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We established in the paper [1] that a commutative semigroup is
decomposed into the class sum of unipotent or nonpotent semigroups. In the
present paper we shall investigate the structure of a commutative nonpotent
archimedean semigroup admitting cancelation law. We shall see that such
a semigroup will be determined by the additive semigroup of non-negative
integers and the indexed group.

If, for any elements ¢ and b of a commutative semigroup S, there exist
a positive integer m and an element ¢ of S such that

a” =bc,

then S is called archimedean. By “nonpotent” we mean “without idempotent”.

§1. Unique Factorization.

Lemma 1. Let S be a commutative nonpotent archimedean semigroup. Then

fm\a”S = for every ac€S.
n=1

Proof. Let D= [Qila"S. Suppose that D is not empty. Then we shall
prove the following (qu_l), (1.2), (1.3), and (1.4) step by step.

(1.1) D is an ideal of S.
Since any y in D is expressed as y=4a"f where t €S, we get

yx = (@"t)x = a"(tx) €a"S for all n
whence yx €D and so DxCD.

(1.2) DcCzS for any z€S.

Since S is archimedean, there are m >0 and x €S such that ¢”=zx. Then
any d €D is expressed as d=a"y==(2x)y—=2(xy) €2S. Therefore D C 2S.

(1.3) D is the least ideal of S.

Let I be any ideal of S, that is, ISCI. For yel, DCyScCIScI by (1.2).
(1.4) D=dD for any d€D.

Using (1.1), (dD)S=d(DS) ¢dD, and so dD is an ideal of S. According to
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(1.3), we have DCdD, while, of course, dDCD. At last we have D=dD.
Since D is commutative, it follows that D is a group. Consequently D
contains an idempotent, contradicting with the assumption. Thus the proof
of the lemma has been finished.
Denote T,=S—aS, T,=a’'S—a"™S ((=1,2,--:). Then T, (i=1,2, --)
are not empty. Because, if 7T, is emtpy, we get

a’S=a"S=--
which leads to D==Y, contradicting with Lemma 1.
Corollary 1. S=3T,, T,=8, T,nT,=% ({-j).
Lemma 2. In a iczojnmutative archimedean semigroup S, S is nonpotent if

and only if a-t=ab for every a, b€S.
Proof. Suppose ¢=ab in spite of nonpotentness of S. Then we have

a:ab:abzz-o-zabnz-..

whence f\b"S =8, contradicting with Lemma 1. Thus we see that if S is
n=1

nonpotent, a==ab for any «,b €S. The converse is clear: if S has an
idempotent e, then e==e¢e. q. €. d.

Hereafter @ denotes a fixed element of a commutative nonpotent archi-
medean semigroup S with cancelation.

According to Corollary 1, for an element x of aS, a positive integer # is
uniquely determined such that

xe€T, thatis, x=4a"z.

Further we can see that z lies in S—aS. Indeed, if 2 = au, then x = a"u €T, .,
which conflicts with x€ 7T, and T,nT,,,=%. Uniqueness of z is assured
by the cancelation law.

Let us introduce a symbol ¢°:

2°b means b,

in words, @¢° is not an element, but is considered as a symbolical operation.
Then, if x €S—aS, x is expressed as ¥=a°x. We can summarize the above
description as follows.

Theorem 1. Awn element x of S determines uniquely a non-negative integer
n and an element z of S—aS such that x=a"z.

§ 2. Homomorphism to a Group.

Now let us introduce a relation x~»y among all the elements of a com-
mutative nonpotent archimedean semigroup with cancelation. Denote x~y if
there is a non-negative integer # such that either x=4a"y or y=a"x. This
relation is an equivalence relation. Indeed x~ x since x=¢a°x; the symmetric
law is obvious. We shall prove only the transitive law in the four cases:
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2.1) x=a"y, y=4da"z, 2.2) x=a", z=4d"y,
2.3) y=a"x, y=2a"z, 2.4 y=d"x, z=a"y.
Then we have

in the case (2.1)

a

in the case (2.2) =q" "z if no>m,
a” "x if n<lm,
2 if n=m,

=a" "y if w>m,

= a" "z if n<lm,

=z if n=m,
a

in the case (2. 3)

in the case (2.4) 2=
Hence the transitive law holds. Further we see easily that x~y implies
xu~yu, Thus we get

Lemma 4. (2.5) a"~d”. n, m=1, 2, -.)

2.6) x~a"x. (n=1, 2, --+)

(2.7 For any x, there is y such that xy~a.

(2.8) If x,yeS—aS, and x=Fy, then x,0y.

Proof. (2.5), (2.6), and (2. 8) are obvious by the definition of the equiva-
lence relation; (2.7) is led from archimedeaness as follows. For any x, there
is ¥ such that xy=a"~a. q.e.d.

