CHARACTERIZATION OF CERTAIN ADDITIVE SEMIGROUPS BY DISTRIBUTIVE MULTIPLICATIONS By ## Takayuki Tamura (Received September 30, 1958) ### § 1. Introduction. Let S_+ be a semigroup with addition + defined in a set S. We introduce another operation "multiplication" into the same set S, which is symbolized as S_\times , not necessarily associative, such that $$(1) x(a+b) = xa + xb for ever$$ $$(2) (x+y)a = xa + ya$$ for every x, y, a, $b \in S$. Then we say that S_+ has a multiplication (multiplicative system) S_{\times} . In the previous paper [1] we proved the two theorems: Theorem (A). A right singular or left singular semigroup S_+ has all arbitrary multiplications. Theorem (B). Let S_+ be a semigroup defined as x+y=0 for all $x, y \in S$. S_+ has a multiplication S_\times if and only if S_\times has 0 as the two-sided zero. In the present note, we shall prove that Theorem (A) characterizes a right or left singular semigroup S_+ , but Theorem (B) does not characterize the semigroup S_+ defined as x+y=0, and we shall have the following Theorems 1, 2 under weaker conditions. Hereafter, by "a semigroup S has a multiplication (multiplicative system) S_\times " we mean "(1) holds i.e. the multiplication S_\times is distributive to the addition S_+ with respect to the only one-side." Of course we assume that S is non-trivial, i.e. it contains two elements at least. **Theorem 1.** If a semigroup S_+ has all arbitrary multiplications, then S_+ is a right or left singular semigroup. **Theorem 2.** If a semigroup S_+ has all multiplicative systems S_+ with a right zero 0 and has nothing but such multiplications, then S_+ is either a semigroup with x+y=0 for all $x, y \in S$ or a group of order 2. #### § 2. Proof of Theorem 1. 1. $x_0 = y_0$ implies either $x_0 + y_0 = x_0$ or $x_0 + y_0 = y_0$. *Proof.* We shall prove that $x_0 = y_0$ and $x_0 + y_0 = x_0$ imply $x_0 + y_0 = y_0$. Let ¹⁾ S is called a right singular or left singular if S is defined as x+y=y or x+y=x for any x, y respectively. $z_0 = x_0 + y_0 + x_0$, and corresponding to x_0 , y_0 and z_0 , consider a multiplication which satisfies $$x_0^2 = x_0$$, $x_0 y_0 = x_0 z_0 = y_0$. Then we get $x_0 + y_0 = x_0^2 + x_0 y_0 = x_0(x_0 + y_0) = x_0 z_0 = y_0$. **2.** If $x_0 = y_0$ and $x_0 + y_0 = y_0$ for some x_0 , y_0 , then x + y = y for all x, y. *Proof.* Take any x and y. Consider a multiplication satisfying $$x_0^2 = x$$ and $x_0 y_0 = y$, then we get $$x+y=x_0^2+x_0y_0=x_0(x_0+y_0)=x_0y_0=y$$. Similarly we obtain 3. If $x_0 \neq y_0$ and $x_0 + y_0 = x_0$ for some x_0 , y_0 , then x + y = x for all x, y. Gathering together 1, 2, and 3, it has been proved that non-trivial S_+ is right or left singular. ## § 3. Proof of Theorem 2. 1. 0+0=0. *Proof.* For a special multiplication S_{∞} with two-sided zero 0, $$0+0=0^2+0^2=0(0+0)=0$$. 2. Either 0+x=x for all x, or 0+x=0 for all x. *Proof.* We shall prove that 0+x=0 for all x if $0+x_0=x_0$ for some x_0 . From $0+x_0=x_0$, we see easily $x_0=x_0$ by 1. Let x be any element of x, let $x_0=x_0$, and consider a multiplication satisfying $$x_0^2 = x$$, $x_0 u_0 = 0$, $x_0 = 0$ for all x . Then we have $0+x=x_00+x_0^2=x_0(0+x_0)=x_0u_0=0$. Hence $0+x_0=x_0$ implies 0+x=0 for all x. Similarly we can prove - 3. Either x+0=x for all x, or x+0=0 for all x. - **4.