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In the theory of finite groups, it is familiar as Lagrange’s theorem that the
order of every subgroup of a group G is a factor of the order of G. We should
like to study the structure of a semigroup with such a property. A finite semi-
group S is said to have &;-property if the order of any subsemigroup is a divisor
of the order of S. On the other hand &-property is defined as follows.

If a semigroup S of order n contains no proper subsemigroup of order
greater than n/2, then S is said to have S-property.

Immediately &-property implies S-property. A finite semigroup with S-property
and one with &;-property are called &-semigroup and &;-semigroup respectively.
In the present paper we shall determine the types of &-semigroups, and at last
the result will make the reader see that S-property is equivalent to &;-property.
We add that any semigroup of order at most 2 have S-property and so this case
will be sometimes out of consideration.

1. Notations.

If S is a finite simple semigroup, then S is represented as a regular matrix
semigroup with a ground group G and a defining matrix P = (p;) of type (/, m).

(See [1])
If pys~0 forall 4,7, then
either S={x;if)lxeG i=1, ... ,m; j=1, ..., 1}
or S={x;ilxeG i=1, ... ,m; j=1, ..., [} U {0}
the multiplication of which is
(x5 i) (; st =(buy; i)
0=0(x;:7)=(x;:7)0=0 if S has 0.
If there is p; = 0, then
S={@x;if)lxeG i=1 ... 6 m;ji=1 ..., U{0}
with multiplication
. 0 if p;, =0
NGty it g
Let L=1{1,...,m}, R={1, ..., 1}. R and L are regarded as a right-

singular” semigroup and a left-singular semigroup respectively.

1) R is called right-singular if xy = y for every x, y€R.
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For the sake of convenience, we shall use the notations
Simp. (G; P) and Simp. (G, 0; P)
which denote simple semigroups S with a defining matrix P = (p;;) and a ground
group G. The former denotes one without zero, whence p;; 5= 0 for all 7, j, bnt
the latter denotes one with zero 0, so that if p,;=0 for all 7 and j, S contains
no zero-divisor.
A X B denotes the direct product of two semigroups A and B.

2. Important Examples of S-Semigroups besides Groups.

Let G be any finite group a unit of which is denoted by e¢. The examples
given in this paragraph will be proved to be &.-semigroups and hence &S-semi-
groups.

Lemma 1. Simp. (G; (%)) is an S-semigroup, and any subsemigroup H

is either a subgroup G' of G or Simp. (G'; (l)) isomorphic to G' X R where
R = {1, 2} is right singular.

Proof. Let S= Simp. (G; ()) and let H be a proper subsemigroup of S.
Putting Hy;={(x; 1) (x; 1)) H},
H has one of the forms ; Hy, Hiw,, Hp\JH.?
Further, set Gi;={x|(x; 1) H}. .
Since H;; is a subsemigroup of H, it is shown that x € Gy; and y € G,; imply
xy € Gy;.. Hence Gy is a subgroup of G. If H= H;(j =1, 2), H is isomorphic
to the subgroup G;; of G. If H = H;;\U Hy,, then from Hy Hy, © Hy, and Hy, Hyy
€ Hy;, it follows that x € G;; and y € Gy, imply xy € G, yx € Gy Since Gy
is a group, we get Gy € Gy, and Gy, © Gy, therefore G;; = G;; which we denote
by G'. Thus we have

H={x;1)|x€C, j=1, 2}

that is, H = Simp. (G'; (%)) = G' X R.

Letting g and g’ be the orders of G and G’ respectively, the order of S is
2g and H has the order g’ or 2g/, the factor of 2g.

Similarly we have

Corollary 1. Simp. (G ; (ee)) is an S-semigroup, and any subsemigroup
H is either a subgroup G' of G or Simp. (G'; (ee)) isomorphic to G' < L, where
L = {1, 2] is left-singular.

Remark. Let S; and S, be simple semigroups given by Lemma 1 and
Corollary 1 respectively. When S, and S, have a ground group G in common,
Sy and S, are anti-isomorphic since G has always an anti-automorphism.

Lemma 2. Let 0%4a&€G. Simp. (G; () is an Ssemigroup and any

2)  denotes the set union.
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subsemigroup H is isomorphic to one of the following.

() a subgroup G' of G,

(8) Simp. (G'; (9)) isomorphic to G' X R,

() Simp. (G'; (ee)) isomorphic to G' X L,

(6) Simp. (G"; (22)).

Proof. Any subsemigroup H has one of the forms

(a) Hy G =1, 2),

(“9’) H, UV I-{IL’; Hy\U sz,

(7”) H,UH,, H,\UHos:,

(’?') Hn U fI]g UHQJ U sz-
These are easily shown by considering all the subsemigroups of R X L. Clearly
G, Gy, Gy and Gya are subgroups of G, and Hy, H., H, and H., are iso-
morphic to Gy, Gy, Gy, and Gya respectively. Similarly as Lemma 1 and
Corollary 1, we can prove :

If H=H,,\UH;,, then G;=G;(=G;) and H = Simp. (Gy; (ee)),

if H=Hu\UHy, then Gy =Gy (=G;) and H = Simp.(G>; (%)).
Let us discuss the other cases :

If H = Hy\UHy, we get Gy = Ggpa because Gy C Gra from Hy Hey © Hyo,
and Gya © Gy from Hy H, © H, ; and hence

H={x; 2D)]xeGs} U {(x; 22) |xE Gy a'}.

