ON p-VALENT FUNCTIONS

By

Hitosi Abe

(Received September 30, 1957)

1. Introduction.

Let f(z) be a function of the class of ones

$$f(z) = z + \sum_{n=0}^{\infty} a_n z^n,$$

which are regular and schlicht in |z| < 1. Then

$$|a_n| < en$$
.

This result is well known as Littlewood's theorem. In this paper first we shall extend this result to the case of weakly p-valent functions defined by Hayman [1], which contain p-valent functions, and solve Hayman's conjecture on the coefficient of weakly p-valent functions [1].

Secondly we consider the following functions

$$w(z) = z^{-p}(1 + a_1 z + \cdots)$$

which are regular and p-valent in 0 < |z| < 1. These functions were studied first by Prof. Kobori [2]. We shall study the values taken by w(z) and the distortion theorem.

Lastly we shall remark that we can extend the following theorem of Hayman

Suppose that $w=f(z)=1/z+a_0+a_1z+\cdots$ is meromorphic in |z|<1 and has a simple pole of residue 1 at the origin. Let D_f be the domain of all values w taken by f(z) in |z|<1, and let E_f be the complement of D_f in the closed plane. Then

$$d(E_t) \leq 1$$
,

where $d(E_f)$ denotes the transfinite diameter of E_f . Equality hold if and only if f(z) is univalent.

and derive some analogous results to the ones derived by Hayman [1] from this theorem.

2.

According to Hayman's definition [1] we say that f(z) is weakly p-valent, if for every r > 0 the equation f(z) = w either

- (i) has exactly p roots in the unit circle for every value on the circle |w|=r or
- (ii) has less than p roots in the unit circle for some w on the circle |w|=r. Of course p-valent or mean p-valent functions defined by Biernacki are weakly p-valent. We will begin with the proof of the following lemma and prove it by Mandelbrojt's method [3].

Lemma 1. Let

$$f(z) = z^{p} + \sum_{n=2}^{\infty} a_{n+p-1} z^{n+p-1},$$

be regular and weakly p-valent in |z| < 1, then

$$\frac{1}{2\pi} \int_0^{2\pi} |f(z)| d\theta < \frac{r^p}{(1-r)^{2p-1}}, \quad (|z| = r < 1).$$

Proof. We put

$$f(z) = Re^{i\Theta}, \quad z = re^{i\theta}.$$

 $f(z) \neq 0$ in |z| < 1 except z = 0. Therefore $\log f(z)$ is a regular function of $\log z$ in $0 < r_1 \le |z| \le r_2 < 1$. According to Cauchy-Riemann equation we have

$$\frac{\partial R}{\partial r} = \frac{R}{r} \frac{\partial \Theta}{\partial \theta}.$$
 (1)

Then the following relations are got by means of the above equation, where C is the image curve of the circle |z|=r.

$$\frac{d}{dr} \int_{0}^{2R} |f(re^{i\theta})| d\theta = \frac{d}{dr} \int_{0}^{2\pi} Rd\theta$$

$$= \int_{0}^{2\pi} \frac{\partial R}{\partial r} d\theta = \frac{1}{r} \int_{C} Rd\Theta. \tag{2}$$

On the other hand f(z) has neither zero points or poles except only one zero point at the origin because of weak p-valence of f(z).

Hence according to the argument principle

$$\int_{\mathcal{C}} d \arg f(z) = \int_{\mathcal{C}} d\Theta = 2\pi p. \tag{3}$$

By integrating the formula (2)

$$\int_{r_1}^{r_2} \frac{dr}{r} \int_C Rd\Theta = \int_0^{2\pi} |f(r_2e^{i\theta})| d\theta - \int_0^{2\pi} |f(r_1e^{i\theta})| d\theta.$$

Because of f(0) = 0 we have the next relation by tending r_1 to zero and substituting r for r_2

$$\int_{0}^{2\pi} |f(re^{i\theta})| d\theta = \int_{0}^{r} \frac{dr}{r} \int_{C} Rd\Theta.$$

By Hayman's result [1]

$$|f(z)| = R \le \frac{r^p}{(1-r)^{2p}}, \quad (|z| = r < 1).$$

Hence we have by (3)

$$\int_{c} Rd\Theta < \int_{c} \frac{r^{b}}{(1-r)^{2b}} d\Theta = \frac{2\pi p r^{b}}{(1-r)^{2b}}.$$

Therefore

$$\int_{_{0}}^{_{2\pi}}\!|f(re^{i\theta})\,|\,d\theta\!<\!2\pi p\int_{_{0}}^{r}\!\frac{r^{^{p-1}}}{(1\!-\!r)^{2p}}dr\,.$$

On the other hand

$$p\int_0^r \frac{r^{p-1}}{(1-r)^{2p}} dr \leq \frac{r^p}{(1-r)^{2p-1}},$$

because

$$\frac{d}{dr} \left(\frac{r^p}{(1-r)^{2p-1}} \right) - \frac{pr^{p-1}}{(1-r)^{2p}} = \frac{(p-1)r^p}{(1-r)^{2p}} \ge 0.$$

This completes the proof.

