot ‘ Y31
llaajaa|aa aa i aa aa‘l aa aa|aa |aa aa . aa
{abaa}’ 2aa‘[aa bb 2aa‘bb aa | ‘
360! aa ‘ bb | ‘ 3 bbb ‘ aa | aa ‘
| B } 4 bbb bbb laa | 1
{abab}’ | | | | | | bbb | aal bbb | | | | ! bbbl aa aa
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Table 16
c-ind. 2 (r-sing.) —5 (simp.0) —5
(S: I1) = (5.3—5.3)
NP N 1 2 ‘ 3 | 4 r 5 l 6 | 7 1 8 9
Iy ‘ S g‘ (Pllg ‘PZ?“PIIi‘PZZ‘?IIl?Z?i‘PII‘4’22‘?[1]9’22‘Qolll‘PZZ{?lllq’%l?il‘(}’ZZ Pl P22
‘'l aa aaaajlaalaalaa: aa\aa?aa‘aa|aa aalaalaa aaiaa aalaa
) 2l aa bbb ’ ‘ :
2153115 35l g0 | | o Lo
‘40 bb bb | I | |
|1 aal aalaalaa aalbblaalaalaalbblaalaalbblaalbblbblaalaa
@1532|5| 55 aa” | | 2 |
(S; Ij) = (5.3—5.4)
S (S: T 1 1 z 3 4| 6 7
,_ﬁ = !
I - gl P12 ‘ P21 e12 ‘ P21 ‘ P12 | P2 | P12 l<,021 ‘ P12 | P2 | P12 '4’21 P12 ’9021
1l aa |\ aa| aa| aa | aa aa'aa aalaalaa| aal aal aa| aa
(2.1-5.3)1 (2| aa | b b !
31 b8 | b0 |
1|l eaalaalaa|aa |aa | bblaalaalaa|bb|aalaal bb| bbd
(2.1—5.3)2( 2| aa | b b ‘
3|1 bbb | bbb ‘
(S: Ij) = (5.4—5.3) (S: Ij) = (5.4—5.4)
S (8: Ip) S (8: D) 1 2 3
. .
Ip o1t P22 L S OZ‘ ¢121 @21 9012‘ P | P12 | ¢a
aa aa 1| aa | a aa)aa aa aa
(2.1—5.4)1 2.1—-5.41|(2| aa | b
N 3| bbb i
(2.1-5. 4)2 b b b b (2. 1—5. 4)2 aa‘b bb‘bb‘\bb aa
Table 17
c-ind. 2(r-sing.) —50—5
(S:I) | (50-5.3) 1 (50—5.3) 2 f (50—5. 4)
L ] ¢u P22 P11 ®22 ) P21
{abaaaa) aa aa t aa aa aa aa
{abaabb) | bb | aa ‘ b b ea | aa } b b
Table 18
c-ind. 2 (r-sing.) —3p—30—5
. (30—30—b5.3) [(30—3¢0—b.3) (30—30—5 3) ( 0—3045 4) (30——3045 4) 0—3045 4)
S: 1) 1 2 |
‘ : |
I @1t ‘ 2 i P2 1 1| e J P12 l Pat l\ P12 ’ ®at | Pat
labaaaa,‘ aa‘aa‘ aa aa{ aa | aa aalaaE aa aa‘ aa
{abaaab}\ bblaa! 1 1aa[bb' | ’
i I
{abaaba)} aa ‘ b b | ‘ bbb | aa ’ ‘ ‘
{abaab b} bb‘bb‘ \ \ b b bb| 1
{aba bab) i I bb‘aai bb aa‘ l aa | bb aa bb
{abaacd}‘ dd‘ccl [ ’ cc ddi
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Table

(simp. or g.) —5

cd.g.

N N < |o | ~  |leolw
VROV OV LoV NoVNT OOV I OOTVT Lo © = abiccacc =R = [ o SIS
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N3 N S © (%Y SIS [SIREY (SR @ o= | ,, — ———
7] | |
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. 3 N 8O [N Jas) v.o) =] abccaaC\ﬁ x] abbacabhrvdacc
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21
2g—9,

Table
d.g.

c.

