FINITE SEMIGROUPS IN WHICH LAGRANGE'S THEOREM HOLDS

By

Takayuki TAMURA and Morio SASAKI

(Received September 30, 1959)

In the theory of finite groups, it is familiar as Lagrange's theorem that the order of every subgroup of a group G is a factor of the order of G. We should like to study the structure of a semigroup with such a property. A finite semigroup S is said to have \mathfrak{S}_1 -property if the order of any subsemigroup is a divisor of the order of S. On the other hand \mathfrak{S} -property is defined as follows.

If a semigroup S of order n contains no proper subsemigroup of order greater than n/2, then S is said to have \mathfrak{S} -property.

Immediately \mathfrak{S}_{l} -property implies \mathfrak{S} -property. A finite semigroup with \mathfrak{S} -property and one with \mathfrak{S}_{l} -property are called \mathfrak{S} -semigroup and \mathfrak{S}_{l} -semigroup respectively. In the present paper we shall determine the types of \mathfrak{S} -semigroups, and at last the result will make the reader see that \mathfrak{S} -property is equivalent to \mathfrak{S}_{l} -property. We add that any semigroup of order at most 2 have \mathfrak{S} -property and so this case will be sometimes out of consideration.

1. Notations.

If S is a finite simple semigroup, then S is represented as a regular matrix semigroup with a ground group G and a defining matrix $P = (p_{ji})$ of type (l, m). (See [1])

If
$$p_{ji} \neq 0$$
 for all i, j , then either $S = \{(x ; i j) \mid x \in G, i = 1, ..., m ; j = 1, ..., l\}$ or $S = \{(x ; i j) \mid x \in G, i = 1, ..., m ; j = 1, ..., l\} \cup \{0\}$ the multiplication of which is

$$(x ; i j) (y ; s t) = (xp_{js} y ; i t)$$

 $0^2 = 0 (x ; i j) = (x ; i j) 0 = 0$ if S has 0.

If there is $p_{ji} = 0$, then

$$S = \{(x \; ; \; i \; j) \mid x \in G, \; i = 1, \; \dots \; , \; m \; ; \; j = 1, \; \dots \; , \; l\} \; \bigcup \; \{0\}$$
 with multiplication

$$(x ; i j) (y ; s t) = \begin{cases} 0 & \text{if } p_{js} = 0 \\ (xp_{js} y ; i t) & \text{if } p_{js} \neq 0. \end{cases}$$

Let $L = \{1, \ldots, m\}$, $R = \{1, \ldots, l\}$. R and L are regarded as a right-singular¹⁾ semigroup and a left-singular semigroup respectively.

¹⁾ R is called right-singular if xy = y for every $x, y \in R$.

For the sake of convenience, we shall use the notations

$$Simp.(G; P)$$
 and $Simp.(G, 0; P)$

which denote simple semigroups S with a defining matrix $P = (p_{ji})$ and a ground group G. The former denotes one without zero, whence $p_{ji} \neq 0$ for all i, j, but the latter denotes one with zero 0, so that if $p_{ji} \neq 0$ for all i and j, S contains no zero-divisor.

 $A \times B$ denotes the direct product of two semigroups A and B.

2. Important Examples of Semigroups besides Groups.

Let G be any finite group a unit of which is denoted by e. The examples given in this paragraph will be proved to be \mathfrak{S}_{l} -semigroups and hence \mathfrak{S} -semigroups.

Lemma 1. Simp. $(G; \binom{e}{e})$ is an \mathfrak{S} -semigroup, and any subsemigroup H is either a subgroup G' of G or Simp. $(G'; \binom{e}{e})$ isomorphic to $G' \times R$ where $R = \{1, 2\}$ is right singular.

Proof. Let $S = Simp. (G; \binom{e}{e})$ and let H be a proper subsemigroup of S. Putting $H_{1j} = \{(x; 1j) | (x; 1j) \in H\}$,

H has one of the forms; H_{11} , H_{12} , $H_{11} \cup H_{12}$.

Further, set $G_{1j} = \{x \mid (x; 1 j) \in H\}.$

Since H_{1j} is a subsemigroup of H, it is shown that $x \in G_{1j}$ and $y \in G_{1j}$ imply $xy \in G_{1j}$. Hence G_{1j} is a subgroup of G. If $H = H_{1j}$ (j = 1, 2), H is isomorphic to the subgroup G_{1j} of G. If $H = H_{11} \cup H_{12}$, then from $H_{11}H_{12} \subseteq H_{12}$ and $H_{12}H_{11} \subseteq H_{11}$, it follows that $x \in G_{11}$ and $y \in G_{12}$ imply $xy \in G_{12}$, $yx \in G_{11}$. Since G_{1j} is a group, we get $G_{11} \subseteq G_{12}$ and $G_{12} \subseteq G_{11}$, therefore $G_{11} = G_{12}$ which we denote by G'. Thus we have

 $H = \{(x ; 1 j) | x \in G', j = 1, 2\}$ $H = \text{Simp.}(G'; \binom{e}{e}) = G' \times R.$

that is,

Letting g and g' be the orders of G and G' respectively, the order of S is 2g and H has the order g' or 2g', the factor of 2g.

