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Introduction. The classical problem to estimate the mean of a normal
distribution is early and thoroughly discussed by K. Pearson” for large

AIADY

samples, while for small samples e.g. by T. H6j6”, and recently by H. J. Godwin,
H. L. Jones and others®. Also H. Cramér® puts in his treatise the following
example as instructive: Considering a small sample with size 3 drawn from

1) Karl Pearson, On the probable errors of frequency constants (editorial), Part I, Biometrika,
Vol. 2 (1903), pp. 273-281; Part 11, Vol. 9 (1913), pp. 1-10; Part II, Vol. 13 (1921), pp. 113-132.

2) Tokishige Hé6j6, Distribution of the median, quartiles and interquartile distance in samples
from a normal population, Biometrika Vol. 23 (1931), pp. 315-360.

Also, Tokishige H6jo, A further note on the relation between the median and quartiles in small
samplings from a normal population, Biometrika, Vol. 25 (1933), pp. 79-90.

3) H. J. Godwin, Some low moments of order statistics, Ann. of Math. Statis. Vol. 20 (1949),
pp. 279-285; H. L. Jones, Exact lower moments of order statistics in small samples from a normal
distribution, Ann. of Math. Statis., Vol. 19 (1948), pp. 270-273. '

4) Herald Cramér, Mathematical Methods of Statistics, (1946), p. 483.
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a normal population N(m, ¢ and arranged in order of magnitude: x,<x,<x,,
the weighted mean z=cx, + (1—2¢)x,+cx, would afford an unbiased estimate

of the population mean with the variance DP*(z)= %2 +36% <2- 3—\7/ZE> (c — %)2

This being generalized, we may inquire what would be E(z) and D?*(z), when
n=<ry<--<x,bea sample drawn from the population N, ¢°), and we form

a weighted mean z=20,~x,~, where > c¢,=1 with all ¢;>=0. In the present
i=1

note we have solved this general problem in outline (Part I), and obtained
somewhat detailed results for the particular cases: n=3, 4, ---,7 (Part ID, at
the end of which some applications are also illustrated. We have likewise
schemed (as Part III) to investigate the third and fourth moments. However,
their computations being too much enormous, their studies, except some fews
are deferred for future.

PART 1

81. Frequency Functions. We make preliminarily the variable standard-

o e . 1 1
ized: x=m +of, and the distribution function F(x)= \/__QZUS_weXpi 5 oz(x m) }

~1—t2} , so that

xdx reduces to CI)(t):jt_wcp(t)dt——St d®(#), where @)= \/2 % 5
H(— 00) =0, P(c0)=1 and tljﬂ tVp () =0. Firstly, observing that the joint
probability to obtain the sample {—co <1, <2, < <x,< o}, or
{—oo<lt, <, L+ £, o0} s

n!d®,do, - do,,

where d®, stands for d®({t,)=w(¢,)dt;, the total probability shall be given by
(1.1) o Si’ do, S A, S Ad, —1

: 4 . . .
where S d®;_, means ( d®(¢, ). Still more abbreviating we write simply

—o0

Sl S and S in place of gz , Sw and Sm , Trespectively, and also e.g. for

r Bt P'(t) dP(t;), dropping the suffix / as well as defining argument,
simply as Jﬁqf@“d@, when there is no fear of misunderstanding. On the

other hand, if it needs to be made clear that the size of sample is #, we
write ¢;,,, instead of mere ¢,.
To prove (1.1) we see successively
2 3 2 3 1
g db, — d,—D__— D, §dc1>2 S 4P, = S 4D, = ¥,
and in general, if
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holds, then also
i+l i 2 . 1 i+1 o . ;17 P
S d@,&d@i_l... qu)‘—(?——ms Bid0, = 1 @,

thus the induction is completed. Therefore

0

nl Sd(bn §"dq>n_1 Szdcbl —n S@;“d@n —dn| =1, QE.D.

—o0

Otherwise, if the order of integrations in the repeated integrals be inter-
changed, it becomes

n! gd@l&dqmg aP, —=1.

-1
Now we can thereby find the frequency function of #;,. For this purpose
we consider the repeated integrals of (1.1)

7! Sd@n S"dcp,,_l S”zd@m Smd@ S"dcp,._1 Szd@,

and integrate the 7—1 integrals beginning from ®, up to ®,_,
n i+2 i+1 CI)Z'—‘I
n! Sd(b,, S dd, S d@iﬂg -
Further, interchanging the order of integrations

(7;%‘ Sc;pg-ldcb,. j e, S:ldCI)n_l Sz+2d61)i+1,

and finally integrating in regards to ®,,,, ---, ®,, successively, we get
! X ) . )
e a—oyiae, =gy, [ a—oiedt,

1) (i)}
where B, denotes the reciprocal of Betafunction B(, n~i+1)=I‘(l)F(n——Z )

T
so that® e

( ) len Bn—z—Hln (i—l)!(n—i)! n Z—"'l s

and the required frequency function is given by

1.3) flt) =B, P 1—-D)"ip.

Next, to find the joint frequency function of ¢;,, and #,,,, where 1<i< k<n,
we rewrite (1.1) so as

i i+1 (I)g—-l

13 kt2 k+1 k +2

I T R R e AT
which, on interchanging the order of integrations two by two respectively,
beginning at ®,., with ®,, then ®,,, with &,, ---, and similarly beginning

at ®,,, with ®,, then ®,,, with ®;, .-, becomes

5) Here the successive factors in denominator of B;, are nothing but the factorials of the succes-
sive indices of factors in the integrand. This remark is also applicable to (1.4) &c. below.
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i+2
AP

z

k @;}—1
E—1!
Now integrating successively leftwards beginning at ®,,, and ®,_, respectively,

\1_(1) )n~k kq);:_ﬂ(q) __q)i)k—i“l o
nt (T 4 | e iy 9 (=1

Hence, the required joint frequency function of £, #, is found to be

n! qu)k Skdq)n S:dcpn_l g: qu’k+ls 4o, ﬁfdcpk_l S

1.

L4 S e = U'lr—/ki)'i(ltﬁk;r(kg;zi—ii)‘ 1—=D)" @, BB, — DY g,

1=i<k<Ln.
Here the numerical coefficient «;,, say, is the reciprocal of the product of
Beta-functions, because, on writing ®,—=u, ®,=vP, in the foregoing integral,
it yields

fy,-,k\,,S:(l——u)"“kuk‘ldu S:w-la—v)k-f-ldv — 5, o Bli—E+1, B) BU, k—i) =1.

Hence
(.5) 70 = ) — n! —y .
"2 ik T Bn—k+1, MBG, k—i) (=R — 1) (f—i— 1)1 T rrkiasivies

Thus, in ordered statistics any two variables £, £, are by no means in-
dependent of each other, while, if ¢, {, are two individuals in unordered
sample, they are independent and their joint frequency is simply @,;@,.

Quite similarly we obtain

- n! & \r—k

X ((I)k_‘q)j)k“jpl(q)j_q)i)j_i-lq)g_1¢ijk <j<h
where @;;,=®,;9;#,, which, however, does not occur unless #»>3. E.g. if
n=3, we have f(¢, t,, ) =6 ¢, and if n—=4,

(1.6.1)  f(t,, b, t) =240—D) @,,,  flt, t,, 1) = 24(D,— D) @, ,
ft, b, t) =24(P,—D) @, flt,, t., 1) = 24D, p,,, .
Also, for n=5,

(1.6.2) f(t,t, 1) =600—D) @, [f,il,t)=1200—0)(P,—D)p,,,
ft,, t,, &) = 60(D,— DY o, [, L, 1) =1201—D)(D,— D) ».,,,
f(t,, t,, t;) = 120(2,— D) (@,— D) @,,., flt, ., 1) = 60(P,—P)* @, ,
flt,, b, ) =1200—D)D, @,.,, flt,, L, 1) = 120(D,— D) D, 9, ,
S, £, ) =120(@,—P)D, 9,5, fil,, L, £;) = 6005 @, .
Furthermore
@7 S tiins Eerns B

. n!(l——(I)l)n«l((I)l_(I)k)l—k—l(q) ——(I)j)k“f-l(@j__@i)j—i—lq)i—l . ) )
o (n—H! ((—k—1)! (k——jil)! G—i—DlG—11T Pijrr <<k .




Some Contributions to Order Statistics 45

In particular, for n=>5,

(1- 7. 1) f(tn t2> ta: t4) = 24(1—(I)4) Proaa s f(tu tz; ts) ts) = 24((]:)5——@)3) P25
f(tl’ tz, t4’ t5) = 24(‘@4“(1)2) @1245 ? f(t17 t3’ t‘l’ tS) == 24((b3_—®1) @]345 y
f(tz, ta; tu t5) = 24(I)1 Ponts » and so on.

Remark. Although we have confined ourselves to the case of normal
population, all the above remain the same even for any contmuous distribution

with a frequency function f(f), and the distribution F\(f) —S fidt. Thus
wt (aF, (ap, - [ar =1, je)= 8P a—Fyr o
f(tiln’ t’zln) = (Yi»kfn(l—Fk)n_k(Fk_Fi)k—i_ngﬁlfkfi (Z<k) &e.

§2. The Expectation of #7,,. This is given after (1.3) by

nl

@1  E@. :Bimsd)"‘l(l—cb)”"'cptf’dt With By, = ozl

First, for p=1, i=mn,
E(tmn) = ns®n-l(—¢l)dt’

which, integrated by parts, yields

o

—u®* ' +nm—1) s@"'zq)zdt ,

and since the integrated parts vanish, we have

2.2) Et,.,) = nn—1) g@”‘zfpzdt .
For broader applications let us define

2.3) J@ = S@wdt ,

which shall be requisite to obtain E(f,,) =nn—1)/2,. Some of them are
explicitly found in Part II.
In general, we obtain by integration by parts

@4 Blty) =8, (9710 {—p)dt =8, | LT 10 grat,

which becomes a sum of integrals of the form J{. Since the integrand in
(2.4) is a polynomial in ® of n—2 degrees, it suffices to know J& for
A=0,1, -, n—2,

Next, for p==2, we have again by (2.1)

6) In fact, if the /~th value from the top, i.e. the (n—7+1)-th value from the bottom be con-
sidered, we obtain by (1.3) f(f,-;w1)=8:i, F*~i(1—F)i~'f, which agrees with Cramér’s (28.6.1),
p. 370, loc. cit.
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(2.5) E(t) = By | FOTA—D) ipdt  (tp = —9)
which integrated by parts yields
7~ 1 n-g d i1 n—1 2

B[O 0— D iavrp,, [ (@na -2t

The first integral reduces to 1, while, the second being
d 7—1 _ n—i /
—( @y gprdr,

again integrated by parts, it becomes

[ da—or iy gars | Lo a—orygpat,
and therefore is equal to

L @ a—ayygrar.

2 ) dee
Thus we get
1 dZ F—1 n—y
2. 6) E(#2,) = 1+§B,.m[d_@{<bz 1—®)" Y gp*dt .
Particularly for i=un
2.6.1) E@,) = 1+%n(n-—1) (n—2) y®”‘3¢>3dt .

The explicit forms of [¥ = S@@sdt for A=0,1,2,... have been evaluated

in Part II, and whence all E(tZ,) computed up to n="17.
Furthermore we obtain

@7 E (&) = B, sfaq)i_l(l—fp)n_’kpdt

o 5 1 d? i1 PV ot
——?E(tﬂn)"‘—G—BunSa@[@ (I—®)** Jptdt,

@.7.1) E@#,) = %E(z‘n,n) +%n(n——1) (n—2) (n—3) 5@"-4¢4dt .
and

sy Bpey 4 1 A rpiryl By
2.8 E(tt) =2 B(t1,) — 540 Bun | 2 [0 (01— ®) 1 pdt,

2.8.1)  E(th) = %E(tﬁ,n)-—% +2l4n(n—1) (n—2) (1—3) (n—4) Sqa"-wdt, &e.
However their actual computations are deferred as future task.

We are very liable to write erroneous indices. To avoid this, it may be
remarked that, in any successively obtained integrand, the sum of indices of
®, 1—® and ¢ should always be #n; of course, if differentiated j times, j must
be subtracted from the sum.
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§3. Some Properties concerning E(£,), p=1,2, - .
We have generally the following identities :

3.1) :‘] E@#?,)=0, or 1,3,5, - (p—1)n, according as p is odd or even;
i=1
3.2) E@ ) =(—1E(#,) .
First, to prove (3.1) we cite (2.1) and (1.2); We see readily

S E) =02 (1] ) [ a-o-igrd = n{ @ s1-0)grar
—n Sqn‘"dt =0, or 1,3,5 - (p—1)u.