Now all the elements of S is classified by the relation x~y. S is the
set union of S, where we denote by S* the set of all indices . S=2>1S,

@ S*
SeNSe=  (a==0).
In particular, denote by S, the class containing a:
Se={a"; n=1, 2 -.-}.
Since the relation is a congruence relation, S,S; ¢S, for some v by which the
product a8 of elements « and £ is defined as y=aB. By Lemma 4, we have

Theorem 2. S* is a group, and S is homomorphic onto S*.

§3. Linear Order in S,.

We shall define an ordering between the elements of a class S, as follows.

x>y (% €S,
if and only if x==y and there is a positive integer # such that x=a"y where
a is the fixed element.
Lemma 5. (3.1) x>z (3.2) x>y and y_>x are incompatible. (3.3) x>y
and y >z imply x >z.
Proof. If x™>x, then x=a"x for some n; if x>y and y_>x, then we
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have x=a"x for some m. These are impossible according to Lemma 2. Thus
(3.1) and (3.2) have been proved. (3.3) is also obtained as follows:
x =a"y, and y = "z imply x = a"""z.
Lemma 6. Suppose that x>y or x=a"y, n=1, x, y€S,. Then x>u>=y
implies u=a'y (01 <n).
Proof. u=a*y, and x=a’u (for certain k, />=0) follow from #> y and

% =u respectively ; and so x=a*"’y=a"y. By Theorem 1, we have k+/=n.
Hence 0k <#n, q.e.d.

Consequently the interval between x and y is composed of x;=a’y
(=0, 1, -« , ) such that
x=a"y>ad""y > ay>y.
Lemma 7. S, satisfies the descending chain condition, that is, a sequence

X, >X, > e >X, > - ceases al finite term.
Proof. Suppose that there is an infinite sequence.

xl>x2> 200 >xn> 000
where x,=a"ix;,,, (=1, 2, ---, n, --*) and m; >0. Letting k,=m,+m,+ - +m,,,
b, <ky< -+ <k, <+ and x,=a"x,=a"x,— --- =a*x,, = --- which arrives at

x, €\ a%S === contradicting with Lemma 1. q.e. d.
i=1

According to Lemmas 6 and 7, we see that there is a minimal element
in S,. Denote T,=S—aS.

Lemma 8. A minimal element of S, lies in T,, and conversely an element
of T, is minimal in certain S,.

Proof. If a minimal element z of S, belongs to aS, then z=au, u €S,
where au~u by Lemma 4, and hence u €S,, u<_z. This contradicts with the
fact that z is minimal in S,. Therefore z€aS. Conversely if z€S—aS and
z €S, ; then there is no u<_z. '

By the definition of the relation x~y and the ordering x>y, T,nS,
consists of only one element denoted by x,.

Theorem 3. Each S, is a linearly ordered set with respect to the ordering
x>y, and any element x of S, is expressed as x=a"x, where n =0, and x, is
a unique element of T, contained in S,.

§ 4. Construction.

Since S is homomorphic onto S* by Theorem 2, x, €S, T, and %z €SN T,
determine v €S*¥ and a non-negative integer n such that x,xz=a"x, where
x,€S,nT,. This »n is called the index of a pair of x, and x5, which is
denoted by n=I{«, B). Of course l{«, B)=I(5, a)=0.

Let (x,%p)%, = %4(xp%,) €S, and let I(@, B)=mn, IaB, v)=p, I, By)=yq,
IB, y)=m. Then (x,%)x,=a""?%x,, %,(xex,) =a’""%,, so that we have n+p
=gqg+m by Theorem 1,
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or I, B)+1(aB, v) =Ia, By)+I(B, v) .

Since the minimal element of S,={a’; i=1,2, ---} is a, we get I(&, & =1.
Because of archimedaness, there is m+ 17>1 such that xP*'=a7x,€aS,
therefore I(a™, @) >0 for some m >0. Thus a group S* with an index is
determined from S. The group S* with an index is called “the fundamental
group” of S.

Conversely, consider an abstract commutative group G and a non-negative
integer-valued function I{x, y) defined on all the pairs of elements of G satis-
fying the following conditions:

4.1) Ix, yy=I(y, x) for any x, y€G.
4.2y Ix, »+I(xy, 2) =Ix, y2)+I{y, 2) for any %, 5y, z€G. 7
4.3) For any x €G, there is m >0 (depending on x) such that I(x™, x) >0.
4.4) I(e, e)=1 where ¢ is an identity of G.
This 7 is called “index” again, and G with I is called “an indexed group”
Lemma 9. I(e, x)=1I{e, e)=1 for all x €G.
Proof. Setting x, 3, z as ¢, ¢, x respectively in 4. 2),
Ie, e) +1(e, x) =I(e, x) + (¢, x)
from which I(e, x) =1I(e, ¢) is derived.
Theorem 4. For a commutative group G with an index I satisfying the
conditions (4.1), 4.2), 4.3), and (4.4), there is a commutative nonpotent

archimedean semigroup S’ with cancelation law, the fundamental group of which
is isomorphic to the indexed group G.

