COMMUTATIVE NONPOTENT ARCHIMEDEAN SEMIGROUP WITH CANCELATION LOW I

Bv

Takayuki Tamura

(Received September 30, 1957)

We established in the paper [1] that a commutative semigroup is decomposed into the class sum of unipotent or nonpotent semigroups. In the present paper we shall investigate the structure of a commutative nonpotent archimedean semigroup admitting cancelation law. We shall see that such a semigroup will be determined by the additive semigroup of non-negative integers and the indexed group.

If, for any elements a and b of a commutative semigroup S, there exist a positive integer m and an element c of S such that

$$a^m = bc$$
,

then S is called archimedean. By "nonpotent" we mean "without idempotent".

§1. Unique Factorization.

Lemma 1. Let S be a commutative nonpotent archimedean semigroup. Then

$$\bigcap_{n=1}^{\infty} a^n S = \emptyset \quad \text{for every} \quad a \in S.$$

Proof. Let $D = \bigcap_{n=1}^{\infty} a^n S$. Suppose that D is not empty. Then we shall prove the following (1,1), (1,2), (1,3), and (1,4) step by step.

(1.1) D is an ideal of S.

Since any y in D is expressed as $y = a^n t$ where $t \in S$, we get

$$yx = (a^n t)x = a^n (tx) \in a^n S$$
 for all n

whence $yx \in D$ and so $Dx \in D$.

(1.2) $D \subset zS$ for any $z \in S$.

Since S is archimedean, there are m > 0 and $x \in S$ such that $a^m = zx$. Then any $d \in D$ is expressed as $d = a^m y = (zx)y = z(xy) \in zS$. Therefore $D \in zS$.

(1.3) D is the least ideal of S.

Let I be any ideal of S, that is, $IS \subset I$. For $y \in I$, $D \subset yS \subset IS \subset I$ by (1.2).

(1.4) D = dD for any $d \in D$.

Using (1.1), $(dD)S = d(DS) \in dD$, and so dD is an ideal of S. According to

(1.3), we have $D \in dD$, while, of course, $dD \in D$. At last we have D = dD. Since D is commutative, it follows that D is a group. Consequently D contains an idempotent, contradicting with the assumption. Thus the proof of the lemma has been finished.

Denote $T_0 = S - aS$, $T_i = a^i S - a^{i+1} S$ $(i = 1, 2, \cdots)$. Then T_i $(i = 1, 2, \cdots)$ are not empty. Because, if T_i is emtpy, we get

$$a^i S = a^{i+1} S = \cdots$$

which leads to $D \neq \emptyset$, contradicting with Lemma 1.

Corollary 1.
$$S = \sum_{i=0}^{\infty} T_i$$
, $T_i = \emptyset$, $T_i \cap T_j = \emptyset$ $(i \neq j)$.

Lemma 2. In a commutative archimedean semigroup S, S is nonpotent if and only if $a \neq ab$ for every $a, b \in S$.

Proof. Suppose a = ab in spite of nonpotentness of S. Then we have

$$a = ab = ab^2 = \cdots = ab^n = \cdots$$

whence $\bigcap_{n=1}^{\infty} b^n S = \emptyset$, contradicting with Lemma 1. Thus we see that if S is nonpotent, $a \neq ab$ for any $a, b \in S$. The converse is clear: if S has an idempotent e, then e = ee. q. e. d.

Hereafter a denotes a fixed element of a commutative nonpotent archimedean semigroup S with cancelation.

According to Corollary 1, for an element x of aS, a positive integer n is uniquely determined such that

$$x \in T_n$$
 that is, $x = a^n z$.

Further we can see that z lies in S-aS. Indeed, if z=au, then $x=a^{n+1}u\in T_{n+1}$ which conflicts with $x\in T_n$ and $T_n\cap T_{n+1}=\varnothing$. Uniqueness of z is assured by the cancelation law.

Let us introduce a symbol a° :

$$a^{\circ}b$$
 means b.

in words, a° is not an element, but is considered as a symbolical operation. Then, if $x \in S - aS$, x is expressed as $x = a^{\circ}x$. We can summarize the above description as follows.

Theorem 1. An element x of S determines uniquely a non-negative integer n and an element z of S-aS such that $x=a^nz$.

§ 2. Homomorphism to a Group.