Similarly we have

Corollary 1. Simp. (G; (ee)) is an \mathfrak{S} -semigroup, and any subsemigroup H is either a subgroup G' of G or Simp. (G'; (ee)) isomorphic to $G' \times L$, where $L = \{1, 2\}$ is left-singular.

Remark. Let S_1 and S_2 be simple semigroups given by Lemma 1 and Corollary 1 respectively. When S_1 and S_2 have a ground group G in common, S_1 and S_2 are anti-isomorphic since G has always an anti-automorphism.

Lemma 2. Let $0 \neq a \in G$. Simp. $(G; \binom{ee}{ea})$ is an \mathfrak{S} -semigroup and any

²⁾ Udenotes the set union.

subsemigroup H is isomorphic to one of the following.

- (a) a subgroup G' of G,
- (β) Simp. $(G'; \binom{e}{e})$ isomorphic to $G' \times R$,
- (7) Simp. (G'; (ee)) isomorphic to $G' \times L$,
- (à) Simp. $(G'; \binom{ee}{ea})$.

Proof. Any subsemigroup H has one of the forms

- $(\alpha') \quad H_{ij} \qquad (i, j = 1, 2),$
- (β') $H_{11} \cup H_{12}$, $H_{21} \cup H_{22}$,
- (γ') $H_{11} \cup H_{21}$, $H_{12} \cup H_{22}$,
- (δ') $H_{11} \cup H_{12} \cup H_{21} \cup H_{22}$.

These are easily shown by considering all the subsemigroups of $R \times L$. Clearly G_{11} , G_{12} , G_{21} and $G_{22}a$ are subgroups of G, and H_{11} , H_{12} , H_{21} and H_{22} are isomorphic to G_{11} , G_{12} , G_{21} , and $G_{22}a$ respectively. Similarly as Lemma 1 and Corollary 1, we can prove:

If
$$H = H_{11} \cup H_{12}$$
, then $G_{11} = G_{12} (= G_1)$ and $H = Simp. (G_1; (e e))$,

if
$$H = H_{11} \cup H_{21}$$
, then $G_{11} = G_{21} \ (= G_2)$ and $H = Simp. \ (G_2; \ (\stackrel{e}{e})).$

Let us discuss the other cases:

If $H = H_{21} \cup H_{22}$, we get $G_{21} = G_{22}a$ because $G_{21} \subseteq G_{22}a$ from $H_{21}H_{22} \subseteq H_{22}$, and $G_{22}a \subseteq G_{21}$ from $H_{22}H_{21} \subseteq H_{21}$; and hence

$$H = \{(x; 2 1) | x \in G_{21}\} \cup \{(x; 2 2) | x \in G_{21} a^{-1}\}.$$

It is proved that H is isomorphic to

Simp.
$$(G_{21}; \binom{e}{e})$$

under the mapping f defined as

$$f((x; 21)) = (x; 21),$$
 $f((x; 22)) = (xa; 22).$

If $H = H_{12} \cup H_{22}$, then $G_{12} = a G_{22}$; and H is isomorphic to Simp. $(G_{12}; (ee))$ under the mapping g defined as

$$g((x; 12)) = (x; 12),$$
 $g((x; 22) = (ax; 22).$

Finally if $H = H_{11} \cup H_{12} \cup H_{21} \cup H_{22}$,

we get $G_{11} = G_{12} = G_{21} = a G_{22} = G_{22} a \text{ (put } = G').$

Since G' is a subgroup of G, we can consider (e; 12), $(e; 21) \in H$ and (a; 11) = (e; 12) $(e; 21) \in H$ so that $a \in G'$ naturally $a^{-1} \in G'$. At last $G' = G_{11} = G_{12} = G_{21} = G_{22}$, which contains a. Therefore it follows that $H = \operatorname{Simp.}(G'; \binom{ee}{ea})$. Let g and g' be the orders of G and G' respectively. The order of G is G and G are G and G and G and G and G and G are G and G and G and G are G and G and G are G and G and G and G are G and G and G are G and G are G and G are G and G and G are G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G are G are G and G are G are G are G and G are G are G and G are G are G are G and G are G and G are G

3. General Case.

Lemma 3. Let $S = Simp.(G, 0; (p_n), i = 1, ..., m; j = 1, ..., l)$ of order > 2. S has no \mathfrak{S} -property.