Theorem 1. Let f(z) satisfy the condition in lemma 1. Then

$$|a_{n+p-1}| < e^{2p-1} \left(1 + \frac{n-1}{2p-1}\right)^{2p-1} = O(n^{2p-1}).$$

Proof. By lemma 1

$$|a_{n+p-1}| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(z)|}{r^{n+p-1}} d\theta < \frac{1}{r^{n-1}(1-r)^{2p-1}}.$$

 $r^{n-1}(1-r)^{2p-1}$ takes the greatest value when $r=(n-1)(n+2p-2)^{-1}$.

Hence we have theorem 1.

Remark. Hayman [1] conjectured the order of the coefficients in theorem 1.

3.

Let $w=f(z)=z^{-p}(1+a_1z+\cdots)$ be regular and p-valent in 0<|z|<1. Hereafter this family of functions will be denoted by F.

First we consider the case where f(z) has no zero point in 0 < |z| < 1. Then

$$\frac{1}{f(z)} = z^p (1 - a_1 z + \cdots)$$

is regular and p-valent in |z| < 1, and has only one zero point of order p at the origin. Hence we have the following theorem by means of Hayman's result [1] and Biernacki's one [4].

Theorem 2. Let $f(z) \in F$ and has no zero point in |z| < 1. Then

- (i) The image by f(z) covers the circle |w| > 4, and
- (ii) moreover covers $|w| > 4^p$ exactly p times.

(iii)
$$r^{-p}(1-r)^{2p} \le |f(z)| \le r^{-p}(1+r)^{2p}, \quad (|z|=r<1).$$

These estimates are sharp as is shown by $z^{-p}(1-z)^{2p}$ and $z^{-p}(1-z^p)^2$. The results (ii) and (iii) hold still when we substitute the condition of weak p-valence for the one of p-valence.

Secondly we consider the case where $f(z) \in F$ has zero points in |z| < 1. It is sufficient to extend Montel-Bieberbach's theorem [5] as follows in order to have a result on the values by f(z).

Lemma 2. Let $w(z) = z^b + b_{p+1}z^{b+1} + \cdots$ be p-valent and meromorphic, then the image by w(z) covers the circle $|w| < \delta = \sqrt{5} - 2$ or the circle $|w| > \frac{1}{\delta} = \sqrt{5} + 2$. This result is sharp as is shown by

$$w_0(z) = \delta \frac{z^p}{(1-z^p)^2} / \left(\frac{z^p}{(1-z^p)^2} + \delta \right) = \frac{\delta z^p}{z^p + \delta (1-z^p)^2} = z^p + \cdots$$

Proof. Let α be one of the points on the boundary of the domain mapped by w(z), which are nearest from the origin. We may suppose without loss of generality that α is positive. We put

$$\zeta(z) = \frac{\alpha w(z)}{\alpha - w(z)} = z^p + \cdots$$

 $\zeta(z)$ is regular and p-valent. Therefore we see that the image by f(z) covers the circle $|\zeta| < 1/4$ by means of Biernacki's theorem [4].

On the other hand

$$w(z) = \frac{\alpha \zeta}{\alpha + \zeta}.$$

Hence the image by w(z) covers the exterior of the circle which has the segment $(\alpha/(1+4\alpha), \alpha/(1-4\alpha))$ on the real axis. And $\delta/(1-4\delta) = 1/\delta$, $(\delta = \sqrt{5}-2)$. Therefore the image by w(z) covers the circle $|w| > 1/\delta$ when $\alpha < \delta$, or the circle $|w| < \delta$ when $\alpha \ge \delta$. This estimate is sharp clearly, because

$$w_0(1) = \delta$$
, $w_0(e^{\pi i/p}) = \frac{\delta}{1-4\delta}$.

Here we have the following theorem directly.

Theorem 3. Let $f(z) \in F$ and have zero points. Then the image by f(z) covers the circle $|w| < \delta$ or the circle $|w| > \frac{1}{\delta}$. This estimate is best possible as is shown by $f_0(z) = (z^p + \delta(1-z^p)^2)/\delta z^p = z^{-p} + \cdots$. $(\delta = \sqrt{5}-2)$.

Now we shall study the circle covered by f(z) p times under the condition thaf f(z) has only one zero point of order p. First we will prove the following lemma.