Now let us introduce a relation $x \sim y$ among all the elements of a commutative nonpotent archimedean semigroup with cancelation. Denote $x \sim y$ if there is a non-negative integer n such that either $x = a^n y$ or $y = a^n x$. This relation is an equivalence relation. Indeed $x \sim x$ since $x = a^\circ x$; the symmetric law is obvious. We shall prove only the transitive law in the four cases:

(2.1)
$$x = a^n y$$
, $y = a^m z$, (2.2) $x = a^n y$, $z = a^m y$,

(2.3)
$$y = a^n x$$
, $y = a^m z$, (2.4) $y = a^n x$, $z = a^m y$.

Then we have

in the case (2.1)
$$x = a^{n+m}z$$
,
in the case (2.2) $\begin{cases} x = a^{n-m}z & \text{if } n > m, \\ z = a^{m-n}x & \text{if } n < m, \\ x = z & \text{if } n = m, \end{cases}$
in the case (2.3) $\begin{cases} z = a^{n-m}x & \text{if } n > m, \\ x = a^{m-n}z & \text{if } n < m, \\ x = z & \text{if } n = m, \end{cases}$
in the case (2.4) $z = a^{n+m}x$.

Hence the transitive law holds. Further we see easily that $x \sim y$ implies $xu \sim yu$. Thus we get

Lemma 4. (2.5)
$$a^n \sim a^m$$
. $(n, m=1, 2, \cdots)$

- (2.6) $x \sim a^n x$. $(n = 1, 2, \cdots)$
- (2.7) For any x, there is y such that $xy \sim a$.
- (2.8) If $x, y \in S-aS$, and $x \neq y$, then $x \nsim y$.

Proof. (2.5), (2.6), and (2.8) are obvious by the definition of the equivalence relation; (2.7) is led from archimedeaness as follows. For any x, there is y such that $xy = a^m \sim a$. q. e. d.

Now all the elements of S is classified by the relation $x \sim y$. S is the set union of S_{α} where we denote by S^* the set of all indices α . $S = \sum_{\alpha \in S^*} S_{\alpha} S_{\alpha} \cap S_{\beta} = \emptyset$ $(\alpha = \beta)$.

In particular, denote by S_{ε} the class containing a:

$$S_{\circ} = \{a^n : n = 1, 2 \dots\}.$$

Since the relation is a congruence relation, $S_{\omega}S_{\beta} \subset S_{\gamma}$ for some γ by which the product $\alpha\beta$ of elements α and β is defined as $\gamma = \alpha\beta$. By Lemma 4, we have

Theorem 2. S^* is a group, and S is homomorphic onto S^* .

§ 3. Linear Order in S_{α} .

We shall define an ordering between the elements of a class S_{α} as follows.

$$x > y$$
 $(x, y \in S_{\alpha})$

if and only if x + y and there is a positive integer n such that $x = a^n y$ where a is the fixed element.

Lemma 5. (3.1) x > x (3.2) x > y and y > x are incompatible. (3.3) x > y and y > z imply x > z.

Proof. If x > x, then $x = a^n x$ for some n; if x > y and y > x, then we

have $x = a^m x$ for some m. These are impossible according to Lemma 2. Thus (3.1) and (3.2) have been proved. (3.3) is also obtained as follows:

$$x = a^n y$$
, and $y = a^m z$ imply $x = a^{n+m} z$.

Lemma 6. Suppose that x > y or $x = a^n y$, $n \ge 1$, $x, y \in S_{\alpha}$. Then $x \ge u \ge y$ implies $u = a^i y$ $(0 \le i \le n)$.

Proof. $u=a^ky$, and $x=a^lu$ (for certain $k, l \ge 0$) follow from $u \ge y$ and $x \ge u$ respectively; and so $x=a^{k+l}y=a^ny$. By Theorem 1, we have k+l=n. Hence $0 \le k \le n$, q. e. d.

Consequently the interval between x and y is composed of $x_i = a^i y$ $(i = 0, 1, \dots, n)$ such that

$$x = a^n y > a^{n-1} y > \cdots > ay > y$$
.

Lemma 7. S_{ω} satisfies the descending chain condition, that is, a sequence $x_1 > x_2 > \cdots > x_n > \cdots$ ceases at finite term.

Proof. Suppose that there is an infinite sequence.

$$x_1 > x_2 > \cdots > x_n > \cdots$$

where $x_i = a^m i x_{i+1}$, $(i = 1, 2, \dots, n, \dots)$ and $m_i > 0$. Letting $k_n = m_1 + m_2 + \dots + m_n$, $k_1 < k_2 < \dots < k_n < \dots$ and $x_1 = a^{k_1} x_2 = a^{k_2} x_3 = \dots = a^{k_n} x_{n+1} = \dots$ which arrives at $x_1 \in \bigcap_{i=1}^{n} a^k i S \neq \emptyset$ contradicting with Lemma 1. q. e. d.

