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1. Introduction.
Let f(z) be a function of the class of ones
flo) =2+ X a2,
which are regular and schlicht in |z|< 1. Then
la,|<en.

This result is well known as Littlewood’s theorem. In this paper first we
shall extend this result to the case of weakly p-valent functions defined by
Hayman [1], which contain p-valent functions, and solve Hayman’s conjecture
on the coefficient of weakly p—valent functions [17].

Secondly we consider the following functions

w@) =z ?d+az+ - ),

which are regular and p-valent in 0<|z|< 1. These functions were studied
first by Prof. Kobori [2]. We shall study the values taken by w(z) and the
distortion theorem.

Lastly we shall remark that we can extend the following theorem of
Hayman

Suppose that w=f(2)=1/z+a,+a,z2+ -+ is meromorphic in |z|< 1 and
has a simple pole of vesidue 1 at the origin. Let D,be the domain of all values
w taken by f(2) in |2|< 1, and let E, be the complement of D, in the closed
plane. Then

d(Ef) é 1 ’

where d(E,) denotes the transfinite diameter of E,. Equality hold if and only
if f(2) is univalent.

and derive some analogous results to the ones derived by Hayman [1] from
this theorem.

According to Hayman’s definition [1] we say that f(z) is weakly p—valent,
if for every >0 the equation f(2) =w either
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(i) has exactly p roots in the unit circle for every value on the circle
jwl=r or

(i) has less than p roots in the unit circle for some w on the circle |w|=7.
Of course p-valent or mean p-—valent functions defined by Biernacki are

weakly p-valent. We will begin with the proof of the following lemma and

prove it by Mandelbrojt’s method [3].

Lemma 1. Lef
f(Z) — zl’+ }3 an+1z—1 zn+j7—1 ,
n=2
be regular and weakly p-valent in |z|< 1, then

L (™| r2)1a0 i —r<1
2750 | f&) ] <(1_—7.)ng_1, (lzj=7r<1).
Proof. We put
f(z) = Re®, z =re’,

f(2)=#=0 in |z|< 1 except 2=0. Therefore log f(2) is a regular function of
logz in 0<#r, < |21 <7< 1. According to Cauchy-Riemann equation we have

OR __ R9G

5 = 750" (1)
Then the following relations are got by means of the above equation, where
C is the image curve of the circle |z|=7.

% SR f(re™) |d6 = dir 5 RdO
=S:"g§cza:%§cm@. (2)

On the other hand f(2) has neither zero points or poles except only one zero
point at the origin because of weak p-valence of f(2).
Hence according to the argument principle

fdargf(z)zg d® =2zp . (3)
C C
By integrating the formula (2)
{22 rao = |"i e o~ "1 fremdo.
7y v C JOo 0

Because of f(0)=0 we have the next relation by tending », to zero and
substituting 7 for 7,

dr
o ¥

§”| fire)|do = | S Rd® .
0 J C
By Hayman’s result [1]

f@I=RE D Ual=r <.
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Hence we have by (3)
r? _ 2mpr?
SRd®<g oy d® =

Therefore
o1
0 N,
S | flre )|d6’<27rpg = 7,)2pdr'
On the other hand
r 715-1 rP
pgo(l—rw‘”—a ek
da( prr (=)
LIS dr((l—r)zf"l) A—n? — (q=p* =

This completes the proof.
Theorem 1. Let f(2) salisfy the condition in lemma 1. Then

(yipeal << (L4 2LV — 0y

Proof. By lemma 1

| f(2) 1
|an+P 1,<2 5 PR 1 < i d—p®

r"'(1—7)**"* takes the greatest value when »= (n—1)(n+2p—2)"".
Hence we have theorem 1.

Remark. Hayman [1] conjectured the order of the coefficients in theorem 1.

3.

Let w=f@)=z?A+az+ - ) be regular and p-valent in 0<|z]< 1.
Hereafter this family of functions will be denoted by F.
First we consider the case where f(z) has no zero point in 0<|z|< 1.
Then
f%g)_ = 2?(1l—a,z4 - )
is regular and p-valent in |z|< 1, and has only one zero point of order p at
the origin. Hence we have the following theorem by means of Hayman’s

result [1] and Biernacki’s one [4].

Theorem 2. Let f(2) €F and has no zevo point in |2\< 1. Then

(1) The image by f(2) covers the civcle |w| >4, and

(i1) moreover covers \w| >4? exactly p times.

