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In our previous paper (2], we introduced the notion of the complete tensor
product of modules. Namely, let £ and E’ be, respectively, finite modules
over an M- and an M'-adic Zariski rings A and A’. Assume A and A’ contain a
common subfield K. Put G, = E/m"E Qx E'/m™E'. Then the system {G,, ¢.}
(n=1, 2, ...) constitutes an inverse system of A & A’ -modules, where ¢,
denotes the canonical homomorphisms G,— G,-;.. Its projective limit E ®KE’
is referred to as a complete tensor product of £ and E’ over K. In this note, we
shall mainly investigate, following closely the recent work of Sat6 [4], the re-
lation between the multiplicities ez (q), ez(q') and ergq-((q, (A A7) in the
case when A and A’ are, respectively, local rings, where we denote by q
and ' primary ideals belonging to the maximal ideals of A and A’ respectively.”

This relation was studied first, in a restricted case, by Samuel [3] and con-
tinued by Nagata [1] and Satd [4] in the case of rings.

1. General remarks on the complete tensor product of modules.
We start with the following proposition which is fundamental in this note.

PROPOSITION 1. Let A and A' be, respectively, an m-adic and an M'-adic
Zariski rings which contain a common subfield K and let E, F and G be finite
A-modules such that

0—-F—E— G— 0 (exact).
Then, for any finite A-module E', we have the following exact sequence of
finite A QxA-modules :
0— FQxE — EQxE — GRxE' — 0.
And we have
EQxE ~ (E @ B') Quex(4® A).”

For the proof we refer the reader to [2].

1) For the notations and terminology we refer the reader to [2].
2) In the following we shall omit K and AQRA’ if any confusion does not occur.
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COROLLARY. (With the same notations and assumptions). For any sub-
modules F and G (resp. F' and G') of E (resp. E'), we have
) FrOQEF+GC)=FRF+F® G +GCRF +GRG.
ii) (E/G)® (E'/G)~ (EQE)(GCRE+ERG).
i) FNGOREFE NG)=FRFNFRGCNGCRFNCRG.
iv) (F: Q)QA'=(FRA": (CRA) and AR (F': G =(AQF): (ARG

Proor. Since the functor T(F, F") =(FQF") Q.. (A ®A’) is a covariant
additive exact functor in both variables, we can prove the corollary in the same
way as was given in Lemma 2 in [2].

Remark: Let again F and F' be submodules of E and E’ respectively, then
by Proposition 1, the canonical mappings F®E’ - E @E’ and F®F’ — F®E’
are injective. Therefore the composed mapping F®F’ — E®E’ is also injective.
Hence if we restrict our attention to submodules M,(1 €1I) of EX E' such that
M, is a finite sum of type F & F', the functor T(-) = - ®A®A,(A®A’) is exact.

PROPOSITION 2. Let E and E' be finite modules over an M-adic and an
mladic Zariski rings A and A’ respectively, and assume A and A' contain a
common subfield K. Then, for any submodules F of E and F' of E' and ideals
aof Aand o' of A, we have

i) FQ® F!' is a closed submodule of E X E'.
ii) (0, YFRQF)NERQF) =(a, ¢)FRF).
i) FRF =FQE)N(EQF)and FRF = (FRE) N(ER F).
iv) @)FQRF) = @F)Q@F) = @FRQE)NEQF) and
@NFQF) = @HR@F) = @FRE)NERF),
We assume further that Ajm & A'/m' is Noetherian, then
v) (@ o) (FRF) = (aF)®F +F® (aF).
vi) (F®F)/(a, a)FQF)~ (FlaF)® (F'/a'F),

Proor. i) Consider the sequence of submodules of EQE': EQE'DFXE'
DF®F'. Then, to prove i) it is enough to show F Q) E’ is a closed subspace
of E E'. Since we proved in the proof of Proposition 3 in [2] that there exists
an integer r such that

(m, wy(F QE) S (", m")(EQE)N(F QE"N S ™, m" ") F & E')
C (m, m)*"(FQ E")
for any n = r», F E’ is a subspace of E &) E'!. Therefore it remains to show
F® E' is closed in EQ E!. To see this we remark first that