Next, to prove (3.2) we take U =<I>———é- = S})(t) di=F(f), as independent

variable, and then ¢ becomes its inverse function: t=F"*(U). They are both
odd monotonic functions, and (2.1) may be expressed as

1/2 1 i—1 1 n—g

— Lp —_
Bt =8| v(5+U) (3-U) av.
The variable #;, is the i-th from the bottom, while the i-th from the top is
t,_;41» for which
1 . a 1/2 1 n=ifq i-1
BB 1) = Bu | 2O 1—®) a0 = £, #(L+ U) (3-v)"av,

and we shall show that the above two integrals are equal. In fact, two

functions yl——:(%+ U)m(%—— U)n_i and y2=<%+ U)n‘i<—,§—— U)i_1 are situated

to each other symmetrically, having the axis of symmetry U=0, so that
¥(U)=y(—U). But t=F*(U) being odd, # is either odd or even, according
as p is odd or even. So we have #(U)y,(U)= (-1 (—U)y(—U), and
therefore

12 1/2 1/2

[ pOsav=-1{" r—m=vav=-17|" rmmnmav,

-1/2
if V=—U, and this proves (3. 2).
Specially, for p=—=1 and 2, we obtain

(3- 2. 1) E(tn—i—Hln) = —E(tzln) and E(tﬁ—i—l-lln) = E(tfln) .

Besides, if # be an odd integer 2v+1, the middle variable #,,, becomes
its median, m,, whose mean is

B.39  Blhum) =20 [t01-0pa0 =0, and E(.)=m.

(Incidentally we may remark that E(#%,,,,.,) =0, if » odd)
Also, when # is even and 2v, the median is miz%(tv-i—t,,ﬂ), and by (3.2.1)
still E(m;) =0, E[%(x\, + X, +1)]=m. The sample median is already an unbiased

estimate of the population mean (=median).
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Generally for 2=2c¢x,=m+o > c;f;, we have

E@ =m+o3 c,Elt) =m +c>-E:ijJ (c;—Cui ) EWX) .

As a matter of course E(t;)<_E(t;) for i<k, and all E(t,_,.,)=—E({) >0 for
i=1,2,...[n/2]. Now z, as an estimate of mean, is unbiased, when and

only when
Cn/2)

SIeE() =0, viz. > (c;,—c, ..0E{)=0.

i=1

For this, it is sufficient that all ¢,=¢,_;,, hold. In particular, let ¢;=c,_;, =1

for a certain ¢/ and all other ¢;s=0. Then, in view of (3.2.1), 2

1
‘i =g X+ %Xy i4a)

becomes again an unbiased estimate of the population mean. Thus every
mean of the i-ths ({=1,2, ..., [#/2] from the bottom and the top, affords an
unbiased estimate of the population mean, among them the sample median
may also be adopted, as above mentioned. However, which z; is more efficient,
should be discussed from the values of D?(z,), that will be investigated in §11.

§4. The Expectations of Products £,,2,, for 1 <i< k<mn.
We have by (1.4)

@1 Elite) =Yien Sz‘k(lﬁCDk)”‘kd@k Sktid)g*l(d)k—d)i)k""ld(bi .

Or, dror;ping unnecessary suffices and adopting convenient one,

€2 Bt = o | (1—9)" o/ dt [or@—aygra.

Firstly make k=i/+1. Since, on integrating the inner integral by parts,
it yields '
4 t
[eripyat, = vp—(i-1) (@i2ptar,,
so the whole integral becomes

~

t
ja—ayranippdar—i-1) S(1—c1>>"~k<p'dtj Dirgidt, .
These being once more integrated by parts, respectively, we obtain

n! i o1(¢d - i
: o Y= =V T Pyt 3
£
+ (z‘—1)j(1—«1))"-f-1<1>f-2¢3dt— (i—1) (n—i—l)S(l—CID)"‘i‘zguzdtS <1>§~2¢§dt1]
Here both the first and second integrals are sums of J& in (2. 3), while the
third is a sum of double integrals of the form:

4. 4) 2o=(@epear [ @rgtat,,
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and the double integrals presenting in (4.3) are those with ¢=/F=2, and
#+r=n—4 at most”,
However, if i=1 or n—1, the double integral disappears and simply

4.3.1) Elt,, 1) =%n(n—1)(n—2) @ —FE(t, ), &
Secondly, for k=:¢+2, the inner integral in (4.2) yields
[ g o @) Iptdt,— — (—1)0 [ ot *gtat, +i [ D ptar,,
so that by integrations by parts we get

.5 Bltsutisnn) =ssan| = [A=0)"ptat | S0 (07 @~ ) Tgtat]

z(n—z‘—;l)!! (z‘—1)!{_(”_ -2 fa-ayg dl‘S 55, [ 81 (@—®)]ptd

+ =1 | —®)rgrat [oreptarn— j (- amigrarl

Here the first two integrals consist of J,, with s#+»=n—4 at most, and
the remaining integrals are all of type /. In particular, if i=1,

4.5.1) E(tlmtam):n(n——l)(n—Z)[(n—B)X(1——(13)”‘4<p2dtg 2t — <3>].

Thirdly, for 2=¢+3, the inner integral when differentiated, becomes

t o .
-V apor@—e) - gtan) = — e—i—1)| 2 (@2 @) gt

so0 we obtain

4. 6) E(tilntkln) =

! e
(n—k)!(i—711)1(k—z‘—l)!{—(”_k)g(l_@) Tptdt

><St%[qr{‘l(CI)—(IJl)"“'“]gofdt1+(k——i—l)j(l—cb)""k@zdt
jaq)[q)i HO—D, k'2]¢'i‘dt} (k=i+3),

every term of which belongs to J,, with g+v=n—4 at most. In particular,
if i=1,

! —k—1 2 i ) B—3
4.6.1) Bttt = gy, (k_B)!S(l—cb)" “igtat | (@0—@) s,
n! _ z ~
e — Py~ k2 . k-4 .2
—P)! (k—4)!j(1 )y rgrdt | (@—@)igtar,

Of course, if the denominator contains a factorial of negative integer, i.e. oo,
then that term must be reckoned as zero.

7) However, those below being almost @=pg=2, we write simply J. v for ]3"3
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§5. Some Properties concerning E(#,¢%,) with p,g=1,2,3..., and i==k.

Although computations of E(#7¢%) for p, g >1 are now postponed for
future, some general properties may here be discussed. We have indeed the
following identities :

(6.1)  E.tn) = E{}ntl,), and in particular Etnts) = Ey .ty

where /—=#n—i+1,  =n—k~+1. This can be shovyn similarly as (3. 2) proved:
Really by (4. 2), but now considering ®, ®, as two independent variables, and
t, ¢, as their functions

6.2 Blltntin) = Toun | H1—O" 40 [ RO O—0) D, (<)

From the relations i'=n—i+1, ¥ =w—Fk-+1, i<k, it follows that k’< ¢ and
n—i'=i—1, '—1=n—k, '—F—1=k—i—1, so that

E(218) = v, ,mg 2(1— D)~ 1d<I>S B DD ) gD, (K< i)

But v,..,=vw..1. by (1.5). Hence we have only to show that the above two
integrals are equal. The latter integral, on interchanging the order of in-
tegrations yields

Yﬁqy{—kd@ly tp(l_cp)iﬂ(q)_(pl)k—i—ldq) ,
0 @,

which, on changing the names of independent variables ®, ®, and their functions
t, t,, anew by ¥,=1—®, ¥=1—®, and T,, T, respectively, reduces to

w .
SITQ(l—\If)"-kd\yf YW1 (W — ) g,
0 0

The last integral, however, just equals that of (b.2), because the definite
integral is quite immaterial to the letters of integration variables.
Also, we can compute the value of

(503) 2 ZE thzm) for P,q=1,27""

k=2 {=1

which is useful for purpose to check calculations of cross moments of order
p+q. In fact we obtain by means of (4.1)

S n! q{1 __ n-k 2P '~1 —i-1
22 . ;1),(]?_1_1),5;5(1 ®) q)dtSt (®—® )+ i dt,

R
n k=1 k 2
—0 [ B G- rea |8 () ner@—ay g,
= 7=1
- [ 3 (18 ra—ayrepar (e,
= nin—1) St"(pdt S o, dt, .

To evaluate this, we transform (f,, #) into polar co-ordinates (7, ¢):
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sz/ =
E, = AL S 'sin?0 cos”ﬁdt?)( exp {—%—72} Pty

2w /4
»tq »

el [ en> e du @u=ry =" r <252f_‘1+1> I,

/4

where Ipq———s sin’0 cos?6d6 and their values as well as the required sum of
T/

expectations are tabulated in the following :

» 1 2 1 2 3 1
q 1 1 2 2 1 3

1 1 i
Toa & eV Ve 5 0 g

E 1 1 1
W1y v ~a i 5 0 0

More generally we have the following results:
(i) When p and ¢ both odd, E,,=0.
(ii) When one odd and the other even, e.g. let p=2r and ¢g=2s+1,
then

B, =" 2ene rfr s 3) 1

2 p9>
where
A NG oy o P 1
Ipq=zgo W (=) du = V2 33 (~1) <S>(2r+2s+1) >0,
whereas the value E,,=—FE,,.

(iii) When p and ¢ both even, the formulaes become somewhat intricate.
For simplicity, e. g. if we assume that p—=¢=2r, we get
— 1\2
E _ nn—1) <(21') > _
- 2 2y
Although for the present the above fragments suffice, with the purpose
of later reference to higher moments, let us consider some still further
general cases:
When the number of related arguments are 3, we obtain, similarly as in (5.3),

”

5.4 S EB@..E  (Q<i<i<k<n, n=3)
F=3 j=2 =1

. n—k ty (p - i EB—j-1
=!IS S @=L s, S %¢,t3dt,

(n—FB)]1 (—j—1)!
Q=Y TR
3 Goi— )T =1y 7
_ nn—1)(n—2)

[2 1.
N S Lipdl, S “tup dt S Ttrp.dt;
which vanishes, if all p, ¢, » be odd, and in particular

(5.5) AP E(titjtk) =0.
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Also

ISR = DR B ) =— DR R Bt = 2000,
and consequently
(6.7 P 23 2] {E(t%t]‘tk) +E(tit§tk) +E(titjtl%)} =0.

With 4 arguments, we have
6.8 AN EBemmn  0=i<i<k<Isn, n=9
=4 p=38 j=2 j=1

(1_(1))71—‘1 s tl ((1) ___(I) )l—k—l
== ! - NPT TR q
ng — @,tldtlg gy et

t (Pp— D)7 . 1, ( Dyt Pt

R R R e

t
= nln—1) =2 0—3) | tipsat, " tip,at, " 139 at, " 2p.as,

and particularly

5. 9) 2 E Z Z E(tit]tktl) =0.
No further values of p, g, 7 --- are needed if we confine ourselves up to
moments of order 3 and 4.

Returning to the case with 2 arguments, we have a remarkable identity
. 10) SVE(tyte) =1, (=12 -, n being fixed)
=1

which is very useful, as check, when all E(¢;,t.,,) are computed.
To prove (5.10), let us put
31="3) +E(t,) + 31 = (1) (i) + (i)

k=1

First by 4. 2)

(=35 o - Py ) - O iwdt | e @—) g dr,
= @=ar rS (=) grdt S ii(k—l()i!az)li—l)!q)?_l((p_q)l)i—k—l%ldf‘
7 l(z—z)'g (1— @) ’dtS i,
(;n' S (1—®)" i 2 pp/df .
Next by (2. b)
(ii)=E(t%m>=1—@_—i)’,_“(!l.—_1)—§ @ (1~ D) ] gl

And lastly again by (4. 2)

< n! B\~ P - _ i1/
(w11 —kg‘lls(n—k)!(z'—l)!(k—i—l)!j(1 ? detS e
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which, on interchanging the order of integrations, and rearranging factors,
equals

__L!L g=1 .7 = (ﬂ—l——l)‘ _ n—k(d __ Beim11

(n—z‘—l)!(i—l)!sq)l ‘Pldtlgtlkf%l(n—k)z(k—i—l)x (1= P HP—P)* ol
—_ n! 101 P\ ’
_(n—i—l)!(i—l)!scp A=) (—pgp')dt .