Lemma 3. Let $w(z) = z + a_2 z^2 + \cdots$ be meromorphic and weakly 1-valent. Then the image by w(z) covers the circle $|w| < \delta$ or the circle $|w| > \frac{1}{\delta}$, $(\delta = \sqrt{5} - 2)$. This estimate is sharp as is shown by

$$w_0(z) = \frac{\delta z}{(1-z)^2} / \left(\frac{z}{(1-z)^2} + \delta\right) = z + \cdots$$

Proof. This proof is quite analogous to lemma 2, that is, we may use Hayman's one-quarter theorem of weakly 1-valent functions for Koebe's one with respect to schlicht functions.

Theorem 4. Let $f(z) \in F$ and has one zero point of order p in |z| < 1. Then the image by f(z) covers the circle $|w| < \delta^p$ or the circle $|w| > \frac{1}{\delta^p}$, p times.

These bounds are best possible as is shown by

$$f_0(z) = \left(\frac{\delta z}{z + \delta (1 - z)^2}\right)^{-p} = z^{-p} + \cdots \cdot (\delta = \sqrt{5} - 2).$$

Proof. We can prove this theorem even when f(z) is weakly p-valent.

$$\frac{1}{f(z)} = z^p + \cdots$$

is weakly p-valent and regular in |z| < 1 except one pole of order p. We consider $(1/f(z))^{1/p}$ and if we use the slight modification of Hayman's lemma [1], we see that this function is weakly 1-valent, and therefore we can use lemma 3. This completes the proof.

Theorem 5. Let f(z) satisfy the same conditions in theorem 4. Then we have one of the following estimates for all |z|=r (r<1).

$$|f(z)| \leq \frac{1}{(4\delta)^p} \times r^{-p} (1+r)^{2p},$$

or

$$|f(z)| \ge \left(\frac{\delta}{4}\right)^p \times r^{-p} (1+r)^{2p},$$

where $\delta = \sqrt{5} - 2$.

Proof. Without loss of generality we can assume z=-|z|=-r<0 and therefore it is sufficient for this proof to evaluate |f(-r)|. We remark that the function h(z) mapping univalently the circle |z|<1 to the unit circle slitted by the segment (-1, -r) under the conditions h(0)=0 and h'(0)>0 is given uniquely as follows $\lceil 1 \rceil$ or $\lceil 5 \rceil$.

$$\frac{h(z)}{(1-h(z))^2} = q \frac{z}{(1-z)^2}, \quad q = \frac{4r}{(1+r)^2}, \quad h'(0) = q.$$

$$g(h(z)) = z + \cdots, \quad \left(g(z) = \left(\frac{1}{f(z)}\right)^{\frac{1}{p}}\right)$$

is weakly 1-valent because of weak 1-valence of g(z) and meromorphic in |z| < 1, and therefore we can use lemma 3 for this function. On the other hand the value g(-r)/q which corresponds to z=-1, is not taken by this function. Hence we have

$$|g(-r)| \ge q\delta = 4\delta \times \frac{r}{(1+r)^2}$$

or

$$|g(-r)| \le q \times \frac{1}{\delta} = \frac{4}{\delta} \times \frac{r}{(1+r)^2}.$$

This completes the proof.

4.

First we will extend Hayman's theorem showed in the introduction. Each of E_f , D_f and $d(E_f)$ denotes the one indicated in the introduction.

Theorem 6. Let $f(z) = z^{-p}(1 + c_1 z + \cdots)$ be meromorphic in |z| < 1, where p is a positive integer, and E_f denote the complement of D_f which is the domain of the values taken by f(z). Then $d(E_f) \le 1$. Equality occurs only when $f(z) = g(z^p)$, where $g(z) = z^{-1}(1 + a_1 z + \cdots)$ is an univalent function.

Proof. We may do the slight modification of Hayman's proof [1]. Let $G(w) = G(w, D_f)$ denote the Green function of D_f which has a pole at ∞ . Then $G(w) - \log |w| \to -\log d(E_f)$ as $w \to \infty$. We put

$$u(z) = G(f(z)) - \log \frac{1}{|z|^p}.$$

u(z) is harmonic in |z| < 1 except at the points where f(z) has a pole other than z = 0. And by means of the above stated property of G(w) we have the following equality in the neighbourhood of the origin.

$$u(z) = \log |z^{-p}(1+c_1z+\cdots)| - \log d(E_f) - \log \frac{1}{|z|^p} + o(1),$$

From this

$$u(z) = \log d(E_f) + o(1) .$$

Hence u(z) is bounded and therefore harmonic at z=0.