** Either 0+x=x+0=x for all x or 0+x=x+0=0 for all x. *Proof.* Suppose both 0+x=x for all x and x+0=0 for all x. Then $$x + y = x + (0 + y) = (x + 0) + y = 0 + y = y$$ for every x, y, which concludes that S_+ is a right singular semigroup. This contradicts the assumption of this theorem because of Theorem 1. Similarly it is false that both 0+x=0 for all x and x+0=x for all x. From 5 to 7 we assume that S contains three elements at least. 5. $x_0 = 0$, $y_0 = 0$, $x_0 = y_0$ imply $x_0 + y_0 = x_0$ and $x_0 + y_0 = y_0$. *Proof.* Suppose $x_0 + y_0 = x_0$. In case 0 + x = x + 0 = x for all x, considering a multiplication which satisfies for x_0 , y_0 (3) $$x_0^2 = 0$$, $x_0 y_0 = x_0$, $z = 0$ for all z . we get $0 + x_0 = x_0^2 + x_0 y_0 = x_0 (x_0 + y_0) = x_0^2 = 0$, which contradicts the above assumption. In case 0+x=x+0=0 for all x, a multiplication satisfying (4) $$x_0^2 = x_0, \quad x_0 y_0 = 0, \quad z0 = 0 \text{ for all } z$$ leads to $x_0 + 0 = x_0^2 + x_0 y_0 = x_0 (x_0 + y_0) = x_0^2 = x_0,$ contradicting the assumption. Hence it has been proved that $x_0 + y_0 \neq x_0$. Similarly we can prove $x_0 + y_0 \neq y_0$. Under the supposition of $x_0 + y_0 = y_0$ we may use (4) in case 0 + x = x + 0 = x for all x, (3) in case 0 + x = x + 0 = 0 for all x. 6. $x_0 = 0$, $y_0 = 0$, $x_0 = y_0$ imply $x_0 + y_0 = 0$. *Proof.* Suppose $u_0 = x_0 + y_0 = 0$. We can consider a multiplication which fulfils $$x_0^2 = x_0 y_0 = 0$$, $x_0 u_0 = 0$, $z = 0$ for all z . Possibility of such a multiplication follows from 5, i.e. $x_0 + y_0 = x_0$ and $x_0 + y_0 = y_0$. Then $$0 = x_0 u_0 = x_0 (x_0 + y_0) = x_0^2 + x_0 y_0 = 0 + 0 = 0$$, arriving at contradiction. Therefore $x_0 + y_0 = 0$. 7. If S_+ contains three elements at least, then S_+ is given as x+y=0 for all x, y. *Proof.* It is sufficient to prove only 0+x=x+0=0 for all x. By the assumption, there are x_0 , y_0 such that $x_0=0$, $y_0=0$, $x_0=0$. For x, x_0 , y_0 , consider a multiplication fulfilling $$xx_0 = 0$$, $xy_0 = x$, $z0 = 0$ for all z . $0 + x = xx_0 + xy_0 = x(x_0 + y_0) = x0 = 0$ $x + 0 = xy_0 + xx_0 = x(y_0 + x_0) = x0 = 0$ by 6. Then As consequence of 7, we have 8. If 0+x=x+0=x for all x, then non-trivial S_+ is of order 2. Accordingly the type of S_+ is either a group of order 2 $$\begin{array}{c|c} 0 & a \\ 0 & a \\ a & a \\ 0 \end{array}$$ or a semilattice $$\begin{array}{c|c} 0 & a \\ 0 & a \\ a & a \end{array}$$ **9.** The addition S_+ of order 2 which satisfies the assumption of this theorem is nothing but a group of order 2. *Proof.* At first, the semilattice S_+ (5) of order 2 has a multiplication S_\times defined as $$\begin{array}{c|c} 0 & a \\ 0 & a & a \\ a & a & a \end{array}$$ Because x(y+z)=a, xy+xz=a+a=a whenever x, y, z are 0 or a. Hence the required S_+ is a group. Conversely if S_+ is a group of order 2, all the multiplications which S_+ has are proved to be $$\begin{array}{ccc} 0 & a \\ 0 & 0 & 0 \\ a & 0 & 0 \end{array} \qquad \begin{array}{ccc} 0 & a \\ 0 & 0 & 0 \\ a & 0 & a \end{array}$$ by Theorem 1 of the previous paper [1]. #### References [1] T. Tamura etc.: Distributive multiplications to semigroup operations, Jour. of Gakugei, Tokushima Univ., Vol VIII, 1957, 91–101.