Remark. We say that G, with 7, is isomorphic to G, with I if the
isomorphism f of a group G, to G, satisfies I,(x, y) = L(f(x), £(3).

Proof. Consider the set S’ of all ordered pairs (1, x) of non-negative
integer and an element of G: S'={(n, x); n=0,1, 2, ---, x €G}. Equality of
elements of S’ is defined as

(n,, x) =, x,) if and only if n,=n,, x,=x,;
the product of (#, ) and (m, ») is defined as
(n, x)(m, y) = (k, 2)
where k=n+m-+I(x, y), 2=xy in G.
S’ is a semigroup, for
{n, x)(m, M}, 2) =m+m+1x, »), x9), 2)
=m+m+I{+1x, ) +1xy, 2), (£)2),
(n, x)({m, N, 2)} = (n, ) (m+1+1(y, 2), y2)
=m+m-+I+1(x, y2) +1(, 2), x(¥2)).
By the condition (4.2), we obtain

{(, 2) (m, M}, 2) = (n, 2) {(m, ), 2)}.
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It goes without saying that S’ is commutative.

Let us prove that S’ is nonpotent. Suppose that there is an idempotent
(n, x), n, x)(n, x) = Cn+1x, x), x*) =@, x). From x*=2x, we have x=c¢; from
2n+I(e, e) =n, we have n+1I{e, ¢) =0. This is impossible by 4.4). Hence S’
is nonpotent.

Proof of Avchimedeaness. We shall show that for (#, x) and (m, ), there
are p >0 and (/, ) such that (n, x)?=(m, y)(, u).

i) In the case #n>=1. Since @, x)=(0, ¢)(n—1, x}, we may show the
existence of p and (& 2) such that (0, &)?= (m, y)(k, 2). Choose p such that
p—1>m+I(y, y") and let k=p—1—m—I(y, y™"), and let z=»"". Then we
get (m, Yk, d=m+Ek+1y, y), e)=(p—1, e), while (O, 2=, &} +---
+I(e, ), e?)=(p—1,e). Accordingly we have (0, &?=(m, y)(k, 2). At last
n, x)?=1(0, e)*(n—1, x)?=(m, Wk, 2)in—1, x)*. Hence we may adopt
(k, 2)(n—1, x)? as (, u).

ii) In the case #=0. Due to the condition (4.3), there is m >0:
Ix™, x) >0. Choose ¢ such that g>m, then (0, x)?=/{(s, 2%, for some s=>1.
For (s, %), we find p and (&, 2) for (m, ») such that

(s, x9? = (m, y) (&, 2)
and hence (0, %)% = (m, y (&, 2).

Proof of Cancelation. From (n, x)(m, y) = (n, x)(k, 2) or n+m+I(x, ), xy)
=(m+k+1Ix, 2), x2), we get xy=x2, hence y=z; further from n+m+I(x, »)
=n+k+I(, ), we have m=k. Thus it has been proved that (x, x)(m, y)
= (n, x)(k, 2) implies (n, y) = (&, 2).

Consider the mappping (#, x) —x. From the definition of multiplication
in S, it follows that S’ is homomorphic onto G under the mapping. Let us
consider the relation with respect to (0, ¢), which is defined at the beginning
of §2. Then there is >0 such that (& x)=1(0, ¢)"(/, »), if and only if
k>=[+1 and x=y. Accordingly we have (k, x)~(/, ») if and only if x=yj,
so that S’* corresponds to G one to one. Further,

T,=5—(0,¢--5={0, x); x<G}

and we have (0, ) (0, y) = ({{(x, »), xy) =0, &)"**>(0, xy) from which we see that
the fundamental group S’* is isomorphic to the given indexed group G.
The following theorem is clear.

Theorem 5. Let S* be the fundamental group of a commutative non potent
archimedean semigroup S with cancelation. Suppose that there is given an indexed
group G which is isomorphic to S*. If we construct the semigroup S’ from G by
the method of Theovem 4, then S is isomorphic to S'.

Proof. S is isomorphic to S’ under the mapping a"x—(x, x).

Remark. In the present paper, we leave the following problems unsolved.
(1) what is the relation between the fundamental group as to ¢ €S and
the fundamental group as to b&S?
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(2) Under what condition, is S, constructed from G, with I, isomorphic
to S, from G, with I,?
These problems will be discussed in the continued paper II.
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Remark

In this paper, the notation A( B means that A is a proper subset of B or A=B,