According to Lemmas 6 and 7, we see that there is a minimal element in S_{α} . Denote $T_1 = S - \alpha S$.

Lemma 8. A minimal element of S_{α} lies in T_1 , and conversely an element of T_1 is minimal in certain S_{α} .

Proof. If a minimal element z of S_{α} belongs to aS, then z = au, $u \in S$, where $au \sim u$ by Lemma 4, and hence $u \in S_{\alpha}$, u < z. This contradicts with the fact that z is minimal in S_{α} . Therefore $z \in aS$. Conversely if $z \in S - aS$ and $z \in S_{\alpha}$; then there is no u < z.

By the definition of the relation $x \sim y$ and the ordering x > y, $T_1 \cap S_{\alpha}$ consists of only one element denoted by x_{α} .

Theorem 3. Each S_{α} is a linearly ordered set with respect to the ordering x > y, and any element x of S_{α} is expressed as $x = a^n x_{\alpha}$ where $n \ge 0$, and x_{α} is a unique element of T_1 contained in S_{α} .

§ 4. Construction.

Since S is homomorphic onto S^* by Theorem 2, $x_{\alpha} \in S_{\alpha} \cap T_1$ and $x_{\beta} \in S_{\beta} \cap T_1$ determine $\gamma \in S^*$ and a non-negative integer n such that $x_{\alpha}x_{\beta} = a^nx_{\gamma}$ where $x_{\gamma} \in S_{\gamma} \cap T_1$. This n is called the index of a pair of x_{α} and x_{β} , which is denoted by $n = I(\alpha, \beta)$. Of course $I(\alpha, \beta) = I(\beta, \alpha) \ge 0$.

Let $(x_{\alpha}x_{\beta})x_{\gamma} = x_{\alpha}(x_{\beta}x_{\gamma}) \in S_{\pi}$ and let $I(\alpha, \beta) = n$, $I(\alpha\beta, \gamma) = p$, $I(\alpha, \beta\gamma) = q$, $I(\beta, \gamma) = m$. Then $(x_{\alpha}x_{\beta})x_{\gamma} = a^{n+p}x_{\pi}$, $x_{\alpha}(x_{\beta}x_{\gamma}) = a^{q+m}x_{\pi}$, so that we have n+p = q+m by Theorem 1,

or
$$I(\alpha, \beta) + I(\alpha\beta, \gamma) = I(\alpha, \beta\gamma) + I(\beta, \gamma)$$
.

Since the minimal element of $S_{\varepsilon} = \{a^i : i = 1, 2, \dots\}$ is a, we get $I(\varepsilon, \varepsilon) = 1$. Because of archimedaness, there is m+1 > 1 such that $x_{\alpha}^{m+1} = x_{\alpha}^m x_{\alpha} \in aS$, therefore $I(\alpha^m, \alpha) > 0$ for some m > 0. Thus a group S^* with an index is determined from S. The group S^* with an index is called "the fundamental group" of S.

Conversely, consider an abstract commutative group G and a non-negative integer-valued function I(x, y) defined on all the pairs of elements of G satisfying the following conditions:

- (4.1) I(x, y) = I(y, x) for any $x, y \in G$.
- (4.2) I(x, y) + I(xy, z) = I(x, yz) + I(y, z) for any $x, y, z \in G$.
- (4.3) For any $x \in G$, there is m > 0 (depending on x) such that $I(x^m, x) > 0$.
- (4.4) I(e, e) = 1 where e is an identity of G.

This I is called "index" again, and G with I is called "an indexed group"

Lemma 9.
$$I(e, x) = I(e, e) = 1$$
 for all $x \in G$.

Proof. Setting x, y, z as e, e, x respectively in (4.2),

$$I(e, e) + I(e, x) = I(e, x) + I(e, x)$$

from which I(e, x) = I(e, e) is derived.

Theorem 4. For a commutative group G with an index I satisfying the conditions (4.1), (4.2), (4.3), and (4.4), there is a commutative nonpotent archimedean semigroup S' with cancelation law, the fundamental group of which is isomorphic to the indexed group G.

Remark. We say that G_1 with I_1 is isomorphic to G_2 with I_2 if the isomorphism f of a group G_1 to G_2 satisfies $I_1(x, y) = I_2(f(x), f(y))$.