(iii) rPl—r? < fR) | <L r?d+n, (Jz|=r<_1).

These estimates ave sharp as is shown by 2 2(1—2)* and 2z ?(1—zb)2. The

results (i) and (iii) hold still when we substitute the condition of weak p-valence
Sfor the one of p-valence.

Secondly we consider the case where f(z) € F has zero points in |z|<1.
It is sufficient to extend Montel-Bieberbach’s theorem [5] as follows in order
to have a result on the values by f(2).
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Lemma 2. Lef w(2)=2"-+b, ,2°" + - be p-valent and meromorphic, then the
image by w(z) covers the circle |w|< 6=~/5 —2 or the circle lwl>%=\/§+2.
This result is sharp as is shown by

— zp zp P SZP —_— O L. see e
wo(2) = 3(1—zﬁ)2/((i—zﬁ)2+ 8) = sy =4t :

Proof. Let « be one of the points on the boundary of the domain mapped
by w(z), which are nearest from the origin. We may suppose without loss
of generality that a is positive. We put

— ow@) __
é‘(z)—a_w(z)_—z”+-- .

£(2) is regular and p—valent. Therefore we see that the image by f(2) covers
the circle [{[< 1/4 by means of Biernacki’s theorem [4].
On the other hand
_ af
wiz) = i

Hence the image by w(z2) covers the exterior of the circle which has the segment
(a@/(1+4a), a/(1—4a)) on the real axis. And 8/(1—48)=1/8, =+/5—2).
Therefore the image by w(z) covers the circle |w|>1/6 when «<($, or the
circle |w|< 8 when =38, This estimate is sharp clearly, because

wy(1) =38, wo(evti/ﬁ) = 145"

Here we have the following theorem directly.
Theovem 3. Let f(2) €F and have zero points. Then the image by f(2) covers
the circle |w|< 8 or the circle [wl>%. This estimate is best possible as is
shown by fo(2)=(2?+8(1—2%)%) /822 =272+ «+-- . 6=+v5—2).

Now we shall study the circle covered by f(2) p times under the condition

thaf f(z) has only one zero point of order p.
First we will prove the following lemma.

Lemma 3. Lef w(z)=2z+a,z*+ - be meromorphic and weakly 1-valent. Then
the image by w\2) covers the circle |w|< 8 or the circle |w|>%—, ®=+/5—2.
This estimate is sharp as is shown by
- Sz mz pmeeli 48 LR R XY
wo(Z) - (1T2.’)2/<(1—Z)2+8> = 2+ .
Proof. This proof is quite analogous to lemma 2, that is, we may use
Hayman’s one-quarter theorem of weakly 1-valent functions for Koebe’s
one with respect to schlicht functions.
Theorem 4. Let f(2) €F and has one zero point of orvder p in |z|< 1. Then

the image by f(2) covers the cirvcle |w|< 8” or the circle lw[>—§l§, p times.
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These bounds are best possible as is shown by

Fil2) = (i_yp: e ST . 6=v5-2
0 2+8(1l—2)* )
Proof. We can prove this theorem even when f(z) is weakly p-valent.
1 »
e =P ...
f(2)

is weakly p—valent and regular in |z|< 1 except one pole of order p.

We consider (1/f(2))"? and if we use the slight modification of Hayman’s
lemma [1], we see that this function is weakly 1-valent, and therefore we
can use lemma 3. This completes the proof.

Theorem 5. Let f(z) satisfy the same conditions in theovem 4. Then we have
one of the following estimates for all \z|=r < 1).
| RS 75, X2+,

(40)?
or

S\
fRI= (Z) Xr?(L+n*,

where 8=+/5 —2.

Proof. Without loss of generality we can assume z==-—|z|=—7< 0 and
therefore it is sufficient for this proof to evaluate |f(—7)|. We remark that
the function /%(z) mapping univalently the circle |z|< 1 to the unit circle slitted
by the segment (—1, —7) under the conditions 2(0)=0 and 4#'(0) >0 is given
uniquely as follows [1] or [5].

hiz) P4 4y

A—r@r fd—2> 97 T+n"’ o) =gq.
e (1N
gh@R) =z+ , <g(z) (f(z)) >

is weakly 1-valent because of weak 1-valence of g(2) and meromorphic in
[z|< 1, and therefore we can use lemma 3 for this function. On the other
hand the value g(—7)/¢ which corresponds to z=—1, is not taken by this
function. Hence we have

— —48x T
|g( 7’)|245 4 X(1+7,)2
or
1 4 r
_— < ==
== x5 = 5Xgim

This completes the proof.

