NOTES ON GENERAL ANALYSIS (VIII)

By

Isae SHIMODA

(Received September 30, 1959)

In the preceding paper*, we proved the next theorem. Let the family of functions $\{f(x)\}$ from E_1 to E_2 satisfy following conditions: (1) each function f(x) is analytic in ||x|| < 1 in E_1 and is a one-to-one mapping to a domain D_7 in E_2 and its inverse function $f^{-1}(x)$ is also analytic in D_7 , (2) $\{f(x)\}$ are bounded, that is, $||f(x)|| \leq M$, (3) the norms of linear parts $\{g_1(x)\}$ of $\{f^{-1}(x)\}$ are bounded, that is, $||g_1|| \leq K$, (4) $f(\theta) = \theta$, then each domain D_7 includes the sphere whose radius is constant.

In this note, we discuss the case where E_1 is composed of complex numbers and E_2 is complex Banach spaces.

Lemma 1. If $x = f(\alpha)$ is an E_2 -valued function defined in the unit circle $|\alpha| < 1$ in complex plane and analytic there, then

$$||f'(\alpha)||(1-|\alpha|^2) = ||F'(\beta)||(1-|\beta|^2),$$

where
$$F(\beta) = f\left(\frac{\beta + \alpha_0}{1 + \beta \overline{\alpha_0}}\right)$$
 and $\beta = \frac{\alpha - \alpha_0}{1 - \alpha \overline{\alpha_0}}$.

Proof. Since
$$\beta = \frac{\alpha - \alpha_0}{1 - \alpha \overline{\alpha_0}}$$
, we have $\frac{|d\alpha|}{1 - |\alpha|^2} = \frac{|d\beta|}{1 - |\beta|^2}$.

On the other hand, $F'(\beta) = f'(\alpha) \frac{d\alpha}{d\beta}$.

Then we have
$$\|F'(\beta)\| = \|f'(\alpha)\| \frac{|d\alpha|}{|d\beta|} = \|f'(\alpha)\| \frac{1-|\alpha|^2}{1-|\beta|^2}$$
, and we see that $\|F'(\beta)\| (1-|\beta|^2) = \|f'(\alpha)\| (1-|\alpha|^2)$.

Lemma 2. If an E_2 -valued function $f(\alpha)$ defined in $|\alpha| < 1$ in complex plane satisfies $f(0) = \theta$, ||f'(0)|| = 1 and is a one-to-one mapping to a domain D in E_2 and its inverse function $f^{-1}(x)$ is also analytic in D, then the norm of the linear part $g_1(x)$ of $f^{-1}(x)$ is 1.

Proof. Since $f^{-1}(x)$ is analytic in D and $f(0) = \theta$, we have

$$f^{-1}(x) = \sum_{1}^{\infty} g_n(x),$$

where $g_n(x)$ is a complex valued homogeneous polynomial of degree n for n = 1, 2, 3, Let β be complex variables, then

$$\alpha = f^{-1}(\beta x) = \sum_{n=1}^{\infty} g_n(x) \beta^n.$$

Since $f^{-1}(\beta x)$ is one-to-one mapping and analytic in D, $\sum_{n=1}^{\infty} g_n(x)\beta^n$ converges

uniformly for $|\beta| \le r < 1$ at least and $g_1(x) \ne 0$. This shows that a neighbourhood U of $\beta = 0$ is mapped to a neighbourhood V of $\alpha = 0$. If E_2 is composed of at least two elements x, x', where x and x' are linearly independent, we have on the same way

$$\alpha = \sum_{1}^{\infty} g_n(x')\beta^n.$$

By this relation, we see that a neighbourhood U' of $\beta=0$ is mapped to a neighbourhood V' of $\alpha=0$. That is, a set $\beta x'$, where $\beta\in U'$, is mapped to V'. Then the intersection $V\cdot V'$ is mapped to different sets Ux and U'x' simultaneously. Ux is a set of βx , where $\beta\in U$, and U'x' is a set of $\beta x'$, where $\beta\in U'$. This contradicts that $f(\alpha)$ is a one-to-one mapping, and we see that E_2 is composed of one element which is linearly independent.

On the other hand, we have

$$y = f(\alpha) = \sum_{1}^{\infty} a_n \alpha^n,$$

where $a_n \in E_2$, since $f(\alpha)$ is analytic in $|\alpha| < 1$. Then we have

$$\alpha = f^{-1}(x) = \sum_{1}^{\infty} g_{n}(x)$$

$$= \sum_{1}^{\infty} g_{n}(\sum_{1}^{\infty} a_{n} \alpha^{n})$$

$$= g_{1}(a_{1})\alpha + \dots$$

Comparing the coefficients of α , we have $g_1(a_1) = 1$. Since $a_1 \in E_2$, E_1 is composed of points βa_1 . Then, points on ||x|| = 1 are expressed as $a_1 e^{i\theta}$ (where $0 \le \theta \le 2\pi$), so we have

$$||g_1|| = \sup_{0 \le \theta \le 2\pi} |g_1(a_1e^{i\theta})| = 1.$$

This completes the proof.