Therefore

glE(tilntkln) =1+ S (_n% S [i(i—‘1)(Di—2(1—q))"—i—i(n—i)(l)i”l(l_(I))""i—l

. d i—1 n-g ’
— i [P~ D) ’]] pp'dt ,
in which the integrand reduces to zero, and consequently the whole express-

ion reduces to unity, Q. E.D.

By virtue of (3.2.1) we have only to calculate E(¢;,) and E(¢?,) for each
set

A:t1<t2<"‘<t[7’%‘l]’ or B:tn>tn—17>.“>t[@+1 .

2
Of course

|E@)|=E(£,) >|E(t;) | =E(#,_) >, and E(#}) =E(#;) >E(@) =E(ls_,) > .

The mean E(¢;t,) is positive if i<k both belong to A only or B only,
and by (5.1) it suffices to calculate about A only. On the other hand, if ¢
and % be taken each from A and B, respectively, then E(#,) is negative. And
indeed E(#;1,) has the larger absolute value, the farther they lie from center.

§6. The Frequency Function of ¢ = >)¢;t;, &c.

So far we have discussed about E(f;,), E(t},) and E(f,,%,.,). Thereby
all the following, which concern with x,=m +of,;, could be computed :

Ex) =m+cE(t,), E(?) =m*+2mcE{t)+E({?), D*x,) =E(x)—E(x)*,
E(xx,) = m* +mo[E(,) +E({,) ] +c°E(tL,) .
Further, putting 2= Zii‘,c,x, and C:gciti under >l¢;=1 with ¢;>=0, all
the following also can bé _carried out: h
2= ¢cm+ot) =m+cl, EQ) =m+cE(), E@)=m’+2mcE() +7E),
E(@) =21¢,Et), EE) =2IciE(t) +2]_<Zk ;e E(t;t),
and finally
D*§) = E(")—E@©) = 2] c;[E(tH — E()"] +2,§<]k ¢c;c.LE(t, 1) —E{t)ER)],
D*(z) = 0" D*(§) = o 2] ¢ Var (£,) +26" 2 c;¢, Cov (¢, 1) .

i<k
However, before discussing D?*(z), as Cramér advises®, it is desirable first
to find the fr.f. g(z, m). Let us consider his example and find the fr. f.

8) Cramér, loc. cit., p. 483, 1. 8.
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g(&, 0) of &E=ct,+(1—2c)t,+ct,. Here the probability element is

6.1) dP—6d®,dP,d®= 5 (- L @enem)draa, @ <t.<t),
Now transforming {¢, ¢,, £,} into {3, 5., 35} orthogonally, as e.g.
1 1

x:—_: -—t%,
RRRVE AREVE

with v = /21— 2¢)2 = /1—4c+6¢ >0
1—-2c)t,— 2¢t,+(1—20)t,

Y, = ,
"k and J=Wudn ) g
=S5 (M_"?:C)tzﬂ (_—__— _§_> a(tl’ 1‘2, tg)
Y v/’
we get, on writing rows in columns,
1 1—2¢ c
1= + = s
V2 s Vet y Ja
2c 1—2¢
t2 = _— 2+ g ,
V2 77 y
£ == 1 1 26 C
| =

VA RV R
and, because of orthogonal transformation,

B+ =y +3+3.
The order ¢, <i{,<t, yields

VvV 2(1=30¢ Vv 2 (1—3e)¢

v _"Yy1(: A(yn g)) éj’zzw +(YV1(: B(VU é’)say) ’
and 3, =0,
With this order we obtain
6.2 dP=_% jexp{— L tratesd) dndndy,  (n=1),

and whence the required fr.f. to be

R P
6.3) &) =~ \/%ryexp{ 9, ), EXP | T g N dy, P dy, .
The last double integral yields, on transforming integration-variables (y,, ¥,)

into polar co-ordinates (7, 0)
6. 4) ”exp{—— %rz} rdrdf
D

in which D denotes the domain bounded by the two half straight lines KL,
KH (Fig. 1, 2 or 3 according as the y~intercept =0 or zero), whose equations
are y,=—=A(y,, {) and y,=B(y,, {), namely

¥ = Fyh++/ 2 1-3c)5/v = y tan(Fa) +b,
where @="Tan 'y denotes a positive accute angle and b=+/2(1—3¢){/y. O,
their Hessian equations are

y,cosPp+y,sinp =p,



Some Contributions to Order Statistics 55

Ya

o],m— =
|

Fig. 1 Fig. 2 Fig. 3
where

=10 _IV2A=398] _ e perpendicular distance from origin >0,
V1+ ¥ yV1+ v

@ — angle the perpendicular makes with -+ y-axis,

so that, in detail, if 8 ~%—a€ (positive accute angle), 1° in Fig. 1 (06 >0)
=325—a=[>’ for KL and 2° <p=—g+a=7t—ﬂ for KH, while 3° in Fig. 2
6<0), p=—(5 — @) == for KIf, and 4° p=— (5 +@&)=—(r—F) for KL.
We have, therefore, in all cases as their polar equations
R= psec (0—o).

Again, in detail, 1° R =psec(d—p), 2° R,=—psec(0+8), 3° R,=psec(¢+p),
4° R,=—psec(f—pB). Hence we have
Case I. For Fig. 1 (b=+/21—3¢)¢/y>0) (6.4) yields
@ oo /2 R, @ /2
(= deS e rrdre (a0 e vy = | eido+ | [e-R%/Z—e—R%/Z]de
D

R1 Ry —

/2 /2 .
_._._S e—k‘%/zdg__s e‘Ré/de
_o P
/2 pz /2 pz
=[Texp{~ L sect 0— )} ao— [ exp {~ Lseco+m)dao=Tsay.
i 2
Or, upon putting §—B=u and 0+ =u+, respectively, and p*= 2—2((1T+3—cz) £
= N¢?, we have, in view of a+B=7/2, v +y

. @ . N 2 2 . * ___]Y 2 2
J= S_mexp{ fg sec u} du S-wexp{ 5 £ sec u} du
o '3 o @ ——ZHV 5 .
-—S_w——ZSOexp{ 5 £ sec u} du.
Case II. For Fig. 2 (b=+/2 1—3c)¢/y<0)

oo

o R a
“ :S do . ey dy + g dHS e "rdr
D ~T/2 . Ry - Ro

-n/2

23

= 2 2 & 2
I P P
—7/2 —o

/2
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— S“ exp{— Dot (0 +B)} ao— S_w exp{— D sec? (9—:8)}079

—/2 2 —/2 2
/2 /2 2

==S exp{—gseczu} du— Sw exp{——%seczu} du=17].
—-C o

Case. III. For Fig. 3, b=+/2 (1—3¢){/y=0. In this case the two straight
lines OL, OH reduce to €= F«, so that

SS =j:dej:e-”/2 rdr —2a .

But, when c:iz , p—>0, as £—0 and lim J=2«, so that Case III may be

¢>0
attached to Case I or II by deeming its open integration-interval as closed :

b>=0 or 6<0. However, when c:%, we should consider this case as a
special one: Really, in this trivial case, aztan“(y:tan'l»l:, so that the

V'3

required fr. f. reduces to

(6. 5) 2(6) = namely N(o, l)

NG~ Nsexp{_z_%}’ 3

which is the fr. f. of the A. M.

Returning to the general case that c#% , {=0, we have to contemplate

6.6)  g(0) =i%exp{ } ]~myvzﬂexp{—2%}

Ty N2
@ N } 6 { Is 2 }d
X Soexp{ 5 & sec® u du~ﬂ \/,277;8 exp (M Nsec’u)  du,
where M=—1—2,N=gz(1——3cl—.
v ¥+
Thus g(¢) is an even function, and accordingly
6.7 Bler™) = e g@as =0.
Further
6 6 (¢ cos® udu
E@) = S . [ N ] d _cosudu
@) =2 feewdr = 2 [ [MaNsecru] "au= 2 [T _ccos udn
On computing the corresponding indefinite integral, we obtain
g_ cos’ udu zlg cos udu __]Xg cos udu
VMcos*u+N° MIVMcos>u+N MI/Mcossu+N’

_ LS cosudu _ﬁj cos udu

M J)/M+N—Msin*u M )/ M+N—Msin®u’®
_ 1 ~—1<V M >_ N sin u
s Wae N T MO N) VM N—Msint
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Substituting this result in the foregoing definite integral, we get
— E) = O [ —1l_£3vz-1)v]* : B —Dv3
6.9) m—E<r)~”7[«y sin” 5 — 87| =y D

SN TN NS Y
=13 3\/3]<c 5 =5

The above reduction is too much lengthy. We have already seen in §3
that E(©) =0, while p,=D?*(¢) will later be readily obtained in §11 by aid of
E(t;,t,,). Notwithstanding we dared to deduce the latter from the fr. f. g(0)
at the cost of a duplication, which, however, is intended to show that p,=E({")
can be likewise computed. In fact

— B¢ = (¢ _E“S4 {_Ef z}iL
= E(&) = Sé’ gdg —mysodu &t exp 5 (M+ N sec? u) NG
— B{S”‘ cos’ udu _ 1874551““0_—M
Tydov/ Mcosu+ N° 7 Jo VLIP—o°'
where v=sinz# and L= el 2ryr2. The corresponding indefinite
M V1+y
integral is
(v*—20*+1)dv _ dv o1 gkfw (L2 —1) dv
[ de 20 e [ 2w
v 20—LY (Lz—l)z[ 20 Ly ]
= e L R + ,
sin I +L2\/L2—1)2 J K VI 3\/L2—1)23
. . . . 2 .
in which, substituted v=sina=_—_"__ and L= 27 _ | yield
w su sin Vito n Vit yields
o, 1—39) 6+21y)
(6. 9) oy = 3o + AL .
We have seen that the coefficient of skewness is \—/!r“i,ér =0, but now the coe-
flicient of excess &
6.10) £ _3_30"+1=3/)6+2ly) /43w _4
3 Ly*+ (1 —3y)v/ 3 /27 F

~ 05 (semoy ) [reaen ] o i b

Therefore, g{(f) cannot indeed be normal, unless ryZ=1—4c+6c2=%, i.e.
C:_:O; 5
In general, the fr.f. of {=3]c¢;#, with >'¢;=1, might be found from
=1
the probability element

AP = 1 d®. dd, . b — " {_i % ol
= n1d®,d, - d%, = " exp|— 1 Syeldtdt, - dt,
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by a similar way, as shown for the case of AM. in Cramér’s treatise”, or
certain Fisher-like geometrical considerations, but certainly not without some
ingenious devices. Probably it will be expressed as a cumbrous definite
multiple integral. So here we content ourselves simply with the reconsider-
ation about the well known case of A. M.

As usual, we perform an orthogonal transformation of variables ({,, £,, -+, ¢,)
into (v,, %, =+, ¥,). To fix idea, let it be e.g.

tl tZ
S + 2 (>0,
4 V1.2 V1.2 =0
tl tz 2
£ - Tty
7 V2.3 V2.3 V2.3
R S S - SV £ SN S
Y= T AGED ViGHD vViGED Ty D
[ N S NS S U = B
m Vin—in vie—On vVie—tm = Vl-1n vVie—1n vn—1m"
tl tz t3 ti tn-—l tn
= 4 - 2 4 . e+ R b 4+ au L
I Vn Vn v n v Vn T Vm

where Jacobian J becomes (—1)*7%, so that |J|=1". On taking coefficients
of every column in the foregoing substitutions as those of successive rows,
we may write

PR S S SV / S Inoy Iy In
T 712 v23 V34 vVi(G+1) Vie-D)n—-2) vun—-1) +'n’
P VU S S | S Yn=2 In=1
z v12 v23 V34 /z(z+1) TV —1D)n—2) vam-1) 1) 1/11
2 Ys Yi I V-1 Y
fa = [ e SO,
: V237734 ViE+1) V-1 m—2) vuln— 1)+1/n
J Vit Yn—z Yn—-1 Vn
i = +—— i — - = =
1 v z(H—l)y VvV i+ DE+2) vVin—1)mn—2) vnln— 1)+1/n
to = +—n_2_ _-1)1‘__1.__
n1 D2 " Valn—1) /
n—1 A
tnz n—
+1/n(n 1)y 141/71
But, as ¢, ¢ <t

Lin— 1= @yz V%‘lyi—1 =0,

9) Cramér, loc. cit., p. 383.
10) Consequently our transformation is properly or improperly orthogonal, according as # is
odd or even.
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N i—1 .
ATy, =12 -, n—1).
therefore Vi Z A 77 Vi =12 n—1)
By these #—1 inequalities every ¥,, 3., ***, ¥,., is positive and bounded down-

wards, however y,=—=+/# (=0, and unbounded. Also, as consequence of
orthogonal transformation, it follows that

Z;t?:gy?,

and the probability element now becomes

dP———Z—La expg( an‘ 21 dt,dt, - dt,

_n! 1. . —

— L exp {—1 Sst)-dndn o dy,,  Gu=v7.
Therefore the fr.f. g(f) is given by
6.1 g@dr =7 exp{~ 5|y wdt | exp (—i/2dy,
X S T {—yi/2}dy, - Swg—%yiﬂexp {—yi/2}dy; - S\/@gzy,,_fxp {—yi../2Ydy,_,.