On the other hand

$$\lim_{|z|\to 1} u(z) = \lim_{|z|\to 1} G(f(z)) \ge 0.$$

Therefore u(z) is non-negative in |z| < 1 and $-\log d(E_f) \ge 0$, that is,

$$d(E_t) \leq 1$$
.

Equality occurs only when $u(z) \equiv 0$ in |z| < 1. In this case f(z) must approach the boundary of D_f as $|z| \rightarrow 1$ by the property of Green function and f(z) is able to have only one pole of order p at the origin also. Here we use the following lemma of Heins-Hayman [1].

Suppose that F(z) is meromorphic in a domain Δ , that the values which F(z) takes in Δ lie in a domain D, and that as z tends to the bouldary of Δ in any manner, F(z) always approaches the boundary of D. Then F(z) takes every value of D an equal finite number of times in Δ .

Hence we see that f(z) takes every value exactly p times, and furthermore w = f(z) must be a function in the form of $g(z^p)$, where $g(z) = z^{-1}(1 + a_1z + \cdots)$ is an univalent function.

At this time the Green function is given by

$$\log \frac{1}{|g^{-1}(w)|} = \log \frac{1}{|z|^p}.$$

Theorem 7. Let e be a bounded closed set of real numbers x whose Lesbesgue measure is at least 4. For each x in e let C(x) be a closed set of points in the w-plane such that, if w_1 , w_2 be any points on $C(x_1)$, $C(x_2)$ respectively, we have always

$$|w_2-w_1| \ge |x_2-x_1|$$
.

Then with the hypotheses of theorem 6, D_f contains at least one of the set of C(x), except possibly when e, E_f are intervals of length 4, and

$$f(z) = \frac{1}{z^p} + a_0 + z^p e^{i\lambda},$$

 a_0 arbitrary, λ real arbitrary.

Proof. We can prove this theorem in the same method with Hayman's one [1]. We remark that f(z) with respect to the exceptional case must be $g(z^p) = \frac{1}{z^p} + a_0 + \cdots$, where g(z) is an univalent function, and E_f must contain two points w_1, w_2 , such that $|w_2 - w_1| \ge 4$, and therefore

$$f(z) = z^{-p} + a_0 + z^p e^{i\lambda}.$$

Lemma 4. Let $f(z) = a_0 + a_p z^p + \cdots$ be meromorphic in |z| < 1 and let E be the set of all real positive r for which the circle |w| = r meets E_f . Then we have

$$|a_p| \int_{E_f} \frac{dr}{(|a_0|+r^2)} \leq 4.$$

Proof. We may consider

$$w = \varphi(z) = \frac{a_p}{f(z) - a_0} = \frac{1}{z^p} + \cdots$$

and use theorem 7 in the same way with Hayman's one [1].

Theorem 8. Let $w=f(z)=a_0+a_pz^p+\cdots$ is regular in |z|<1. Then we have $|a_p| \le 4(|a_0|+l_f)$, where l_f denotes the Lebesgue measure of the set of all positive r, for which the circle |w|=r lies entirely inside D_f , and it is assumed that l_f is finite. Equality occurs only when

$$f(z) = \frac{a_p z^p}{(1 - e^{i\alpha} z^p)}, \quad a_0 = 0$$

$$f(z) = a_0 + \frac{a_0 \lambda z^p e^{i\alpha}}{(1 - z^p e^{i\alpha})^2}, \qquad a_0 \neq 0.$$

Proof. Let

$$I = \int_{E} \frac{dr}{(|a_0| + r^2)}.$$

Then Hayman proved the following inequalities [1].

$$|a_0| + l_f \ge \frac{1}{I}$$

Therefore by means of lemma 4 we have this theorem.

Accordingly we can derive the following theorem clearly from this.

Theorem 9. Let $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$ be regular in |z| < 1. D_f contains a circle |w| = r with $r > \frac{1}{4}$ except when

$$f(z) = \frac{z^p}{(1 - e^{i\alpha}z^p)^2}.$$

References

- [1] W. K. Hayman, Some applications of the transfinite diameter to the theory of functions, Journal d'Analyse Mathématique vol. (1951), pp. 155-179.
- [2] A. Kobori, Une remarque sur les fonction multivalentes, Mem. Coll. Sci. Kyoto (A) vol. 27 (1952), pp. 1-5.
- [3] S. Mandelbrojt, Quelques remarques sur les fonction univalentes, Bull. des Sci. Math. (1934), pp. 185–200.
 - or M. Tsuji, Theory of Functions II, (in Japanese) pp. 88-89.
- [4] M. M. Biernacki, Sur les domaines couverts par les fonctions, Bull. des Sci. Math. vol. 70 (1946), pp. 45-51.
 - [5] Y. Komatu, Theory of conformal mapping I, (in Japanese) pp. 200-204.