ﬂ (F+m"E)QXEN =FXE' and f\ (FRE)+(EQm™E")) =FRX E"

In fact let £ be an element in ﬂ ((F + m"E) & E'), then it can be written as
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E=9»QQ»w+ ... + %Xy with y, € E and y/' E E,
and we may assume 3/, ... , ;/ are linearly independent over K. Therefore
yEF-+m"E for any #n, hence £ € F ®E' since N (F + m"E) = F which proves
the first equality. As for the second, by pass"ing to the residue module, we
may assume F = (0 and by the consideration similar to the first part, we get
NEQmEN = (.
' Now, by virtue of these remarks, we have
closure of FRE' in EQE' = N(FQE') + (m, m(EQ E"))
= NEFQE + (v, m") (EQE)) = N(FRE) + (WEQ E) + (EQm"E")
f\ (F+mE)YRXE'+ EQmME" C ﬂ f\ (F+mE)RE'+ EQmM™E')
= ﬂ((F +ME)YQRE)=FXE".
11) This follows from (o, a)(F® F) N (F ® F') = closure of (a, a’)
(FRF)in FQF' = (a, a)(FQ F') by i).
ili) We take a base {x:}cr (resp. {x./}icr) of F (resp. F') over K and extend
this base to a base {x;, y}icrjer(resp. {&', ¥';}icr jerr) of E (resp. E') over K.

Thel’l the Set {yi ® xi” yj ® yj’, X3 ® yj” yj®xi’}'£€1, €1/, JET, JJET’ meS a base Of
EQE' over K. By making use of this base we see easily that (FQE)N(EXF’)

C F®F'!. Converse inclusion is obvious. The second equality follows from
(FRF) = (FQF) QueslAR A") = (F QEYNEQF) R (4 @ A"
= (FRENQARANNIERFYR (AR AN) = (FRENYN(ER F)

by the remark stated after Corollary to Proposition 1.

iv) We have ad'(FQRQF) =(@QR@RANARAINF K F') = (a F) Q(a! F')
= (@ FRE)N(E®a F') by iii), and a ¢(FQ F") = a ¢'(FRQ F) X (AR A")
= (OFHREFNRURA)=aFRa F =@FRE)N(ERQa F).

v) Clearly it is enough to show that a(F@F') e (aAF) ®F’. Since A®A’
is complete in an (m, m') -adic topology, and since A/m &) A//m’ is Noetherian,
A®A’ is also Noetherian [3, Corollary to Proposition 1, p. 21], therefore a
Zariski ring. Hence a(F® F") is closed in F ® F'!. Whence (a F) ® F' =
closure of (a F) QX F' in F ®F’ c a(F® F"). The coverse inclusion is obvious.

vi) Since (F/a F)® (F'ja' F') ~ FRF'/((@ F)Q F' + FQ (@' FY), by
Corollary to Proposition 1, the assetion follows by virtue of v),

2. Multiplicities.

In his paper (4], Sat6é studied the relations between prime divisors and
primary components of ideals a and a’ of Zariski rings A and A’ and those of
(a, a) (4 ® A"). For our purpose, the following lemma, due to Sato, is neces-
sary.

LEMMA 1. Let (A, m) and (A, W) be, respectively, local rings of rank

3) By a local ring (A, m) we mean a local ring A with the maximal ideal m.
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d and d' which contain a common subfield K. Assume A/m @ A'/m is an
Artin ring. Then AX A' becomes a semi-local ring® of rank d + d', (q, a')
(A ®A’) is a defining ideal of A@A’, any prime divisor of (q, q’)(A@A’)
is isoloted and the lengths of its primary components are the same and are
equal to 1(q9)I(9)c where 1(q) (resp. 1(q")) stands for the length of primary
ideal q (resp. ') and c stands for the common length of primary components of
(m, ) (AR AY).