Here the (n—1)-ple integral being independent of all y’s, it reduces to some
constant C,, and we have

6.12) g0ds =, Coexp |~ Jnt? -/ de .
But
n!
(6.13) S (?)dé"—mﬁc .
Hence'™
(6. 14) = V2"
n.

and we obtain finally

1 /2] 1 1 2o 8.
6.15 = —gH el —_ — = (z—m)?[ =} ;
( ) g(©) 5 /ieXp{ f/n5 so g(2) V2 Z/ﬁnexp{ 2(2 m /n%

i.e. the theorem: The A.M. z=% > x,; distributes normally with mean m and

variance o?/n, which was the case when x,, x,, .-, x, are unordered and
independent of each other.

= /2 —2
1) Really Ci= | 0 W2y, =VZE, = o V2] o2y = (" a0 2 a2,
Y

and so on. Since we have obtained (6. 14) as a logical consequence from (6.11) (6.12) (6.13), we
need not prove (6.14) expressly, e.g. by mathematical induction, though it might be considered as a
rather difficult but superfluous exercise.



60 Yosikatu WATANABE &c.

PART 11

§7. Computation of J®. Rather more conveniently we shall compute

(7.1) K;w:j Upedt, where U=St¢dt,rp::\/—12’;e"2’2, (@=2,3, .

Since U(#) is an odd function, it yields always
(7. 2) K5 =0.
Hence, we have

0.9 Iy ={vrar={(5+0) =5 (3)(5) ke where p=[3].

Thus, to obtain J{* it suffices to know K§) for v=0, 1, 2, - ,p:[—]. We
shall compute K and J successively.
1° For A=0 evidently, if a>0,

@ — J@ ot — 1 5 g 1 —
Mo Kp=Jp={pdr=_ [ dt=— o —=c., ay.
In particular
— 2y — J2y 1 — 3 __ J3 - 1
(7.4.1) =K@ =]J§ = T and ¢ =K =] = T
2° For A=1, K{=0. But
1 1 1
@ — \ Hpo — il @ —_— @ —_
(7.5) T = @prat §<U+2>¢dr stdt > e
In particular
(2) — 1 3 1
(7.5.1) J§ e and JP = ey

3° For »=2, we observe, by means of polar co-ordinates, that

7.6) U@ = [ St tpdt]z =1 StSt exp {—% (x2+y2)} dxdy

2 Jodo

S:Mdﬁgtseceexp{-% 72} rdr = LSw[l—exp{—% 1 sec? 9}] do

I

0 7T Jo

I

1
T
%——% SMeXp {—% > sec® 9} dg.

0

Consequently
(@) 2. —_— ;1 —'_—\/(x - dG ]
K¥ _-Sl]gba’i,‘—c,,b[4 S

7 Jo Vat+sec? 6l

Here, owing to the absolute convergence of the concerned integral, the order
of integrations was interchanged. The alike would be tacitly and frequently
applied below. Now the above last integration performed, we have

14 do {VT . 9}|1t/4: v
(7.7) SO \7——:——C¥+S€(‘29 \/ESIH o sin Io wsm sdra
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Since the function plays very important roles in the subsequent, we shall
expressively denote it by

_\/a z/4 do _ 1. a
(7.8) S(a) = S 1 sin N/2(1+a)'
LT

7 Jo Va+secrl0 w
7S (2) = sin™ L_———cos = =tan™ 1

V3 3 NG

7zS(3) = sin™ V—g— =cos™! v% = tan™' V% .

If £ = vz 10;“ , A= 1—%5;52 and S((x)zlsin“l&, so that, e.g.

7T

E.g.
(7.8.1)

1 1 V3 . 1 11 ]11/38
I3 0 5 |T7 | 3 1 £>1 or imag. 75|73 ?1/? &
. 0 N | 3| -2 | -—2<a<0 % 2 3 &
1 1 1 1 . .
S(a) 0 5 v 3 5 imaginary 0.1339 0.1959| 0.2098 &c.

(7.8.2) S@) =L cos7 1 =1 secr1 4+
27 1+a
and its graph is as shown in Fig. 4.
S(@)=7— sec !(1+a)
________________________ L
2
1
B A I N
—~:2 5 @
Eig. 4.
Returning to our text, we have
1 1 . o 1
(7.9) ¥ =c, [4 ——; sin VW]=0w [Z'—S(C()],
(2) 1 [1 ] 3 1 [l_ ]
(7.9. 1) N —S(2) K =5-v3 |1 S@3)l, &ec.
Consequently
(7.10) Je = S <U2+l> pedt = Lo [1-25(@)].

(7.10.1) JP = [1 =251, J&= #~3:[1——25(3)], &e.
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4° For A=3, also K =0, but

@1) e = S [% +2 Uz] Pt =% KE,”“+% K = l c[1—-35@)].

(7.11.1) JP =" [1 3527, J&P=

”\/3 [1-3S13)], &ec.

5° However, for A=4, we have
K@= j Urpedt,
where

v=_ SS fexo| 1 @ rerrereey |dedsase,.

Transformed these 4-dimensional rectangular co-ordinates into general polar
co-ordinates®, we have

S 1 T /4 Ty Ty R T3 1 o .
Ut = do, S cos 8,40, \” cos 03d93$ exp {— P P'db
) o 0

¢ Jo

where =, =Tan ™" cos 8,, m,=tan™ (cos 6, cos 8,), 7,=1sec 0, sec &,sec ;. How-
ever, the above repeated integrals are too complicate to be actually performed.
Rather we prefer to avail the before obtained integral of (7.6):

K@ = | Uopodt — [l_l /4 {_l o 9} 9]2 @
b g podt 54 nso exp 2tsec dé | evdt

=5 7rat— = ot [ exp{— Froecro)
t— @ —_ g% do
=16 P o pedt . exp 5 sectd;d

1 S mdt 1t/4s1t/4 tz 29 2 g }d@d@’
por S exp {—E (sec? @ +sec’ &)

o

1_1 1 o (i G ey i 2 2 g7
:cw[TG 7S(a)+?4/2; S d@SO o jexp{—?(“'*'sec 0+sec 9)}dt].

12) Generally, if P(é,, --+, £,) be transformed into general polar coordinates:
£1=p COSBy—1CO88,_g " COS §3 COS 05 COS 0
Ey=p COS 8,1 COSByg et COS 03 COS 83 sin 0y
E£3=pC088,_1C088,_5" " cos @3 sin 9,

€y—1=p COS 6,1 Sin ;>
Ep=psin 6,
where p=OP and ¢; denotes the angle which the normal projection of the straight line OP on the

(i4+1)-dimensional subspace formed by &, &, -++-=- , &;+-axes, makes with the i—dimensional subspace
formed by &—, &5, ooee- , £&~axes. Then, the integral
Un—___l_ o I:ex {_ lsﬂw E2ldE dEy veeeee dt
\/2’71:'" o Jo 0 P 21.:1 i 1 2 n
is transformed into o
”n 4 Ty 2 Tn~2Tn—1
U=l S delg des dgy oo S S exp{——P}lfldP,
V 2n" 0 0 2 0 0 0
where m=Tan~* (cos 9,), 7,=Tan ! (cos 6, €08 85), =+ , Ta_g=Tan"* (cos #; cos 8, ---+-- COS 8,-5), but the
last 7,—,=1% sec 6; Secfy «=--- secO,_;, and |J| denotes the Jacobian of transformation agg)“;s—z—’.%é%;
yP1y 7Ty Un—1

thus for n=4 really |J|=p®cos 8, cos?8;.
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The last triple integral (I{® say), again (7.8) applied, reduces to
[;"” _ l/.a Sﬂﬂd@ Sﬂu 49’
7t Jo o Va+sec0+sec’ &

_Va S’”“ do sip-t a+sec’ 0
Jarsec 0 2[1+a+sec’ 0]’

72
which, if the integration variable be changed into #=sin 0, becomes

=1 (" _veade g i

7t Jo  Ja+l—an? 2[a+2— (a+1) w*)
-1 S“‘/T_ﬁ*\/a_du sec™ <a+1+ 1 >13) .
272 Jo  Ja+1—au® 1—uw
Or, upon putting «sin?@==(a+1) sin*+, we have by (7.7)
dyp _  Va

d0 ~ a+sec’ 0

ahd the integral I becomes

b1 s ala+1)/2
(7.12) I = | sin N/a(a+2’ﬁ)_tan2 s
Hence, we obtain
(7.13) K =t [%—S(a) +2[f,‘”]
and accordingly
(7. 14) J = [1-45@+21].
In particular
1 1 1
7.13.1) KP = [ S 2I<2>] ® — 1 s 2[<3>]
o g s, gl e

(2 . _ (2) 3) Iy ()
(7.14.1) JP=_ \/;[1 1s@ 2P, JP = \/3 [1—4S@) +2I%],

where'

1 (ese

(2)._.4_
I = 0 sin VS tan«p

[P — 1 (s v o
4 7Z2 go Sln 15 tan ’\’lr
6° TFor A=5, K =0,

I

252 ] _ 6
So - sec (1 +o A’ o “l'> vy,

Snsm 1 < 12

1
2w
Aol L+5— i)
O sec” (1+3 oy ) 4¥ -

dvr
dp =

(1.15) = K+ 2 Ko+ K = 2 [1-55(@) +51¢],

13) By numerical computations the second forms with inverse secants are convenient, because
they are free from radical signs.
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and
2 1 — 2y 3 — 1
(7.15.1) J§ =i [1—5S2)+5I&7], J§ = Iev3

However, if we carry out similarly with K :ij"'qﬂdt, we must treat
a furthermore complicated integral
4 e Sﬂsm - VW
== sin d o = a+tsec’d),
So va o a’(a’+2)—tan2«p~ Jr ( -+ )

so we give up to continue any more.

§8. Computations of Jzf for «, f=1,23,.«+; p,v=0,1,2,3,:-.™®
We wish to find

1) Jgg = | @rpeat | argtat,,
which are obtainable from

8.2) Ky = | Urpedt gt wpldt,
because

Ja wre ({1 L < “</II><»>(1>’“’”_"_k @B
(8.3) Jus j( >¢dtj(2+Ul>(pldtl_j=m=l. N Ko .

Also, in general,
Kep = grat | Utgrat, = (vtgsar, | vgrar
51

t
:S ‘frp‘fdtlH U”rpﬁdt—j U“¢Bdt] = K”K®—Kgf .

Therefore
(8. 4) Kgf+Kip = KPKP .
In particular, if at least one of u, » be odd, it yields, in view of (7.2),
8.4.1) Kgf+Kbp—= iec. Kbp=—Kzb (one of m, v odd).
Quite similarly
(8.5) Jud +J5e =TT

Now we shall compute K%f and J2, successively.

1° p=v=0.