First we will extend Hayman’s theorem showed in the introduction.
Each of E;, D; and d(E,) denotes the one indicated in the introduction.
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Theorem 6. Lot f(z)=z"?(1+c,z+ - ) be mevomorphic in |z2|< 1, where
p is a positive integer, and E; denote the complement of Dy which is the domain
of the values taken by f(2). Then d(E)<1. Eguality occurs only when f(z)=
g2, where g@)=z" "L +az+ - ) s an univalent function.
Proof. We may do the slight modification of Hayman’s proof [1]. Let
Gw) =G(w, Dy denote the Green function of D, which has a pole at «o. Then
G(w)—log|lw|— —log d(E) as w— co. We put

1

Tel?-
#(2) is harmonic in |z{<1 except at the points where f(z) has a pole other
than z=0. And by means of the above stated property of G(w) we have the
following equality in the neighbourhood of the origin.

u(2) = G{f(2)) —log

u) = loglz?(A+cz+- Y| —log d(E;) —log ﬁ+o(1) ,

From this
#(2) = log d(E3 +o(1) .

Hence #(2) is bounded and therefore harmonic at z==0.
On the other hand

lim #(z) = lim G(f(2)) = 0.

211 211

Therefore #(z) is non-negative in |z|< 1 and —log d(E) =0, that is,
dEN<T.

Equality occurs only when #(2)=0 in |zj< 1. In this case f(2) must approach
the boundary of D, as |z|—>1 by the property of Green function and f(z) is
able to have only one pole of order p at the origin also. Here we use the
following lemma of Heins-Hayman [1].

Suppose that F(z) is meromorphic in a domain A, that the values which F\2)
takes in A lie in a domain D, and that as z tends to the boudary of A in any
manner, F(2) always approaches the boundary of D. Then F(2) takes every value
of D an equal finite number of times in A.

Hence we see that f(z) takes every value exactly p times, and furthermore
w=f(z) must be a function in the form of g(z?), where g(z)=2z"(1+a,z+ - )
is an univalent function.

At this time the Green function is given by

1 1
log - ———— =log——"+.
BTl B Ta
Theorem 7. Let ¢ be a bounded closed set of real numbers x whose Lesbesgue
measure is at least 4. For each x in e let C(x) be a closed set of points in the
w—plane such that, if w,, w, be any points on C(x), C(x,) respectively, we have
always

|w2—w1lg1x2—x1l-
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Then with the hypotheses of theorem 6, D, contains at least one of the set of
C(x), except possibly when e, E, are intervals of length 4, and
1 )
fley = ?+a0+zf’e“ ,
a, arbitrary, N real arbitrary.
Proof. We can prove this theorem in the same method with Hayman’s one [1].
We remark that f(z) with respect to the exceptional case must be g(zf’)=%—i—a0

Feeenee , where g(2) is an univalent function, and E, must contain two points
w,, w,, such that |w,—w,|>=4, and therefore

fe) =2"7+a,+2%e™.

Lemma 4. Let f(a)=a,+a,z°+ ----- be meromorphic in |z|< 1 and let E be
the set of all veal positive r for which the circle \w|=vr meets E;. Then we
have
!aplg N =4.

Er(lao| +7% ™

Proof. We may consider
a 1
w—sv(z) _f(z)iao_?.}_ ...... .

and use theorem 7 in the same way with Hayman’s one [1].

Theorem 8. Let w=f(2)=a,+a,z?~+ is regular in |z2|< 1. Then we have
la,| <4(la,| +1,), where I, denotes the Lebesgue measure of the set of all
positive v, for which the circle |(w|=v lies entirely inside Dy, and it is assumed
that I, is finite. Equality occurs only when

a3 —
f(Z) == mj ’ [£4) 0
_ a, N2t e’
f@) =a+ B2 a0
Proof. Let
. dr
= SE(]dol +7y°
Then Hayman proved the following inequalities [1].
1
-~ =

Therefore by means of lemma 4 we have this theorem.
Accordingly we can derive the following theorem clearly from this.

Theorem 9. Let f(z)=2"+a, 27"+ - be regular in |z|< 1. D, contains
a circle \w|=r with r>% except when
fl&) = ——=,

(1_eiwzp)2 .
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