P41

AT
I

9.11
<P22‘v P32

BTN
I

oY
SRS

P12

No.

P41

9.10
P31

P21

P12

= | =
S|
[ SN
@.a
0
& —
W..b
3
- | =
O.a
n%.b
3
S
wla
(57
-3
N | =
@‘a
= =
w,a
=
w.d
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@.d
O |—
@ | 3| e
w,a
= =
@;d
) \

2.2

P42

P32

9.9
@22

eut

9.12

23'—95, @

22 c.d.g.

Table

9.14

9.13

|
No. } Pall | Paze ‘No. ‘ Pals ’ Pasl

o3
S

ST
(S JESY

— N

LSRN
SES

TN
T

N

2.2

(simp. or g.)—30—5

c.d.g.
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Table

DIP D OB OIIVIVV(I I RMWVIO| oS|[0 o ]
wﬂ.ababcbccccdadaccddabcd Q ©
Voo R oW lvovo|iglax|aw|o S =
VIV |0 (0|3 (W80 N ©
>
[1e) o |
o5
VDIYRD (VR IORMTV VIO |V TV || v o B
Wa_baba_bacccbabaccddabab S S
BIo|B|oaow i du g iecial|w o L)
, VIIMWOMTI0IVIV 0DV N N
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Table 24
c.d.g. 2g—30—7
(S: Ip) 7.3 7.4 7.5 7.6
I I
Nos‘éfa%g R P P2t | PR| Pl P22 “{’31 (PII‘ 9"22) P31t “PIZ P21 | P31
Crr 1 @ablablab|l ab| ablab) ab|l ab| ablablablad
2 (i+<6) ablablabl ab| ablab) ab| ab| abd .
1 ba| ba| ba .
22 | 19090 S Gwse | | bal bal ba
1 ba| ba| ba
b b — — R P
fabbe) 4oy ba ba| ba —
(abbb) 1 ablablab| ab| ablab| ab| ab| ab | .
2 (i=6) ablablabl abl ablab| ab| ab| ablablablab
Table 25
c.d.g. 2¢—5 (simp. 0) —
INNEES ) (5.3-5.3) (5.3-5.4)
I S -
Iy o No] P11 ‘ P2 ‘No-i @12 ’ P2
1 ab ab 1 ab ab
2 ab ab 2 ba ba
3 ab ab 3 ab ab
4 ab ab 4 ab ab
2.2 (2.2-5.3) 5 ab ab 5 ab ab
6 ab ab 6 ab ab
7 ab ab 7 ab ab
8 ab ab 8 ab ab
P9 ab ab
|
S Iy | (5453 [ (5.45.4)1 | 64542 | 64543
Ii
I \\\ il 1 P2 ‘NOI P12 ‘ Pat ! @12 ‘ Pat ] @12 |l Pat
(2.2-5.4) 1 ‘ ab | ab 7‘ '17. a ra b | a b”'iwa b 7T7a7b I ab
2.9 2] ba ba | |
2542 | ab ] ab [ | ba [ ba [ ab | ab | ba | ba
Table 26
c.d.g 2—50—5
(S: Iy) (50—5.3) 1 \ (Bo—5.3) 2 | (5o—5. 4)
Iz — P11 P22 ‘ P 5 P22 ' P12 ‘ ®21
T
{fabaaaa) ab ab | a b I ab | ab ab
{ababba) | l | ba { ba
{abbbbbd) a b ab | | ab | ab
Table 27
c.d.g. 2¢—30—30—5
(S: L) (30—3p—5.3) 1 (30—30—5.3) 2 ‘ (30—30—5.4) 1 l (30—3p—b5.4) 2
i |
I3 en | em | en l P2 \ P12 ‘ @21 j Pz | om
{abaaaal ab | ab ab ab | ab ab ab “ab
{abaabbd} ab ab ab | ab ab ab ab | ab
{eababab}y| ab ab ba | ba
(ababba} | l ] B ba | ba
{abbbbbd) ab ab | ab ab ab ab ab | ab
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