K&f = Jaf — gqv“dt Stqnffdt —_ 1 _ Sj exp {—l (at2+3t%)} dtdt, .
| RVPZZAL R 2 !

where D denotes the domain #>{, in the {f,-rectangular co-ordinates plane,
So that if we transform them into polar co-ordinates (», ¢), D consists of

14) Although, for calculations of the second moments, it is enough to consider the case a=g=2
only, we have endeavoured to obtain rather more general formulas, because they are required for
calculations of higher ordered moments.
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geg% 0<7<co, and therefore

57 /4 SeCZ Hdg

SS js’”“ j exp {—% r*(c sin® 6 + B cos? 9)} rdr = Sm atan® 0+

D

1 ) {VE } 57 /4 1 [ % =0 51:/4] o=
:Tt _— 9 _ —— 10 aee =
Vag an s tan ' vap /4 /240 * z vap
Thus
1 1
a.B__ Ja.B __ = .
(8 6) Koo 00 2\/“,8 \/275 wtp- G 2 Culs
] 1 1 2 1 S 2
8.6.1) B 1 2 1 3 1 2
@ 1 1 1 1 1 1
K’ 2 W N7 | tnv3 | s | e &©

2° p=1, v=0. Since

jt 8t S°+jt 1 jt dt
17 = o= ; 19
P1 NI RG Ta 0‘P1
and U is odd, it yields that
K&f = S Upedt StqD‘Edtl = S podt St P dt, Stq‘}?dl‘l = S peI(t) dt

of which the inner integral I(#) is to be calculated below : Transforming again

into polar co-ordinates (#, 4r), as in (7.6), but now observing that here the

contributions from domains Og«pg% and %_g«pg% are different, we get

V27 B I(t) = S:S: exp {—% (#5+ Bt%)} dtdt,

= rud«jr Sisec qjexp {—%2 (sin® 2 + B cos? «,!r)} rdr

o

t cosec 2
+S d«[fS exp {——% (sin® «r + 3 cos® «Jr)} rdr.
After integrating about » and writing tanr=wu, we obtain
(50) 11—-exp{—t—z(u2+,6’)} wl—~exp{—£<l+£>}
It = —L S 2 du+—L. S 2\ w/ g
\V2m BT Jo W+ \V2m B )y w+ 3

Here we have assumed to be £ >0; however it remains the same with #< ¢
because I(#) is even. On substituting (8.7) in K%?, we have

S N Y oL e STt

a5 o [ (1)
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ZS: uzdfﬁ [\}E—Vuzja+ﬂ]+5j uffﬁ[éi—vm]
_ I*S“’ du _Sl du _g‘” udu ‘
Vade w+B Yo @+BVw+ra+B I +BV (@+1) i+

On performing integrations we get

[ - at+p+1
sSin

@)@+ S N/(a+/3 B+1)] —K&e.

(8.8)

10 - 272.

In particular, if B=«,

\ S
8.1 Ko =2 [sin V2O gy 2]
8 ) Tor sin ard sin V@D
_CE 1 1 <1>
= = IS =) = —K&*;
o O VBa+l) 2 “\a
and more particularly e. g.
so L g1y 1 oo 1 g
(8.8.1.1) w= L S(1) = Lsin® o = — Kir

Accordingly
8.9y Jgt= S <i+ U) pdt St phdt, = L gapikoe
2 2

—%w[é%( Y @iy Y @raEen))

son s La[bes2)], o= [hes(d)]

Also
(8.10) @b — JCdJB _ B‘”"‘%CNCB—J{%’“
1 1 1/, ] a¥B+i _.,w/‘ B >]
ga— 1 o1 _gf1 o 1 [1 (l)
(8.10.1) p ch[z s(a)], R 8”[2 S(3 |-
3° /1,_—_—1,):]_

t
K= | vpedt | Ugtat, .
Here evidently the inner integral becomes even and the whole integrand odd,
so that
(8.11) K#f=0.
However

1 14, 1 1
@B _— @ B
8.12) Je _5<—~2+U>90 dtS <2+U)<pldt vy aB = g Cale -



Some Contributions to Order Statistics 67

£
4° w=2, v=0. Observing that go(p-?dt is odd, we get readily

8.13) Kg*=| Upedt | | ptat, +S’<p~§dt1] =2 Kw="1c, [%—S(a)].
[}

(8.14) oP = 1 Kt Kaf Kot

:%cwcﬁ[%—S(a) +%<sin‘w/%l—) ——Sin_w/mﬁ?(ﬁ?—+l)>] g
8.14.1) Jxo— é_ ¢ [%—sm) +s<%>] e 8% [%—8(2) +s<_;_>] :

Also for p=0, v=2:

(8.15) KgP= K»KP—-K&*— % CuCs [—‘L

L-s@)].

(8.16)  Jgt= I —JE

1 r1 (g @+B+T T B
:fcwcﬁ[—z——s(ﬁ)—; <Sln / (@D (B+1) S0 N/mmﬂ

a0 s s s-s(2). - (3-se-s(2).
5° p=2, »=1.

Kgf= g Utpdt St Ugidt,, where U, = S @(r) dr .

0

The inner integral is

J[t Ugpbdt, = S+St — (i) + (i) .
Here

V2R (i) = S dt, S:lexp { —% (Btf+¢2)} dr

= — SM/Zd«p« S: exp {———;—2 (B sin’ +fr + cos’ «p)} rdr

5/4

—_ (" du . _ —_ |1 Bul|l =1 n L
- §11+,8u2(u tan ) [\/B,tan\/ﬁ?ul \/B,tan\/ﬁ,,

and accordingly we have

R SN
W="Tgvam " U5

Hence the corresponding whole integral becomes

) =— S tan— L. K= —La%8 tapn .

1 [ﬁ
2w VB 2 VB L4
On the other hand k

——S(at)] .
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V2w B (i) = S: exp {——g z‘f} dt, g: exp {—-% '7'2} dr

[Caw [ exp [~ @ sint g cost )] rar

wla

[l 5 -)] e

I

I

Here we have assumed ¢ >0. However for <0 it results the same.

the contribution from (ii) is, making use of the above and (7.6),
4
@ = | vpeat | Ugtar,
1 1 1 x4 tZ
1 Ll 1 — P secr 0l do
\/27z“+5+1SeXp{ 5 at}[4 ~ SO exp{ 5 sec }d ]dt
gt {7 (B4 5]
1— S =
x Sl 1+ B0 = 2 '84-1)2
= Jeewn) 1o Lo {5 e {5 (v )]
Jom S 11+ﬁz;2§ exp > ) —exp > +,6’+vz
X [l——l SMeXp {—-tisec2 6} d@] dt
7 2

4 0
= (II)’ — (II)"" .

Hence

where (II) and (IT)"” correspond to two terms in the latest square brackets.

Integrating (II)’ in regards to £,

r 1 1 (v dv _ [~ vdv
A= omars [va e ) (1+/3’72)\/de,8)1)2]
e [sin‘1 Bd+a+8) —tan B ] .

= 8 (a+B)1+8B)
Also (7.7) being applied,
" 1 oo dU 14 { tz ) }
= - o — o
(IT) O Sl 1147 So d S[exp o {a4-sec? 0)
—exp {_522_<ac+,8+;12—+sec2 6)}] dt

f

_L_g“ dv S’”“[ 1 _ 1 ]d@
7/ 2m B )1 14+B02 o L/ adsec’ @ Va+3+i+sec29
1)2

1 [-1- tan“L-S(a’»)
7T

o VB
—Vas Sw vdy sin™* MQ_J .
7 (L BIVI+ (@ +B) v 1+ 1+a+h) o

Therefore

1 1 . a
B.17)  Kgt— (D + (@) — )" =5 cuts [“17? sin”" M Wmﬁ[gﬂ] ,
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where
vVap (= vdy . - 1+(@+B)v°
8.18 I3f—= S— !
®.18) - S A+ BANI+ (@B Av/2[1+(1+06+B)02]
Z\/@SI du sin”«/ wta+f
7zt Jo P+ B)NVU+a+ B 2+ a+B+1)
8.18.1 g0 & ' du : _W/M
( ) p S wravi+2a Y owtzari)
_ Slsec_1 (w+2a41) du
272 Jo (W) +2a
va—l 2 __l l) .0
(8.17.1) Kgo=1 c,,,[ s S<a neo ]
1 1 1
8.17.1.1 Kgfz_[—_s<_) [§;2].
( ) 87 4 2 *
And

(8.19) JuB = S (i+ U)z podt S’ <%+ a) Phdt,

Il
oo |-
I

8%+ 3 K5+ Kg*+ L K5+ Kg®

CewaT1 1 1 /. ] axB+1

Caainia o E ) B N s
S W&a+ﬁnﬁ+1y+““ Naa+ﬁua+n)+bl]'
1 1 1
8.19.1 == z[__i S(a Igl,w] ,
( ) T I
here the relation sin™ V142 = 2sin™! % has been used. And
l+a V21 +a)
s 1 [1_ 1 2,2 :
(8.19.1.1) = [4 : S(2)+Im] with
22 1 (' sec™! (u?+5)
8.19.1.2 J P =\ AT LR L
( ) 7? So @+ 2)\V u’ + 4

Also for p=1, v=2,

KgP= —K&e and

(8.20) Juf= @]~ Jhe
cs 1 1 1 (pmia/ @+B+1
_ 23[Z~-2—5<B>—47<8m N/@Im

— 3sin™ N/m%m“in”ﬂ/ﬁ;ﬂ%@“] .

0
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@ 1 2 1 1 Dot
<8 20. 1) 12 ZEcw [‘4‘_58(“)—‘171 ],
171 1
.20.1.1 gézz_[ﬁ_ﬂsz _ree].
® ) 8z L4 2 @ ]

6° p=3, v=0. U’({) being odd,
Kgf— S Usgpedt S Phdt, — S Usgadt S pidt, — S Urgadt S P, S:q)f‘dt1

- j [l_l S“”exp { S a} d@] pa. It dt  (availed (7. 6))
4 m Jo 2

= {D—{1Dh,

where (I) and (II) correspond to the two terms in the square brackets, and
I(t) is the same as in (8.7). Hence by (8.8)

(D__le-B__fw_Q!i[ : —1«/_%_{_’8#1_ - —1«/,‘a__
=g T g | Y a1y (B1) TSR (oc+,8)(8+1)]'
As to (II), still availing (8.7) and integrating about #, we obtain

1 i > du ! du
Ih=—— _\ dé -
= 7r\/27r”“’3go [So (@ + BV a+sec? 0 go(u2+ﬁ’)\/u2+a+/3+sec20

-1 Vdu_“ﬂ]
@ +BN 1+a+sec® 0+ 7

which, on interchanging the order of integrations and applying (7. 8), yields

1 1 \/@ 1 du - W+ a+fB
8.21) (I) = 2 cycq | = Sla)— N ot asBr)
@8.21) () = -cac, [2 S == {go W BN BB Vz(u2+a+6+1)

- udu Y b o vy
+Sl W+ BN At w B */2[(2+a> u2+B]}]'
Hence we obtain
8.22 we_ CaCs [ L (. ) ¥+l [ a
6.2 Kgr= Zlﬁwkm VW+DW+D mldw+&m+n}

— 5 Ste +15°,

where, according to (8.21) and (8. 18),

(8.23) IsP— g+ Y B S“’ udu sin*w/ A+ +pB
7% BV (1 +a) w+ B 2[2+a) w’+ 5]

:[g-%@&l dv gin-ia/ 1Fa+BY

In particular
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ck 1
(8.23.1) Ko =2 {S<—>—ZS(6¥) +4I§%'“} :
8 a
1 (1 /1) 1
8.23.1.1 K= L {_s<_>_ﬁ S [gbz} — K32
( ) o 11 S5 )5 S@+ K
Consequently

=

(8. 24) gf)'ﬁ=g< +U> “dts pedt, = L K%ﬁ+4 K;”OB+2 Kof 4+ Kaf

2
. \ (. asB+l
3 o[ 5 —28@+ 1 fsin [

—im W i) 415

e ) RO
(8.24.1) 2 _2[2 25(a)+s< >+I ]
(8.24.1.1) m:L[_l_—25(2)+s<l>+lz-z] with
30 87[ 2 2 30
2 dv ., [13+20°
8.24.1.2 IR re O wwr
( ) = So<1+202)\/3+2028m 8+4v
— J2.2 1 SeC_1(4+2’02)
=i L
7 So(1+21)2)\/3+21)2

Lastly Kgf= —K£§®, and

(8.25) %8 = J§JP— Jho = Ca’8 [%—S(B) —% {sin_W/ ;m

2 (a+1)(B+1)
(8.25.1) Joo— 1 [%_ S(et)— s< _(1)7 >_ ,]
(8.25.1.1) 2 = 8:51 [ —5(2)—5%)—1362] .

Although it could be computed similarly for
¢ 4
Isgy= o gpeat (orgtar, ["orprar, tztzt) &,

which are requisite for calculations of E (¢},,#}.%,) &c., it is postponed for
future.

