CHARACTERIZATION OF CERTAIN ADDITIVE SEMIGROUPS BY DISTRIBUTIVE MULTIPLICATIONS

By

Takayuki Tamura

(Received September 30, 1958)

§ 1. Introduction.

Let S_+ be a semigroup with addition + defined in a set S. We introduce another operation "multiplication" into the same set S, which is symbolized as S_\times , not necessarily associative, such that

$$(1) x(a+b) = xa + xb for ever$$

$$(2) (x+y)a = xa + ya$$

for every x, y, a, $b \in S$.

Then we say that S_+ has a multiplication (multiplicative system) S_{\times} . In the previous paper [1] we proved the two theorems:

Theorem (A). A right singular or left singular semigroup S_+ has all arbitrary multiplications.

Theorem (B). Let S_+ be a semigroup defined as x+y=0 for all $x, y \in S$. S_+ has a multiplication S_\times if and only if S_\times has 0 as the two-sided zero.

In the present note, we shall prove that Theorem (A) characterizes a right or left singular semigroup S_+ , but Theorem (B) does not characterize the semigroup S_+ defined as x+y=0, and we shall have the following Theorems 1, 2 under weaker conditions. Hereafter, by "a semigroup S has a multiplication (multiplicative system) S_\times " we mean "(1) holds i.e. the multiplication S_\times is distributive to the addition S_+ with respect to the only one-side." Of course we assume that S is non-trivial, i.e. it contains two elements at least.

Theorem 1. If a semigroup S_+ has all arbitrary multiplications, then S_+ is a right or left singular semigroup.

Theorem 2. If a semigroup S_+ has all multiplicative systems S_+ with a right zero 0 and has nothing but such multiplications, then S_+ is either a semigroup with x+y=0 for all $x, y \in S$ or a group of order 2.

§ 2. Proof of Theorem 1.

1. $x_0 = y_0$ implies either $x_0 + y_0 = x_0$ or $x_0 + y_0 = y_0$.

Proof. We shall prove that $x_0 = y_0$ and $x_0 + y_0 = x_0$ imply $x_0 + y_0 = y_0$. Let

¹⁾ S is called a right singular or left singular if S is defined as x+y=y or x+y=x for any x, y respectively.

 $z_0 = x_0 + y_0 + x_0$, and corresponding to x_0 , y_0 and z_0 , consider a multiplication which satisfies

$$x_0^2 = x_0$$
, $x_0 y_0 = x_0 z_0 = y_0$.

Then we get $x_0 + y_0 = x_0^2 + x_0 y_0 = x_0(x_0 + y_0) = x_0 z_0 = y_0$.

2. If $x_0 = y_0$ and $x_0 + y_0 = y_0$ for some x_0 , y_0 , then x + y = y for all x, y. *Proof.* Take any x and y. Consider a multiplication satisfying

$$x_0^2 = x$$
 and $x_0 y_0 = y$,

then we get

$$x+y=x_0^2+x_0y_0=x_0(x_0+y_0)=x_0y_0=y$$
.

Similarly we obtain

3. If $x_0 \neq y_0$ and $x_0 + y_0 = x_0$ for some x_0 , y_0 , then x + y = x for all x, y. Gathering together 1, 2, and 3, it has been proved that non-trivial S_+ is right or left singular.

§ 3. Proof of Theorem 2.

1. 0+0=0.

Proof. For a special multiplication S_{∞} with two-sided zero 0,

$$0+0=0^2+0^2=0(0+0)=0$$
.

2. Either 0+x=x for all x, or 0+x=0 for all x.

Proof. We shall prove that 0+x=0 for all x if $0+x_0=x_0$ for some x_0 . From $0+x_0=x_0$, we see easily $x_0=x_0$ by 1. Let x be any element of x, let $x_0=x_0$, and consider a multiplication satisfying

$$x_0^2 = x$$
, $x_0 u_0 = 0$, $x_0 = 0$ for all x .

Then we have $0+x=x_00+x_0^2=x_0(0+x_0)=x_0u_0=0$.

Hence $0+x_0=x_0$ implies 0+x=0 for all x.

Similarly we can prove

- 3. Either x+0=x for all x, or x+0=0 for all x.
- **4.** Either 0+x=x+0=x for all x or 0+x=x+0=0 for all x.

