NOTES ON GENERAL ANALYSIS (VII)

Ву

Isae Shimoda

(Received September 30, 1958)

In this note, a theorem of complex valued functions is extended to the case of complex Banach spaces. Let E_1 and E_2 be complex Banach spaces.

Theorem. Let the family of functions $\{f(x)\}$ from E_1 to E_2 satisfy following conditions: (1) each function f(x) is analytic in ||x|| < 1 in E_1 and is a one-to-one mapping to a domain D_f in E_2 and its inverse function $f^{-1}(x)$ is also analytic in D_f , (2) $\{f(x)\}$ are bounded, that is, $||f(x)|| \leq M$, (3) the norms of linear parts $\{g_1(x)\}$ of $\{f^{-1}(x)\}$ are bounded, that is, $||g_1|| \leq K$, (4) $f(\theta) = \theta$, then each domain D_f includes the sphere whose radius is constant.

Proof. Since $f(\theta) = \theta$, we have

$$f^{-1}(x) = \sum_{n=1}^{\infty} g_n(x)$$
 and $f(x) = \sum_{n=1}^{\infty} f_n(x)$,

where $f_n(x)$ and $g_n(x)$ are homogeneous polynomials of degree n, for $n=1, 2, 3, \cdots$. Then,

$$x = f^{-1}(f(x))$$

$$= \sum_{n=1}^{\infty} g_n(f(x))$$

$$= \sum_{n=1}^{\infty} g_1(f_n(x)) + \sum_{n=2}^{\infty} g_n(f(x))$$

$$= g_1(f_1(x)) + \sum_{n=2}^{\infty} g_1(f_n(x)) + \sum_{n=2}^{\infty} g_n(f(x)).$$

For an arbitrarily fixed x and an arbitrary complex number α , we have

$$\alpha x = \alpha g_1(f_1(x)) + \sum_{n=2}^{\infty} \alpha^n g_1(f_n(x)) + \sum_{n=2}^{\infty} \alpha^n g_n(f_1(x)) + \sum_{m=2}^{\infty} \alpha^{m-1} f_m(x)).$$

Dividing each terms by α ,

$$x = g_1(f_1(x)) + \alpha \left\{ \sum_{n=2}^{\infty} \alpha^{n-2} g_1(f_n(x)) + \sum_{n=2}^{\infty} \alpha^{n-2} g_n(f_1(x)) + \sum_{m=2}^{\infty} \alpha^{m-1} f_m(x)) \right\}.$$

Put $\alpha = 0$ and we have $x = g_1(f_1(x))$. Since x is arbitrary, $g_1(x)$ is an inverse function of $f_1(x)$. That is, $f_1(x)$ has the continuous inverse function $g_1(x)$. Since $||x|| = ||g_1(f_1(x))|| \le ||g_1|| \cdot ||f_1(x)||$, we have

$$||f_1(x)|| \geqslant \frac{1}{||g_1||} ||x|| \geqslant \frac{1}{K} ||x||,$$

from the assumption (3).

20 Isae Shimoda

On the other hand, $f_n(x) = \frac{1}{2\pi i} \int_C \frac{f(\alpha x)}{\alpha^{n+1}} d\alpha$, $n=1, 2, 3, \cdots$, where C is a circle with radius r satisfying $r||x|| \leq \delta < 1$ and r > 1. From the assumption (2), $||f(\alpha x)|| \leq M$, when $||\alpha x|| \leq \delta$.

Thus we see that

$$||f_n(x)|| \leq \frac{M}{r^n}$$
 for $n = 1, 2, \dots$

Then

$$||\sum_{n=2}^{\infty} f_n(x)|| \leq \sum_{n=2}^{\infty} \frac{M}{r^n} = \frac{M}{r(r-1)}.$$

Taking a positive number δ_1 such that

$$0\!<\!\delta_{\scriptscriptstyle 1}\!<\!\delta\!<\!1$$
 , $r\delta_{\scriptscriptstyle 1}\!=\!\delta$ and $K\!M\delta_{\scriptscriptstyle 1}^2\!<\!\delta^{\scriptscriptstyle 3}(\delta\!-\!\delta_{\scriptscriptstyle 1})$,

we have

$$\frac{M}{r(r-1)} = \frac{M\delta_1}{\delta(\delta - \delta_1)} < \frac{\delta^2}{K}.$$

For an arbitrary y in $||y|| \leq \delta$, there exist x and α such that $y = \alpha x$, $|\alpha| \leq r$, $||x|| = \delta_1$ and $||\alpha x|| \leq \delta$.

$$||\sum_{n=2}^{\infty} f_n(\alpha x)|| = |\alpha|^2 \cdot ||\sum_{n=2}^{\infty} f_n(x)\alpha^{n-2}||,$$

then

$$\frac{\left|\left|\sum_{n=2}^{\infty} f_n(\alpha x)\right|\right|}{|\alpha|^2} = \left|\left|\sum_{n=2}^{\infty} f_n(x)\alpha^{n-2}\right|\right|.$$

Since $\sum_{n=2}^{\infty} f_n(x)\alpha^{n-2}$ is an analytic function of α , its norm takes the maximum on the boundary $|\alpha|=r$ and so we have

$$\frac{||\sum_{n=2}^{\infty} f_n(\alpha x)||}{|\alpha|^2} \leq \frac{1}{r^2} \cdot \frac{M_1}{r(r-1)}.$$

Putting $\alpha x = y$, $||\sum_{n=2}^{\infty} f_n(y)|| \ge \frac{M}{r^2 \cdot r(r-1)} ||\alpha||^2 \ge \frac{M}{r(r-1)} \cdot \frac{||y||^2}{r^2 ||x||^2} = \frac{M}{r(r-1)\delta^2} ||y||^2$.

Thus we see that

$$||f(x)|| \ge ||f_1(x)|| - ||\sum_{n=2}^{\infty} f_n(x)||$$

$$\gg \frac{1}{K}||x|| - \frac{M}{r(r-1)\delta^2}||x||^2$$

for $||x|| \leq \delta_1$. Letting $||x|| = \delta_1$, we have

$$||f(x)|| \geqslant \frac{\delta_1}{K} - \frac{M}{r(r-1)\delta^2} \cdot \delta_1^2$$

$$= \delta_1 \left(\frac{1}{K} - \frac{M\delta_1}{r(r-1)\delta^2} \right),$$

which is a positive number, since $0 < \delta_1 < 1$ and $\frac{1}{K} > \frac{M}{r(r-1)\delta^2} > \frac{M\delta_1}{r(r-1)\delta^2}$. Put $\delta_1 \left(\frac{1}{K} - \frac{M\delta_1}{r(r-1)\delta^2}\right) = \rho$, then we see that

$$D_f \supset U(\rho)$$
,

which is the sphere with radius ρ . This completes the proof.