For purpose of later references we have tabulated the values of K@, J*,
for «=2,3 (Table I) and those of K,,, J,, (Table II)*:

15) For calculations of the 2nd moments, KEE and ]%3 being only of use, these are below simply
expressed as Kuv, Juv.
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Table 1
A K® K Je e
0 Ve v v BT
! 0 0 v ek
2| o=(3-5®) i1 ) | melem@) | sl-2®)]
3 0 0 W=[1—35<2>] 1#51—33(3)3
4 4\/1—;[%—5(2)%152)] i wi/s[ s<3>+21<3>] I \/4[1 ~48@+2r ]| \/3 [1-4S(3)+21$]
5 0 0 o 1-5S@+5I@] L1 -55@)+5159)
Table II
u v Kuv Juy
0 0 = =
1 0 817:5(1> 8%[_12_%(%)]
o | 1 K sl 252
1 1 0 é_;
2 | o 5|3 -5®] |z 5@+5(3)]
o | 2 Koo sel3-5@-5(3)]
2 1 S (3] e 47 SO I
1 2 ~ K, slw[% % @) - 121]
3 0 é[is(%)-%sawgﬁ] 81—75 %—25(2)+s( >+130]
o | L[3-se-s(3)1]

§9. Calculations of E(2,,), E(t:,) and E(t,,%,,).
i |

By means of foumulas in Part I, and the above Table I, II, we have
calculated E(t;,), E(t;,) as well as E(¢;,%,,) up to n="7, the results of which
are tabulated below in Table III and IV. (As to numerical approximations,
cf. §10).
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Table HI (Expectations of #y, and #,) *®

nli ]n—i+1} E(tyn) = —Etyi11) E(tm)=E(f_; 1)
1

al2] 1 l —=0.5641896 1
3 3l 1 1 5%:0.8462844 1+ﬁ_1 2756644

2 } 0 1-Y 8 o 4486711

T
3 V'3

Al 1 S 1-25@) 10203754 1+ 3 —15513289
4

3l o \/_3,;( —14-65(2))=0.2970114 1 —\%iﬂo 4486711

51 1 V%(1 —35(2)) =1.1629645 1+5f3 [1-25(3)7=1.8000204
504 2 V%( ~14+65(2)) =0.4950190 1+ﬂ§[ 1+45(3)]=0.5565627

3 0 5\/ 3 [1-65(3)7=0.2868337

6l 1 \/; [1-45(2)+2I{]=1.2672064 +A4_[1 35(3)1=2.0217301
65| 2 -2—\/—_7;[—1+ss<2>—1015@]:0.6417550 1+5l\_/_3r 24-95(3)]=0.6914273

el 2 \/3_%_ [0 = S(2)+5I§27]=0.2015468 1 1+5ii[1 65(3)]=0.2868337

11| g ness@isreimsms | 1P s@ s L)z

6| 2 5 \/_[ 1410S(2) — 201 {»=0.7573743 1+%[ ‘—|—3S(3) —31§3)]=o.8303490
! 51 3 | 528 10-5(2)-+-518]=0.3527069 14-3V3 [ ~35(3) 1‘”]—0 3441234

N T e t
4 0 | 1+35\/3 [o+zs<3) 101<3>] 0.2104481
f [
Where S(a) =1 sin‘W/L so that S(2)= i sin’l—l: = 0.1959132760
20 +a)’ 7 V'3 ’ ’
S@) =1 sin” V 3 = 02097846884, and S )= L sin L —0.1338602364.
2) = V' 6

1 (=St | _lv a(e+1)/2 )
(o) e =
Also I® == = SO sin @12 tanzq,lrdl‘!” so that I$» =0.04156 42048, and

I =0.04604 86206.

16) Although some of our results apparently differ in form from those of Godwin, loc. cit. p. 284,

all of them do really coincide, as e.g. F(z‘m)—«i[ﬁsm'li—l] 73: [i—isin"li], because
Vrlz 4 Vrel2 = 3

2 51n‘1\7:+s1n :1)’= 2’ &c. The same can be said about Table IV below,
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Table IV

Yosikatu WATANABE &c.

(Expectations of Products £, 7, for i==k)

n titk tn*lH-l tp_i+1 E(ti‘n tkln>:E(tn—k+1ln tn—i+l|n>
2 |t 0
tts tts %%:0.2756644
3 _
hts - \% — — 05513289
tht, o 73 —0.5513289
ity trta §:2—7;/—3=0.1477281
4 .
41, ~2 = _o.0549207
bty 23/_#73;':'3 —0.1477281
tt, by 5‘% 3[1_ s(s)]:o.sooozoz;
15
fts ft, ;[% s(%)] V3 N3 1425()1=01481477
Lty Iy ts %5[ - %+3S (—;) ] = —0.4699175
5
f1s % [o 28 %)] — —1.2782711
tts 0 }7;5[—%+S(%)]+5%§[ ! +S(3):]:0.2084354
) i—5[1 —48 (% }+5\/ 8 [0-45(3)] = - 00951011
R e 527/?3 [1-35(3)]=1.0217391
fits tyts 475 %— S(2)-§ (%)}%é [ - 2+-65(3)1=0.3048367
45 1
4, t1 —14-35(2)+-3S 5) — 01529720
tits tots ‘%[1 ~45(2)—-25 (% } = 07358723
6 | tt % [ - %+2s (2)] = — 15494705
bty tt, 47?[ —;— +S@)+S (%)] V807 0318330
ft, hi & [% ~35(2) - 5S ';“)]‘}“5\/ 3 [0-65(3)T=0.0103204
45 1
b, 2| ~2+65(2) +65 3> = — 0.3059441
.
tt, %5 [ - —;—+0+ 28 (é) ]+~7£§ [04+65(3)] =0.1426517
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Table IV (Continued)

7 [75 790 B PG Y R E(ti!u tkln)zEO‘nfk—HIntn~-i+1ln>
t b Ity B3 3[ -S(H+— I<3>] =1.2203041
5
he |t | g es@-s(F)-naro [f B[ - ras-np] —osososes
1

fi, thty %[ —S(2> 145 (—) L o- 312,1] =0.0984870

105[ 3
4 t1, > [545(2) 65( ) 613,0+1212,1] v = — 0.4003630
t by bty %[ ~43~ S(2)+58< )+513,0—1512,1] — - 0.9641864
tt, 72~[0+S(2) 25( ) 213,04—612,1] = 17835842

7 .

bty st 1725[ %+S(2)+S(‘_>+13,0+0—]+35\7f = [-1+o - 31,{@] —0.4416147
Lot t b 125[2 48(2) - 75(—/) 4130+6121]+3ﬁ‘4_3-[0 25(3) - 4I<3>] 01307293

1051 15 21
fo 8 1, 7;[ ot S(‘2)+15S(5)+613,0—2712,1] =~ 01651763
by, —25[3 85(2) - 145( ) 813,0+3612,1] = — 04936345
tt, 4t 125[ % s<2)+3s( >+o 31, 1]+3 \/3[o+s<3)+1(3>] —0.1655597
tots 1725[3 95(2) 125( >+o+1812,1]+ 5‘7?3 [o+o~61§3)] =0.0052035

g +
Where o S _sec W +D) g, .02940 08395,
7% Jo (12 + 2\’ +4

L,=1I. +L g sec (20 +4) 4, .07808 12767 .

v +1)V20°+3

§10. Checks by Numerical Integrations. We have so far obtained ex-
plicit forms of all E(¢,,), E\¢},) and E(t;,t,,) upto n=7. They are expressed

by the combinations of constants S(2), S(3), S <%> and integrals I, L, ,, I, ,

But, to check our results e.g. by comparing with Godwin’s, their numerlcal
values are requisite,

First to compute

__l Q] 124 __]; -1
(10. 1) S@ = L-sin vm = o sec” (1+a),

we need to know inverse-secants, which would be found e.g. from Chamber’s
seven-figures mathematical tables. In fact, by making use of the law of P. P,
we found

S(@ = 0.19591 32677, S(3) = 0.20978 46759, s(%) — 0.13386 02324,
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To ascertain the precision of these figures, we have alternatively evaluated
them by expanding sec™ X into series:

T (Zu—) 1 1 7 1 20 X

QIS yzo % HAIXT T3 T XS @ )2l
_r Jl.d, 31,51, % 1, 6 1, ]
) [X tex T T2 x Tiise X T oge X T

and obtained, by taking a sufficiently many number of terms,
(10.3) S@) =0.19591 32760, S(3) = 0.20978 46884, S(%) = 0,13386 02364 .

Thus even those before obtained from simple P.P. already agree with true
values up to the seventh decimal place, so that by the following numerical
integrations the values of inverse-secants were frequently evaluated simply
by aid of the law of P.P. from Chamber’s tables, the results of which are
however reliable to seven efficient figures.

Next to evaluate

w L[y V CEANZ gy L (e ala+1)]
(10.4) I _7[250 sin™* ) 02y = 215 sec {14+ ZEE T  dy

=23 .
}:-—f(t), we have

a(a+1)

After Gauss, putting y=-1 (1+1)75() and sec™ {1 o

@)y — 1 “ —
14 "—Q;S(a)fi_}va(tv)’ (a—zy 3)

Since tan S{2) =0.198:--< 4/ 2 and tan S(3)=0.212---€ /3, the integrand of
(10. 4) is surely regular in [#]<1, so that its Maclaurin’s expansion Z_‘, c, t
converges absolutely and uniformly in |#]<1. Therefore, if m be taken
appropriately large, the integrand may be approximated by Z c,t’, a polyno-
mial of degree m. Hence, Gauss’ method of numerical :iv;l‘zegrations by n

selected ordinates would certainly give a good approximation for the integral,
if m<2n—1, We have taken as #=>5, m =9, and obtained

(10. 5) I =0.04156 420, ¥ = 0.04604 862 .

To secure how many figures are correct, we have after Gauss to find the
upper bound of errors

— 1 e
F,=c,Q,, where ¢,, = 20 SO0 .

However, as it is utterly cumbersome to get the 2n—th (here tenth) derivative,
so we proceed to compute Gauss’ approximations at any rate, and check them
for some known results. Really, we calculated I, I® from our Table III,
using some explicit expressions of E(t;,), E(ti,), say E(t,,), E(},, whose
numerical values are given in Godwin’s paper, and found
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I? = 0.04156 420, I =0.04604 862.

These coincide precisely with our results (10.5).
Lastly to evaluate

1 -1 2 0 1
ep | _sec’G+2) =S ZLS
(10. 6) = Brmorea =\ =5\ fwds.
Here the integrand f(x) is also regular in (—1—¢, 1+¢&) and expansible in a
Maclaurin’s series, which is uniformly and absolutely convergent in (—1, 1)
Hence, on taking the partial sum >c,x* adequately, again Gauss’ method is
v=0

applicable. However, now that

(1 + % x> — 1—05%,+0.25x—0,1254° +0.06252°— 0.031255° — -+ &. ,

the convergency is rather slow in the vicinity of x=1, and if we make #=75,
m =9, the error shall possibly take place at the third decimal place or there-
abouts. Also, in the integral

0y [+ secT'4+2x% _1if
(10.7) 7Ly, o1, ) = Somﬁ'—m dx = 5 S_lf(x)dx

the factor (1+2x%)7' being already not regular on |x|=1/+/2 in the complex
x—plane, the relating Maclaurin’s series cannot be uniformly convergent in
|x] <1, so that the applicability of Gauss’ method becomes even doubtful.
In fact, on applying this method, as =7, we obtained

I, ., =0.02943 033, I, ,=0.07902 063,

which are inacculate, since they make

Covttin, tu) = Eltunta) =10[ — 5 + 3 S(2) +45( ) +41, .~3L,, | =0.10079 -,

while Godwin’s result informs to be 0.09849. Of course, if we put x=
1

sec‘1{5+—;—(1+t)2} 8 10
‘2—(1+t) and W:g(t), we get Ile?ng_lg(t)dt:

%‘ﬁ R,g(t,). Whence we found, as »=15, I, ,==0.02940 083 and similarly 7, ,
=1

=0.07901 226 but Cov(t,,, t,,) =0.10263. This is worse than before obtained

one, in which however we took, as n="17.
Rather, if computed after Simpson’s rule with twenty subdivisions, we
obtain

L, , = 0.02940 082, I, ,=0.07898 295 and Cov (¢, ) =0.09870,

which is still aberrant from Godwin’s result though, yet somewhat nearer
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than those obtained before by Gauss’ method'”. Therefore we have contrived
another method of approximation as follows :
On applying (10. 2) the inverse-secant in the integrand of (10.6) is

= [ 2v
SeC ¥ +5) =5 — Dy v+ 1) (5P

in which, already for »=>5, the corresponding term becomes <l—0—9 and also
the total remainder inclusive this term R < = i [1+ + Pkl ]<10g Hence,

when K, be substituted in (10. 6) and integrated, it Would be at most amount

<Ll—1[—2><—1%<i%1—0 . Therefore, to obtain an approximate value of I,,, up to the

tenth decimal place, we may neglect R, and take only five terms in summation.
Thus it suffices to compute

dx for »= 1

0.8 L=| e 2

,]_,...,5‘

Or, putting x=2tan 0, we obtain

1 s/ cos*™! 640 1 Sw (1—#)> dt

2 - @+7) 6=

10.9) 1,= 0 (1+sin?6)G—sin? 6> — 2°),
(t=sinb).