Remark that in the case when A and A’ are fields, we have A@A’ =ARA"

LEMMA 2. Let E and E' be, respectively, finite dimensional vector spaces
over the fields L and L'. Assume that both L and L' are the extensions of a
Sield K and LR L' is an Artin ring. Then

I(EQE'") = dim; E dim; E' I(LQ L")

where [(E Q E') (vesp. (L QL") means the length as the finite module E Q) E'
over the Artin ring LQL' (resp. the length of the Artin ring L Q L').

Proor. Put s =dim; E, s’ =dimy E' and [ =/(L @ L'). In the case when
s =1, we can proceed by applying induction to s’ as follows : Since our lemma
is trivially valid in the case when s’ =1, we may assume s'>1. Let E’ be a
subspace of E’ such that dim;, Ey/ =s'—1. Then E'/E,' = L' and by our induc-
tion hypothesis we have /(L Q E,/) = (s' — 1)/. Therefore

HLKE) =I(LIE)+I(LIE/E) =I(LYE) +I(LKYL) = sl,

which is to be shown. General case follows from this in the same way by apply-
ing induction to s.

PROPOSITION 3. Let q and o' be, respectively, primary ideals belonging
to the maximal ideals of local rings (A, m) and (A', ™) which contain a common
subfield K. Assume A/mQ A!/m! is an Artin ring. Then, for any finite A-
and A'-module E and E', we have

I(E/q E)® (E'/q" E) = I(E/q E) 1(E'/q' E") I{A/m® A'/w),

PROOF. First we consider the case when q = m and proceed by applying
induction to the length of q'. Since our proposition is true, by Lemma 2, in the
case when /(q") =1, i.e., q'=m/, we may assume [(q)>1. Let m'=g¢q,/ D

43D ... Dq'/ =q’ bea chain of m'/-primary ideals and asuume that each inclu-
sion is strict and no n'-primary ideals can be inserted between q;' and q;.,/ ( =
1, ..., t—1). From the exact sequence

0— Ch—l’ E'/C{z' E! — E’/qt’ E! — El/qlt_l E' - 0,

4) In this case A®A’ is Noetherian as we remarked in the proof of v) of Proposition 2,
hterefore semi-local [3, §1 e, p.7].
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we have, by Proposition 1, the exact sequence of A ® A'-modules :

0 — (E/mE)® (4 E'/q E") - (E/mE) ® (E'/q. E')
- (E/TITE) ® (El/ch—lEl) - 0,

hence  [((E/mE) ® (E'/a/E") = I(E/mE) ® (4, E'/q. E"))
+ I((E/mE) ® (E'/ . EY)).

Since m'q,_,/ < q,/ and q,-+ = (q./, x) for any element xE q.—,/, x&q.', q_1'/q'
is isomorphic to A’/u/, hence q, /E'/q./E' = E'/m'E’. Therefore
[((E/mE)& (q.'E'|a/E") = I(E/mE)Q(E'/m'E") = I(E/mE)I(E'/m' E")1
where [/ = [(A/m & A'/m'). On the other hand, by our induction hypothesis,
we have
I((E/ME) ® (E'/ Qs E")) = I(E[mE)I(E'/ 6w E')L.
Therefore, by combining these relations, we get
[(E/mE)® (E'/q' EY)) = [(E/mE)I(E'/q' E')L.
Now the general case follows from this relation by applying induction to
the length of g in the same way as above.

COROLLARY.  /((A4/0) Q (A'/4)) = I(A/q)I(A'/q) I{A/mE A![n).

LEMMA 3. Let E and E’ be, respectively, finite modules over an m-adic
and an W-adic Zariski rings A and A' and let 0 and o' be ideals of A and A’
respectively. Assume A and A' contain a common subfield K and A/n1®A’/m’
is Noetherian. Then we have X

(a», a o/, ..., antH el a0 D aa™) o) (EQ EY)

n (aﬂ.—ia/i)(E@) E’) g (an—-i+] Cl“, an—i a/i+l)(E ® E’).