It is proved that H is isomorphic to

Simp. (Ga ; (i))
under the mapping f defined as
flx; 21)) = (x; 21), flx; 22) = (xa; 22).
If H= H;\UH,, then Gy, = aGs; and H is isomorphic to Simp. (Gy, ; (ee))
under the mapping g defined as
g((x;12) =(x; 12), g((x; 22) = (ax; 22).
Finally if H = H;;\U Hiz\U Hy \U Ha,
we get Gy = Gy = Gy = a Gy, = Gy a(put = G').
Since G’ is a subgroup of G, we can consider (¢; 12), (e; 21)= H and
(@a; 11) =(e; 12) (e; 21) € H so that ¢ € G’ naturally ¢’ = G'. At last
G' = Gy = G, = Gy = Gy, which contains @. Therefore it follows that H =
Simp. (G'; (¢2)). Let g and g' be the orders of G and G’ respectively. The
order of Sis 4g and the order H is g’ or 2g’ or 4g', the factor of 4g.

3. General Case.

Lemma 3. Let S= Simp. (G, 0; (pn), t=1, ..., m; j=1, ..., D)of
order>>2. S has no S-property.

Proof. Let g be the order of G. Then the order of S is
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n=glm -+ 1.

When / =m =1, Sis a group with zero adjoined ; then g>>1 since we have
assumed »# >2. But the order g of a proper subsemigroup G is not a divisor of
n=g-+1.

When at least one of / and m is = 2 e. g. /=2, there is a proper subsemi-
group T of S

T={x;iNlxeG i=1, ..., m; j=1 ..., [—1}\U{0}?
whose order is #' = gm (!l — 1) + 1. On the other hand, we see
2n'—n =gm((—2)+1>0
whence #' is not a divisor of #. Therefore S has no S-property if » > 2. q.e. d.

Lemma 4. A finite non-simple semigroup has no S-property.

Proof. Let I be a maximal ideal of a finite non-simple semigroup S. Then
the difference semigroup (S: I) = D is a simple semigroup with zero. Set D =
§{G, 0; (psw)i=1, ..., m; j=1 ... .1} andlet g, i, d and n be the orders
of G, I, D, and S respectively. Then d =glm +1, n={+d —1=glm +i.
We may assume n>2, i>1.

First, if Im =1 (i.e. [=m =1), D is a group with zero adjoined, so that
S is the union of I and a group G:

S=IUG ING=@g, IGEI, GIS I

where #n = ¢{ - g. Then S contains a proper subsemigroup 7T of order > n/2.
In fact

T=1 if i>g
T =1\ {e! where ¢ is a unitof G if i = g
T=G if 1 <g.

Second, if /m>1, e.g. [>1, then the proof of Lemma 3 shows that D
contains a subsemigroup D' of order d’ = gm (I—1) 1- 1. Let S be the inverse
image of D' under the homomorphism S— D. Evidently S’ is a proper subsemi-
group of Ssuch that (S’: I) = D'. Then the order »’ of S’ is greater than n/2,
because, from n' =gm ([ —1) -4
we get on'—n=gm (I —-2)-1-i>0.

In all cases S has no &-property.

Lemma 5. Let S= Simp. (G; (pj)i=1, ..., m; j=1, ... ,10). If
S is an S-semigroup, then S has one of the following structures :

(1) a finite group

@ Simp. (G; (5))

(3) Simp. (G; (ee))

(4) Simp.(G; (52)), a=x0.

2) T is not always simple.
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Proof. Let g be the order of the ground group G of S, then the order # of
S is n = glm.

Suppose that S has &-property and at least one of / and m is=3e.g. /=3,
and consider

T={x;ij)lxeG i=1 ..., m; =1, ..., [—1..
T is clealy a subsemigroup of S and its order #' is
n' = gm ([—1)
and 2n' —n=gm (I —2)>0

whence »' is not a factor of ». This contradicts S-property of S. Therefore we

must have the following four cases of S

(i) I =m=1,

(ii) 1 =2, m =1,

(iiil) =1, m = 2,

(iv) [ =2, m = 2.
If (i), Sis a group. According to Rees’ theory [1] the defining matrix is equi-
valent to () in the case of (ii), equivalent to (¢ ¢) in the case of (iii), equivalent

I

to (£7) in the case of (iv).
Combining Lemmas 3, 4, and 5 with Lemmas 1, 2 and Corollary 1, we
have the following theorem.

Theorem A finite semigroup S is an S-semigroup of order =2 if and
only if S has one of the following structures :

(0) a semigroup of order 27

(1) a group of order = 2

2 Simp.(G; (;))

(3)  Simp.(G; (ee))

(4)  Simp.(G; (55))
where e is a unit of G, 0% a € G, and the order g of G is=1.

A subsemigroup T of S is called proper if it is neither S itself nor a sub-
semigroup composed of only an idempotent. As a special case of S-semigroups,
we have

Corollary 2. A finite semigroup which contains no proper subsemigroup
is either a semigroup of order at most 2 or a cyclic group of prime order.

Proof. Let S be a semigroup satisfying this condition. According to
Theorem, if the order g of G is=2, the simple semigroups (2), (3), (4) contain

3) In detail, (0) is either a or a b Besides them, there are 3 types, which

O‘W)h ala a
al0 0 bla b

belong to (1) ~ 3).
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proper subsemigroups e. g. G. Hence, apart from the case of order 2, S must
be a group. The theory of groups teaches us that an €-group is a cyclic group
of order prime.

Added Note Corollary 2 holds even if the condition “finite” is exclnded.
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