17) We have also tried Markov-Berger’s method of numerical integrations; Really we have from
formulas in Tables II and III

Ko o= S Uz dt S Wdtl—s [Ia 0= S+ S (%)] .
On the other hand after Markov and Berger

Kopo= IS\/FU%#S

rO=g{ [l L[ el

can be found from the tables of Probability Integrals. L1kew1se

1 1 1
KZ'Fs‘w[’z’“IS(E)]

S oL dt= SAF®,

where

¢ _2
and Ky = SUZ@Z dtg U, 2dt= Sf—t_f(t)dt= ﬁ A F @D,
vV i=1
o (&
it FO=UOV® and V=5 = | vpean= "+ [~
[}
dt (*
where (1)—2\/43‘ U, ¢,2 dtl—z\/_g e ’122~”S01e‘72/2\7dz%%
=—— Si/z do S exp {— — (cos?+2 sin%) rdr——1~ tan“‘—l—
752\/5 /s Jo 2 }' " 8n? V2
/2 tcosecq 72 3 -
and (ii)= 4752\/2 S do SO exp{— ——(cos?0+-2 sin 0)} rdr
1 11 —exp{ —3(14u2)} -
iz S 2w du (w=cot )

which for every #=# can be computed by Gauss. Thus when K, and K,; be found, we can thereby
calculate ;)4 and Ip,;. However, the results obtained as #=7 were very unpleasing.
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These were exactly integrated, and the required integral is nearly

ifn 1, . 3,.5 35 \1_
(10.10) I, — ?[? <I rin+ el +11521>] — 0.02040 08395,

Similarly with (10.7), we have

. 1T = _ l 3 35
(10.11) L,= Iz,1+'7?z [iz—]ﬁ <]1+ 6 ]2—,-4T)]3 112 ]4 1152 ]5>] ’

where

dx
10. 12 —
| O g 29 v/ 3+ 27 (4 + 2472
— 5_17 tan~ 1,373 COS‘W 1 6d9 B /\/F“ 9)
vz S (1+2sin?6) (4-sin®0)>* <x tan
1 Q=ytde < . 1 )
o \/?So (1+254—)> ! t=sinb, v = .12 -, 5).

Whence its numerical value was obtained as
(10.13) I, , = 0.0789812767, approximately.

These values being substituted, now yields
Cov (¢,,,, t,,) = 0.0984869917

which coincides with Godwin’s result.

By making use of (10.3) (10.5) (10.10) and (10.13) numerical values in
Tables III and IV were obtained up to the seventh decimal place, all of which
agree with those in Godwin’s paper.

§11. Variance D?*({). We have seen in §6 that, if 2=>"¢,x;, Xl¢c;=1,
x,=m-+ot;,, L=2¢;t;, s0 E@@)=m-+cE(), D*(2)=0*D*(§) with E()=2 ¢,E(t)
and

(11.1) D*&) = c,; Var (¢;,) + Z Z} c;c, Cov (¢;,,, tin)

I

TI‘M?: “M?'

GLEH—E(,)"] +Z]l ; c;c,[EW;t,)—E{t)E({,)] = u say.

Let us consider its relative minimum under condition >)c¢;=1. For this we
$=1
have to find the absolute minimum of the function.

(11.2) W= u—22\0 with v=>¢;—1
so that
o
(1.3 5 5f = [BE)~EE) 1+ 5 alBe 1)~ B -3 =0,
viz.

S alEW ) B EE) =2 (=12, 7).
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Hence we obtain by G. Cramer’s formula

(11. 4) G=AJA  (h=1,2 -, n),

where

E(t,t)—E@¢)EW,) --- E@,1,) — E() E@#,) -+ E(4,1,)— E(@) E@#,)

.................................................................................

A = E(t;t)—E{t) Et) - E(t,t,) —E({) E(t,) -+~ E{;1,) — E(t) E(£,)

.................................................................................

E(t,t)—E()E() -+ E,t)—E¢)E®) -+ E¢,t) —E@)EE,)
Et,t)—E@#)E(t) - 3 Bt t)— E(t) 3 Bt - E,£)~ E®) E(t,)

.......................................................................................

=| E;t) —E(EW) - S EW;1)—E(t) S EW) - Etit,)— EG) E(,)

.......................................................................................

Et,t)—E()E®) - Z Ett)—E ()EZZ‘;E(Z‘;B)'"E(fntn)—E(tn)E(tn)

But SN E(t4)—E(t) SVE(t) =1 (i=1, 2, -+, n), in view of (5.10) and (3.1), so
k=1 k=1
A, =2AA and consequently ¢, =X (k=12 -, n).

Hence ¢,=c,==¢ —l and E( ——ZE(tk)—O Ez)—%ZE(x ——Z

[m+cE({)]=m. Thus, the theorem that the A. M. x:—Zx is the efﬁ01ent
estimate of population mean, which is the case for any unordered sample
with independent individuals, still remains true for any ordered sample with
non-independent individuals also. In fact, E() =0, E(Z)=m, so % is unbiased,
and besides, in virtue of (5.3) and (3.1)

D*( 0 —-*[ZE (%)) +z]1fv_‘l::Et ) — {i}lE(ti)}z]:%é[n+o+0]=%.
Hence
{11.9) D*@) = */n.

More specially, if we consider the case that ¢,_, ,=¢c; for i=1,2, .-, [n/2] '
with Z ¢;=1, and if #=2p+1, making c,,,=1— 220,, we see that by the
above theorem that every D?*¢) cannot be smaller than 1/n. This can be
directly shown by formation of actual expressions, on substituting those values

E(t;.,), E@#,) and E(t;,t,,) of Tables III and IV in (11.1):
1° =3 (Cramér’s example): c¢,=c¢,=c¢, ¢,=1—2¢. We get readily

e D =1i+dee-svm(c—3), D@=rD0O =T
2° n=4: c¢,=c¢,=c, cz:Ca'—:l —C.

2
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(1. 7) DE) = —+_(2n+4\/3 3(0-—%>2, DZ(z)g%:.

3° n=5: ¢,=c¢,=¢, c,=c,=c, ¢;=1—2c—2¢. We assume D?*() to be of
the form:

(11. 8) D*(¢) = %+A<c+c’———§—>z+3<c—%>z+ C<c’—— %)

To find A, we ask the coefficient of 2¢¢’ in the obtained expression of D*(f).
This is really

A=44+23 7-385@3)7+1 [GS<> ]>0

On subtractidg %+A<c+c’—~%>2 from D?(), the remainder decomposes into

a sum of squares whose coefficients are
B=2+20Y3 32531~ [3+zs< )] ~0,
¢ =2-15Y3 132537+ [7 11s< )] ~0.

4° n=6: c,=c,=¢, C,=C;=C, C3=C4=%—C—C. Assuming again as before
1= o §) o ool 1)
(11.9) D(§)—6+A<c+c LY+ Ble— )+ 0(e =),

and asking the coefficient of 2¢c¢’/, we find

A=2+3V3 [1 53 ]+18—0[ —25(2) +s< )] ~0.

6
decomposes into a sum of squares whose coefficients are

B=2+30Y3 114537+ [S(2)—2S<l>] ~0,

c=2+8V3 4517 +% [ 9+285(2)+285( )]>0

Subtracting l+A<c+c —%)2 from the expression of D?*{), the remainder

5° n=T: ¢,=c,=¢, C,=C=C, c=C=c¢", ¢,=1—2¢—2c'—2¢”". Assuming
(11. 10) D*¢) = —+A<c B %—>Z+B<c+c”—%>z+ C<c+c’-~%>2
1 2 ,_i 2 //__l 2
+H<c 7) +K<c 7) +L<c = >,
and asking the coefficients of 2¢’c¢”, 2¢¢” and 2¢c¢’, we find

A=443Y 3[ +125(3) — 631;3>]+125[ ?3+33S( )+48S<%>

2
—6612,1+3013,0] >0,
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B=14+38Y3 [—1 +85(3) —-46[5,,“”] +1§ [12—245(2) —425(%)
+4812,1—3013,0] ~0,

.33 B g] 1057 9 1
C=4+3Y [7_+14S(3) 551 +7[ 7+7S(2)+225<?>
—4212,1+1013,0] 0.
1 . 2\ .2\ , 2y
Subtracting 7+A ' +c — +B{c+c - +C<c+c—7 from the

whole expression of D?(f), we see that the remainder decomposes into a sum
of three squares whose coefficients are

H— 2+35\/ 3 [1-165() +62/]+12 [g —S(Z)—lGS(%)

+3012,1—1613,0] ~0,
K= 2+35\/ 3 [—2+45@3) +621]+1% [8—24 S@)— 425(%_)
+13212,1—2413,0] ~0,

L — 2+35\/ 3 [1—26S(3) +64/] +105 [27 395(2) — 545(%) +7812,1] —>0.

If we take a single x,, as 2, we get E(2) =m+coE(;,). Thus there gives
rise to a biase «E(f;,), which is ==0, except the case of median, and D*(z)=
o® Var (t;,). All values of E(¢;,), Var (¢t;,) as well as Cov (¢;,, #;,) for n=
2,3, .-+, 10 are given to five decimal places in Godwin’s paper loc. cit., pp.
281-2. Only when n=2p+1, i=p+1, we have E(t,,,;,..)=0 and %, 5.,
as single observation, renders an unbiased estimate of the population mean
with efficiency

(11. 11) off. — % L Var (yupn) = 1/ RE(E 12p0) -

Really, using Godwin’s Table, we get these efficiencies as those starred in

Table V. Lastly, every z:l(x,.,n+xn~,.+1m) or & =%(ti,n+t,,_i+1,n) gives an

2
unbiased estimate, its variance being

DFE) = B —E(Q) = B+ 821+ 26y 1) —[BU) +Elty 1) T}
= %{E(ﬁ) —E({t)+E({t, ) —E¢)EC, )} = %[Var(ti) +Cov(t;, £, ].
Hence its efficiency is

(11- 12) eff' == z/n[Va(tnn) +C0V(tilntn—i+11n)] O

These are also calculated from Godwin’s Table and tabulated in Table V,
below.



Some Contributions to Order Statistics 83

Table V. (Efficiencies of estiamates %(tﬂn-—}—tn_,-ﬂ[,,))

n | i 1 2 3 4 5
2 2 1
3 2 0.74294*
3 0.92038
A 3 0.83836
4 0.83836
3 0.69728*
5 4 0.86681
5 0.76665
4 0.77613
6 5 0.86470
6 0.70581
4 0.67882*
: 5 0.81792
6 0.84855
7 0.65423
5 0.74323
. 6 0.83727
7 0.82604
8 0.61014
5 0.66894%
6 0.78460
9 7 0.84300
8 0.80106
9 0.57213
5 0.72294
7 0.81008
10 8 1 0.84027
9 | 0.77555
10 0.53895

§12. Truncated Samples. If a random variable & distribute logarithmico-
normally, viz. its fr. f. be

Vimae—a P pplogE-a-nl{,  E>a

the variable x=1log(f—a) distributes normally, viz. its fr.f. becomes

—\/Zlgm_exp{—i;;(x—m)z} , (=0 < x < 0).
Hence, putting again x=m -+, the problem reduces to our case.

We are now interested in the so-called truncated sample'® : namely, when
only k(< m) values & <&, < -.- <&, are observed, but there experiment being
stopped, the remaining values &,,, <-.- <&, left unmeasured (missed), required
is how fo estimate the mean and variance of the population? To determine

18) Cf. e.g. A. C. Cohen, Estimating the mean and variance of normal populations from simply
truncated and doubly truncated sample, Math. Statis., Vol. 21 (1950), pp. 557-569.
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them we are used to avail the so-called likelihood function, which is obtainable
as follows.
The probability element to obtain {&,, &,, ---, &,} or {¢, ¢, -+, £,} is

n! d®dd,-..dd, Sk do, - S ad,

n—1

= gyt AP LD, dPy, Ak
where
1 /2 X, —m 1 s
d®, =pdl, = —== i/“dt,, =24 1—-®, = — Lrgy
7 \/2750‘8 o and " 2w Ste
Hence the required likelihood function is
n! 1

L(x,, -+, %5 m, 0) = (=BT (V2w o) eXP{—%g(%—MV} s (1=Dy)"7F

and consequently

logL=——i_(x,, m)*—k log o+ (n—Ek)log(1— Cbk)+log '\/27:"

According to the Principle of Maximum Likelihood,

alogL:_l_ e n—=k _xy—m)*|

2.1 ZPBL— s, m)+————1_®k) Vz—ﬂoexp{ e } 0,
9logl __ 1 ¢ _k_ (n—k) (x,—m) _(e—m)

122 =, = aw o‘+(1—q’k)\/2—7t'ozexp{ 257 } 0.