Theorem. If the family of functions $\{f(\alpha)\}$ from $|\alpha| < 1$ in complex plane to E_2 are analytic in $|\alpha| < 1$ and one-to-one mapping to $\{D_f\}$ in E_2 separately and satisfy $\{\|f'(o)\| = 1\}$ and their inverse functions $\{f^{-1}(x)\}$ are also analytic in $\{D_f\}$, then each domain D_f includes the sphere whose radius is constant.

Proof. First of all, we assume that $f(\alpha)$ is analytic on $|\alpha| \le 1$. Since $f'(\alpha)$ is analytic on $|\alpha| \le 1$, $||f'(\alpha)|| \cdot (1-|\alpha|^2)$ is continuous on $|\alpha| \le 1$. Then, there exists a point α_0 such that

$$||f'(\alpha_0)|| \cdot (1-|\alpha_0|^2) = \max_{|\alpha| \le 1} ||f'(\alpha)|| \cdot (1-|\alpha|^2).$$

When $|\alpha| = 1$, $||f'(\alpha)|| (1 - |\alpha|^2) = 0$. Therefore, $|\alpha_0| < 1$.

Put $M = ||f'(\alpha_0)|| (1 - |\alpha_0|^2)$, then $M \ge 1$, because, $||f'(\alpha)|| (1 - |\alpha|^2) = ||f'(o)|| = 1$,

when $\alpha = 0$. By the transformation $\beta = \frac{\alpha - \alpha_0}{1 - \alpha \overline{\alpha_0}}$, let $f(\alpha) = F(\beta)$.

By Lemma 1, we have $||F'(\beta)|| (1-|\beta|^2) = ||f'(\alpha)|| (1-|\alpha|^2)$. Then $||F'(o)|| = ||f'(\alpha_0)|| (1-|\alpha_0|^2) = M$.

Put $\varphi(\beta) = \frac{1}{M} (F(\beta) - F(o))$, we have $\varphi(o) = 0$ and $\|\varphi'(o)\| = \frac{1}{M} \|F'(o)\| = \frac{M}{M} = 1$. $\varphi(\beta)$ is also analytic in $|\beta| \le 1$ and clearly one-to-one mapping to a domain D' in E_2 , since $f(\alpha)$, $\frac{\alpha - \alpha_0}{1 - \alpha \overline{\alpha_0}}$ and $\frac{1}{M} (x - x_0)$ are one-to-one mappings. From the relation $\varphi'(\beta) = \frac{1}{M} F'(\beta)$, we see that $\|\varphi'(\beta)\| = \frac{1}{M} \|F'(\beta)\|$ and then

$$\begin{split} \| \, \varphi'(\beta) \| &= \, \frac{1}{M} \, \cdot \, \frac{\| f'(\alpha) \, \| \cdot (1 - |\alpha|^2)}{1 - |\beta|^2} \\ &\leq \frac{M}{M(1 - |\beta|^2)} \\ &= \, \frac{1}{1 - |\beta|^2}. \end{split}$$

Therefore,

$$\begin{split} \|\varphi(\beta)\| &= \|\int_0^\beta \varphi'(\beta) \, d\beta\| \\ &\leq \int_0^\beta \|\varphi'(\beta)\| \cdot |d\beta| \\ &\leq \int_0^\beta \frac{1}{1 - |\beta|^2} \, |d\beta| \\ &= \frac{1}{2} \log \frac{1 + |\beta|}{1 - |\beta|} \, . \end{split}$$

Put $|\beta| \leq R < 1$, we have $\|\varphi(\beta)\| \leq \log \frac{1+R}{1-R}$. Put $\log \frac{1+R}{1-R} = K$ and $\varphi_1(\beta) = \frac{1}{R} |\varphi(R\beta)|$, then $\varphi_1(\beta)$ is analytic in $|\beta| \leq 1$ and one-to-one mapping to D'' and $\|\varphi_1'(o)\| = \frac{1}{R} \|R\varphi'(o)\| = \|\varphi'(o)\| = 1$ and $\varphi_1(o) = \frac{1}{R} |\varphi(o)| = 0$.

Therefore, we have $\|\varphi_1(\beta)\| \leq K$, when $|\beta| \leq 1$. Appealing to Lemma 2, we see that the norm of the linear part $g_1(x)$ of the inverse function $\varphi_1^{-1}(x)$ is 1, since $\varphi_1^{-1}(x)$ is also analytic, one-to-one mapping, $\varphi_1(o) = 0$ and $\|\varphi_1'(o)\| = 1$. Thus, by the theorem written at the biginning of this paper, we see that D'' includes the sphere whose radius is constant. Therefore, D includes also the sphere whose radius is constant. It is easy as well as the usual way that the assumption $|\alpha| \leq 1$ is removed.

References

*). I. Shimoda: Notes on general analysis (VII), Journal of Gakugei, Tokushima University, Vol. IX 1958.