Proof. Suppose both 0+x=x for all x and x+0=0 for all x. Then

$$x + y = x + (0 + y) = (x + 0) + y = 0 + y = y$$

for every x, y, which concludes that S_+ is a right singular semigroup. This contradicts the assumption of this theorem because of Theorem 1. Similarly it is false that both 0+x=0 for all x and x+0=x for all x.

From 5 to 7 we assume that S contains three elements at least.

5. $x_0 = 0$, $y_0 = 0$, $x_0 = y_0$ imply $x_0 + y_0 = x_0$ and $x_0 + y_0 = y_0$.

Proof. Suppose $x_0 + y_0 = x_0$. In case 0 + x = x + 0 = x for all x, considering a multiplication which satisfies for x_0 , y_0

(3)
$$x_0^2 = 0$$
, $x_0 y_0 = x_0$, $z = 0$ for all z .
we get $0 + x_0 = x_0^2 + x_0 y_0 = x_0 (x_0 + y_0) = x_0^2 = 0$,

which contradicts the above assumption.

In case 0+x=x+0=0 for all x, a multiplication satisfying

(4)
$$x_0^2 = x_0, \quad x_0 y_0 = 0, \quad z0 = 0 \text{ for all } z$$

leads to $x_0 + 0 = x_0^2 + x_0 y_0 = x_0 (x_0 + y_0) = x_0^2 = x_0,$

contradicting the assumption. Hence it has been proved that $x_0 + y_0 \neq x_0$. Similarly we can prove $x_0 + y_0 \neq y_0$. Under the supposition of $x_0 + y_0 = y_0$ we may use (4) in case 0 + x = x + 0 = x for all x, (3) in case 0 + x = x + 0 = 0 for all x.

6. $x_0 = 0$, $y_0 = 0$, $x_0 = y_0$ imply $x_0 + y_0 = 0$.

Proof. Suppose $u_0 = x_0 + y_0 = 0$. We can consider a multiplication which fulfils

$$x_0^2 = x_0 y_0 = 0$$
, $x_0 u_0 = 0$, $z = 0$ for all z .

Possibility of such a multiplication follows from 5, i.e. $x_0 + y_0 = x_0$ and $x_0 + y_0 = y_0$.

Then
$$0 = x_0 u_0 = x_0 (x_0 + y_0) = x_0^2 + x_0 y_0 = 0 + 0 = 0$$
,

arriving at contradiction. Therefore $x_0 + y_0 = 0$.

7. If S_+ contains three elements at least, then S_+ is given as x+y=0 for all x, y.

Proof. It is sufficient to prove only 0+x=x+0=0 for all x. By the assumption, there are x_0 , y_0 such that $x_0=0$, $y_0=0$, $x_0=0$. For x, x_0 , y_0 , consider a multiplication fulfilling

$$xx_0 = 0$$
, $xy_0 = x$, $z0 = 0$ for all z .
 $0 + x = xx_0 + xy_0 = x(x_0 + y_0) = x0 = 0$
 $x + 0 = xy_0 + xx_0 = x(y_0 + x_0) = x0 = 0$ by 6.

Then

As consequence of 7, we have

8. If 0+x=x+0=x for all x, then non-trivial S_+ is of order 2. Accordingly the type of S_+ is either a group of order 2

$$\begin{array}{c|c}
0 & a \\
0 & a \\
a & a \\
0
\end{array}$$

or a semilattice

$$\begin{array}{c|c}
0 & a \\
0 & a \\
a & a
\end{array}$$

9. The addition S_+ of order 2 which satisfies the assumption of this theorem is nothing but a group of order 2.

Proof. At first, the semilattice S_+ (5) of order 2 has a multiplication S_\times defined as

$$\begin{array}{c|c}
0 & a \\
0 & a & a \\
a & a & a
\end{array}$$

Because x(y+z)=a, xy+xz=a+a=a whenever x, y, z are 0 or a. Hence the required S_+ is a group. Conversely if S_+ is a group of order 2, all the multiplications which S_+ has are proved to be

$$\begin{array}{ccc}
0 & a \\
0 & 0 & 0 \\
a & 0 & 0
\end{array}
\qquad
\begin{array}{ccc}
0 & a \\
0 & 0 & 0 \\
a & 0 & a
\end{array}$$

by Theorem 1 of the previous paper [1].

References

[1] T. Tamura etc.: Distributive multiplications to semigroup operations, Jour. of Gakugei, Tokushima Univ., Vol VIII, 1957, 91–101.