Proof. Let g be the order of G. Then the order of S is

$$n = glm + 1.$$

When l = m = 1, S is a group with zero adjoined; then g > 1 since we have assumed n > 2. But the order g of a proper subsemigroup G is not a divisor of n = g + 1.

When at least one of l and m is ≥ 2 e.g. $l \geq 2$, there is a proper subsemigroup T of S

$$T = \{(x ; i j) | x \in G, i=1, ..., m; j=1, ..., l-1\} \cup \{0\}^{2}$$

whose order is n' = gm (l - 1) + 1. On the other hand, we see

$$2n'-n = gm(l-2) + 1 > 0$$

whence n' is not a divisor of n. Therefore S has no \mathfrak{S} -property if n > 2. q. e. d.

Lemma 4. A finite non-simple semigroup has no ⊗-property.

Proof. Let I be a maximal ideal of a finite non-simple semigroup S. Then the difference semigroup (S: I) = D is a simple semigroup with zero. Set $D = \{G, 0; (p_{ji}) i = 1, \ldots, m; j = 1, \ldots, l\}$ and let g, i, d and n be the orders of G, G, G, and G respectively. Then G is G in G in

First, if lm = 1 (i. e. l = m = 1), D is a group with zero adjoined, so that S is the union of I and a group G:

$$S = I \cup G$$
, $I \cap G = \emptyset$, $IG \subseteq I$, $GI \subseteq I$

where n = i + g. Then S contains a proper subsemigroup T of order > n/2. In fact

$$T = I$$
 if $i > g$
 $T = I \cup \{e\}$ where e is a unit of G if $i = g$

Second, if lm > 1, e.g. l > 1, then the proof of Lemma 3 shows that D contains a subsemigroup D' of order d' = gm(l-1) + 1. Let S' be the inverse image of D' under the homomorphism $S \to D$. Evidently S' is a proper subsemigroup of S such that (S': I) = D'. Then the order n' of S' is greater than n/2, because, from n' = gm(l-1) + i

we get
$$2n' - n = gm(l-2) + i > 0.$$

In all cases S has no \mathfrak{S} -property.

Lemma 5. Let $S = Simp.(G; (p_{ji}) i = 1, ..., m; j = 1, ..., l)$. If S is an \mathfrak{S} -semigroup, then S has one of the following structures:

- (1) a finite group
- (2) Simp. $(G; \binom{e}{e})$
- (3) Simp.(G;(ee))
- (4) Simp. $(G; \binom{ee}{ea}), a \neq 0$.

²⁾ T is not always simple.

Proof. Let g be the order of the ground group G of S, then the order n of S is n = glm.

Suppose that S has \mathfrak{S} -property and at least one of l and m is ≥ 3 e. g. $l \geq 3$, and consider

$$T = \{(x ; i j) | x \in G, i = 1, ..., m ; j = 1, ..., l-1\}.$$

T is clealy a subsemigroup of S and its order n' is

$$n' = gm (l-1)$$

and

$$2n' - n = gm(l-2) > 0$$

whence n' is not a factor of n. This contradicts \mathfrak{S} -property of S. Therefore we must have the following four cases of S

- (i) l = m = 1,
- (ii) l = 2, m = 1,
- (iii) l = 1, m = 2,
- (iv) l = 2, m = 2.

If (i), S is a group. According to Rees' theory [1] the defining matrix is equivalent to $\binom{e}{e}$ in the case of (ii), equivalent to $(e \ e)$ in the case of (iii), equivalent to $\binom{ee}{ea}$ in the case of (iv).

Combining Lemmas 3, 4, and 5 with Lemmas 1, 2 and Corollary 1, we have the following theorem.

Theorem A finite semigroup S is an \mathfrak{S} -semigroup of order ≥ 2 if and only if S has one of the following structures:

- (0) a semigroup of order $2^{3)}$
- (1) a group of order ≥ 2
- (2) Simp. $(G; \binom{e}{e})$
- (3) Simp.(G; (e e))
- (4) Simp. $(G; \binom{ee}{ea})$

where e is a unit of G, $0 \neq a \in G$, and the order g of G is ≥ 1 .

A subsemigroup T of S is called proper if it is neither S itself nor a subsemigroup composed of only an idempotent. As a special case of \mathfrak{S} -semigroups, we have

Corollary 2. A finite semigroup which contains no proper subsemigroup is either a semigroup of order at most 2 or a cyclic group of prime order.

Proof. Let S be a semigroup satisfying this condition. According to Theorem, if the order g of G is ≥ 2 , the simple semigroups (2), (3), (4) contain

proper subsemigroups e.g. G. Hence, apart from the case of order 2, S must be a group. The theory of groups teaches us that an \mathfrak{S} -group is a cyclic group of order prime.

Added Note Corollary 2 holds even if the condition "finite" is excluded.

Bibliography

[1] D. Rees On semigroups, Proc. Cambridge Philos. Soc., 36, 387-400.