On multiplying the first equation by m—x,, the second by o, respectively, and
adding them, we obtain,

g (xv-—m)z— (Wl—-xk) VZ:1 (m—xv) = ko-'z.

Therefore
(12.3) o = 3 m—1,) (5,—%,) .
Also (12.1) being rewritten,
k (m—x,)? Lm—x
12. 4 il {—_“L}=1—<I> Mm%,

If the value of % (12.3) be substituted in (12. 4), we obtain an equation con-
taining m only. Now, if a first approximation for m be m,, we may put
m=m,+¢&, and seek the correction &. We assume that m, being already fairly
fitting, € is so small in magnitude, that all its powers of higher degree than
1 are negligible. So, we get from (12.3)

= %[?‘:1 (m,—x,)(x,—x,) +82 (X, —%,) +0(82):| .

19) Evidently it is impossible to determine two unknown m and ¢ from only one observation.
Also, if k=n, the sample becomes complete. Hence we assume to be 1< k< n.
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For the sake of abbreviations, we put®

%= Zk x,/k, S, = g: (xp—x) =kx,—%), S,= é:lx,,(xk*xv) ,

(12.5) =3 =) (5= %), of =Sk =mS,~S,,
S =3 tm—x)=kim—3), /5= (x,~3)/c}.
And thus
12.0 %=%§<1“2%8>, B =7i‘0[1_2%f]'
So that

12.8) f=F—M1 [%—mr(”xk—}% §> ¢|=a-ze,

g oy 0

where
__ XM, — :—L Xp— M, Sl
(12. 9) A=E _%[1+—k7—i].
Also from (12.7) and (12.5) yields
m—x, L . SS]) ]
(12. 10) nroshoL [S+<k s)e]-
As to ®, we have by (12.8)

tk A-Bg A A-Bg

(12.11) @, =S ¢dt:S :S + g — ®(A)—Bp(A)e, nearly.
A

All these substituted in (12.4) and after neglection of higher power of &,
solved for & we attain finally

s — (n—k)o,p(A) —S[1—p(A) .
(12.12) E=§ = BSo(A) +[kizngS—-SSlE/220] [1]——CIJ(A)] , approximately.
Thus é=¢6, being found, we recompute o, S, A, B with the corrected
m,+& =m, (the second approximation), and again calculate a new correction
&,; and over again using m,+&,=m, recompute >, &c., find third correction
&, and so on (successive approximations).
However, if we could observe every value x, several times (each N

times, say) we may utilize Gauss’ Method of Least Squares. Really from
x,=m+oct,, we have

E(xv):m+er(tv), v—=1 2’ e, k.

?

20) Here X, shall be positive, because, assumed that ¢, >0, such m, as makes X, < 0 is previously
to be rejected.
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Especially, if N truncated observations be repeated, and N be a pretty large,

Z, :ﬁ %,;/ N would be nearly E(x,), and we have
(12.13) m+oE(t) =2, (=12 k).

Or, even when N=1, we may roughly consider every singly observed value
x, as &,; but yet if £ >2, we have a number of equations, more than the
number of unknowns. Thus equations (12.13) give the so-called observation
equations :

(12. 14) Camabo=c, (=12 - E>2),

where a,=1, 0,=E(,) and ¢,=2, are all known, theoretically or experiment-
ally. We form Gaussian brackets (sums of products): i.e.

[ed] =k, [ab]=3El,), [e]l=X3%,
(12.15) w

k
[o0] =2 Bt Lbe] =20 E( )%,
and write the normal equations

[aalm+able = [ac],

[ablm+1bb]oc =T[bc].
Whence

(12.16) o — Lo01Tac]—[ab][bc]  _ [aa][bc]—[ab]lac]

- Lea]lob]—[ab} >~ [aa][b6]—[abT
These would probably afford better estimates than those obtained by method
of maximum likelihood, if N large.

Furthermore, if beginning ¢ values x, <x, <-.- <x; were ignored, besides
missed measurements x;.,,, <--- <zx,, the actually known values are only the
intermediate values: x,,, <x;.,<---=<x,,,. In this doubly truncated sample
we may also use the above mentioned Gauss’ method of least squares, especially
if repeatedly observed. Here we have, as before, obseravation-equations:

m+0E(ti+v1n) = 5—Ci+v (l) = 1, 27 Tty k>2) y

normal equations of which determine the most probable values of m and o.
However, if the experiments are not repeated or few, we should again proceed
by method of maximum likelihood. Now the probability element being

7!

m Cpf'ﬂ(l—‘q)i»-rk)n_i_kdq)i—udq)ﬁz"'chi+k s
where
o, =—1:Sti+le"z/2dt and 1—®, :J:S ¢ ?dt with ¢, ="
i+1 \/271: itk \/271 tik j - »

the likelihood function is given by
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L= n! . 1 ex {—if} (x _m)} (1—®,, )ik
iTn—i—R)! (V2zo) P 222 Y (=@ )ik,
so that
k
10gL=——21‘_2 2 (x Xipv— —klog o+i lOch)Hl-{—(n—Z_ )IOg(l_q)i+k)

v=1

n!
il m—i—R)! /2%
Hence the likelihood equations are

+log

OlogL _ 1 & i { (x, _m)z}
12.17 =L P _ (s,
(12.17) om o 2 Ee—m) Vomsd, P 207
n—i—k ( (x-+k—Wl)2}_
-+ — — itk TV —() R
Vome(l—®, ) P17 5
dlog L 1 & ok __i(x,,,—m) { (x,. —m)z}
12 18 — =l e e Ay s i+1 . i+1
( ) Oo * vZ:l (i) o vV 27rg-2<I) eXp 252

+

(n—i—k)(x; ,—m) ___(xi+k—m)2 —
Vom o ®, ) P { 207 } S

From these two equations, firstly eliminating ®,., and secondly ®,.,, we obtain

(X0 — % 1 LN 19
M_l\'_/k‘z;ﬂ%) exp {—(i‘Lzo_Jﬂ} [k‘;é (m—2x,)(x z+k_xi+V):| Lo
— =BV — % ) k
(=1 \)/(fo; xlﬂ)eXp{—sz—go_z—Wl)‘} [ Z Mm—%;,) (xi+1_xi+v):|[1_q)i+k]-

These two equations can together be denoted by

R L —m)? 1 &
(12.19) Vore €Xp {—— M} :[k—puz:ji (m—x;,,) (xi+j'—xi+v)] Wy

26°
where
R=x,.,—x,,, (range) and (j,7)= (1, k) or (k1) with
(12. 20) { D, 1 (it g2 1—®
v, = i — = —dt, W, = ik
1k i i S N B ik

The first approximation being m, and o,, let us find their corrections &
and # 1i.e. such quantities as

m=m,+<, c=o,+7.

Assuming m,, o, to be already fair approximations, & » will be so small that
their powers with exponents greater than 1 may be neglected. Consequently

Xy T M Xy & Xy, — M
try =" o o of 7 (nearly)
=a,—pBE—a;8y, (j=1o0r k)
where
Xy ;—m 1
(12. 21) =T B=—-

J
O_l
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Accordingly we have also approximately

1 (x;,,—m)* 1
exp {—?tﬁﬁ} = exp {—JFZJT)} = exp {——2~ a’j-}[1+6\f,-/3€+a§-l377] .

i.e.
Pty ;) = pla)[1+a,B88+ aiBy]
as well as

D, == S‘”"+SZ}T"= D(a,)— (BE+Beat,n) Pl .
As to the summation in the right handed side of (12.19), we have
é (m—x, ) (Xiry— X 00) é X)) (Xsy = Xpo) +E g (Xi4)/—Hi) -
Hence, upon putting
(12. 22) 2 0m =) iy —5) =By and SV = BE,
we obtain
LSt ) = £r) = BT Sy + by —2) 6281 3]

With all these approximations, (12.19) yields, when each of j, j/ denotes
one and the other of 1, k, respectively,

RBp(a)[1+a,86+(a5—1) Bn] = [k—B{ 2y +k(x;\;—F) =260 237} ] ¥y

where ¥, denotes either one of

V= [0() = (B4 Bayn) P@)], Ty = — 1 [L— (@) + (85-+8,) P(at)]
approximately.

We rewrite these equations in detail, according as (J, 7/) is (1, k) or (&, 1) :
For j=1, j/=Fk

(12. 23) [(k—B* 3, +iRa, B) Bp(a,) + kB, ,—2) Pla)] €
+[{( k—BZZ ) & +iR(aG—1) Bp(a) —28°P(a) ]
= (k— 2>}, P(a)—iRBp(a) ,

and for j=k, j/=1
(12.24) [{(n—i—k) Ra,B—(k—B* 1)} Bp(et,) + kB (x; . —2) {1—P(a)} 1 €
+[{ _Z—k) R(“k'—l) B“ (k—BZ 21) ak} /897(“12)—'263 21 {1_@(“13)}]77
= (k— B 2)[1—P(a,) ]— (n—i—k) RBp(a,) .
We should solve® (12.23) and (12.24) simultaneously for & and %, and

21) Here we have mainly aimed only to show the principle; For practical calculations more
convenient procedures are devised, see Cohen, loc. cit.
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find their roots €=¢, and 5=17%,. Now taking m,=m,+6&,, o,=o,+7, as the
second approximation, recompute all of

1 Xin; ™M,
(12' 25) =" aj = ]T ’ Z Z z+V (xz+] z—HI)

for =1 or k;
or, in detail,

> =mS,—S,, where S, =

Ma‘

(X —%50) = XipolXi— Xiy)

>
i
-~

Se=m,S’'—S,, where S,/ = > (x;.,—X:v), S,

X Xipa— %)

||Ma. dME‘

and solve thus obtained new simultaneous equations (12.23) and (12.24). If
&,, 7, be the new roots, m,=m,+& and o,=o,+, will give the third
approximations and so on.

Example 1. We get the following 3 samples, each of size 10, by drawing
at random from the table of random samples from N(1, 0):

X8 l xo ' *10

X1 X2 X3 E7 ‘ Xs ‘ X6 ’ X7 ‘
1° | —138| —113] —107 | —092| o021 — S — -
20 | —248| —158| -106| —058| 033 | — — — - -
3 | -133| —103| -087 | ~003| 024 | — — - - -
sum | ~519 | —3.07 | —3.00 ‘ —147 ‘ —0.78 \ [ }

Assuming that the first five in each sample were observed, but the remaining
five unmeasured, it is required to estimate population mean m and S.D. o.

I. Solved by method of least squares,: We have here 5 observation
equations
3(m—1.53875¢) = —5.19
3(m—1.00136 ¢) = —3.74
3(m—10.65606 ¢) = —3.00
3(m—0.37577 ¢) = —1.47
3(m—0.12267 ¢) = 0.78
(typically : am+bs=c «-+--- (12.14)).

Hence, Gaussian brackets are

[aa] =45, [ab] = —33.2514, [ac] = —37.86,
[6b]= 35.6143, [bc]= 42.4682.

Solving the normal equations, we find

- —1348.36 +1412.13 __ 0.128 « . 1911.07—1258.90 _

1602.64—1105.66 © 7 T 1602.64—1106.66
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II. On the other hand, if we solve the maximum likelihood estimating
equations by successive approximations, we find

T

1° 0127 117
2° 0.288 1.67
3° 0.235 1.03
mean 0215 ‘ 1.29

Example 2. Again, by use of the table of random samples from N(O, 1),
we obtained

] Xy ’ X2 X3 } X4 ‘ Xs ‘ X ’ X7 \ ES ‘ EN

—0.24* 0.28 | 067 \ — —

{ — ‘ — —0.72,' ~o.52] —037

I. Analysed by method of least squares:
m—0.65606 ¢ = —0.72
m—0.37577 o = —0.52
m—0.12267 ¢ = —0.37
m+0.12267 ¢ = —0.24
m+0.3777Tc = 0.28
m+0.65606 ¢ = 0.67
[aa]=6, [ab]=0, [ac}=—09,
[60]=11733, [bc]= 1.2285,

whence
m* = —0.15, o*¥=1.05.

II. Analysed by method of maximum likelihood :
m* = —0,15, ot =0.86.

The calculations by least squares are far easier.