PrROOF. We take a special base of the vector space E over K as follows :
First we take a base {x,.; A€ 4,} of a"E over K, and then extend this base to
the base {%.x, ¥n1n; A E Auy p € Ana} of a»'E over K. Continuing this process
we obtain a base {%.n Xu_tw Fuegw - AE dny pE Apyy vE Ay, ...} of E

over K. In the same way, we construct a base {x',x,, %'n 1y Znsy, ... ; N E A,
pe A,y veEA,.y ...} of E'over K. By making use of these bases, we see
easily that

(Cl", a1 C[’, e, qr—i+ a/i~]’ qr—i1 a/i+]’ .., a aln—l’ al‘n) (E ® Ef)

m (aﬂ-—i a/i) (E ® E’) g (an~~i+] a/i, an——i a/t+i) (E ® El).
Operating ®A®A,(A®A') to the both side of this relation, we get a required
relation by virtue of the remark stated after Corollary to Proposition 1.

LEMMA 4. Let E be a finite module over a Noetherian ring A and E,,
eo., E, be submodules of E. And let a be an ideal of A such that corank a
=0. Put F;=aE;(i=1, ..., n). Assume (E,+... + E;y+Ei,+ ... +E,)
NE,CF,i=1, ..., n). Then we have
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I(E+ ... +E)/(Fy+ ... +F))=I(E/F) + ...+ I(E,/F,).

ProoF. Consider a sequence of submodules of E;+ ...+ E,: Ey + ...
+E.DE,+...+E, 4 +F,DE+ ...+ E, s+ F,,+F,D...DE +F,+
.. +F, D F+ ... +F, Since

I(By+ ... + Esx+Fiyy + oo +F)/(Ex+ ... +Ei+ Fi+ Foq+ ... +F,)

=l(Ei+ ... +Ei g+ Fi+ ... +F)+EJ(E+ ... +E +F+ ... +F,)
=I(E,/EN(Ey+ ... +E4+F,+ ...+ F)
=UE/(EsN(Ey+ ... + Ey+ Fiy + ...+ F,)) + F) = [(E/Fy),

by our assumption, therefore we have

[(Ey+ ... +E)/(Fy+ ... +F,,))=§l((E1+... +E;+ Fi+... +F,)/
(E] 4. +E¢~1 - Fi -1~ F‘+] T o Fn)) = El(Ei/Fi).

Now we shall prove the theorem which is the main purpose of this note.

THEOREM. Let (4, m) and (A', W) be local rings which contain a common
subfield K and assume Ajm @ A'/m! is an Artin ring. And let E and E' be
Sfinite modules over A and A' respectively. Then, for any m-primary ideal q
and W-primary ideal o', we have

ende (0, 0) (AR AN) = ex(q)ew (07) 1(A/MmE A'jm).

PROOF. We first show that Z(EX) E'/(q, a)"(E R E) =¢+,E<f (@*E/dVE)®

(9”E!]q’TE")), for any integer n. In fact, since (E ®E')/(q, q’)(E®E’) ~(E/qE)
® (E'/q" E'), by Proposition 2, our assertion is true in the case when n=1. We
assume our assertion is true in the case when » =7, and consider the case when
n =y + 1. Then
I(E Q E'/(5, o'y *(E & E")

= I(EQE'[(a, a)(EX®E") +I((q, ¢'V(EXRE)/(q, a')"(EQE")
= E< (" E/q" EN) R (QVE'|q"VE") - 1((q, ') (E ® E")/(a, ') (E Q E"))

+ j<lr
(by our induction hypothesis)
= S U@ E/TB)Q @V Ea" EN) + S 1" E/aM E)® (0" B/ EY)

i+ Jj<lr stt=r
(by Lemma 3 and 4) R
= 3 Id*E/d"7 E)Q (@7 E'[q"* E")).

i j<r+1
Therefore, by Proposition 3, we have

HERE'@ o) (EQE)) = 33 IWE/d"E) IqE'[a" "EI(A/m @ A'/nv)
= 3 fOgL,
where f(i) = I(*'E/q" E), g(7) = I(q” E'/q”"" E') and I = [(A/m & A'|m").
This formula enables us to calculate the multiplicity of the defining ideal (g, q)
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(A @A’) of the semi-local ring A ® A 'in E ® E’ in the same way as was given
in [3] replacing e(q) and ¢(q") by e (q) and ez (q').
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