Proof. Consider the set S' of all ordered pairs (n, x) of non-negative integer and an element of $G: S' = \{(n, x); n = 0, 1, 2, \dots, x \in G\}$. Equality of elements of S' is defined as

$$(n_1, x_1) = (n_2, x_2)$$
 if and only if $n_1 = n_2, x_1 = x_2$;

the product of (n, x) and (m, y) is defined as

$$(n, x)(m, y) = (k, z)$$

where k=n+m+I(x, y), z=xy in G.

S' is a semigroup, for

$$\{(n, x) (m, y)\} (l, z) = (n+m+I(x, y), xy) (l, z)$$

$$= (n+m+l+I(x, y)+I(xy, z), (xy)z),$$

$$(n, x) (\{m, y\} (l, z)\} = (n, x) (m+l+I(y, z), yz)$$

$$= (n+m+l+I(x, yz)+I(y, z), x(yz)).$$

By the condition (4.2), we obtain

$$\{(n, x)(m, y)\}(l, z) = (n, x)\{(m, y)(l, z)\}.$$

It goes without saying that S' is commutative.

Let us prove that S' is nonpotent. Suppose that there is an idempotent (n, x), $(n, x)(n, x) = (2n + I(x, x), x^2) = (n, x)$. From $x^2 = x$, we have x = e; from 2n + I(e, e) = n, we have n + I(e, e) = 0. This is impossible by (4.4). Hence S' is nonpotent.

Proof of Archimedeaness. We shall show that for (n, x) and (m, y), there are p>0 and (l, u) such that $(n, x)^p=(m, y)(l, u)$.

- i) In the case $n \ge 1$. Since (n, x) = (0, e)(n-1, x), we may show the existence of p and (k, z) such that $(0, e)^p = (m, y)(k, z)$. Choose p such that $p-1 > m+I(y, y^{-1})$ and let $k=p-1-m-I(y, y^{-1})$, and let $z=y^{-1}$. Then we get $(m, y)(k, z) = (m+k+I(y, y^{-1}), e) = (p-1, e)$, while $(0, e)^p = (I(e^{p-1}, e) + \cdots + I(e, e), e^p) = (p-1, e)$. Accordingly we have $(0, e)^p = (m, y)(k, z)$. At last $(n, x)^p = (0, e)^p (n-1, x)^p = (m, y)(k, z)(n-1, x)^p$. Hence we may adopt $(k, z)(n-1, x)^p$ as (l, u).
- ii) In the case n=0. Due to the condition (4.3), there is m>0: $I(x^m, x)>0$. Choose q such that $q \ge m$, then $(0, x)^q = (s, x^q)$, for some $s \ge 1$. For (s, x^q) , we find p and (k, z) for (m, y) such that

$$(s, x^q)^p = (m, v)(k, z)$$

and hence $(0, x)^{qp} = (m, y)(k, z)$.

Proof of Cancelation. From (n, x)(m, y) = (n, x)(k, z) or (n+m+I(x, y), xy) = (n+k+I(x, z), xz), we get xy = xz, hence y = z; further from n+m+I(x, y) = n+k+I(x, y), we have m=k. Thus it has been proved that (n, x)(m, y) = (n, x)(k, z) implies (n, y) = (k, z).

Consider the mapping $(n, x) \rightarrow x$. From the definition of multiplication in S', it follows that S' is homomorphic onto G under the mapping. Let us consider the relation with respect to (0, e), which is defined at the beginning of §2. Then there is $n \ge 0$ such that $(k, x) = (0, e)^n(l, y)$, if and only if $k \ge l+1$ and x=y. Accordingly we have $(k, x) \sim (l, y)$ if and only if x=y, so that S'^* corresponds to G one to one. Further,

$$T_0 = S' - (0, e) \cdot S' = \{(0, x) ; x \in G\}$$

and we have $(0, x)(0, y) = (I(x, y), xy) = (0, e)^{I(x,y)}(0, xy)$ from which we see that the fundamental group S'^* is isomorphic to the given indexed group G.

The following theorem is clear.

Theorem 5. Let S^* be the fundamental group of a commutative non potent archimedean semigroup S with cancelation. Suppose that there is given an indexed group G which is isomorphic to S^* . If we construct the semigroup S' from G by the method of Theorem 4, then S is isomorphic to S'.

Proof. S is isomorphic to S' under the mapping $a^n x \rightarrow (n, x)$.

Remark. In the present paper, we leave the following problems unsolved. (1) what is the relation between the fundamental group as to $a \in S$ and the fundamental group as to $b \in S$?

(2) Under what condition, is S_1 constructed from G_1 with I_1 isomorphic to S_2 from G_2 with I_2 ?

These problems will be discussed in the continued paper II.

References

[1] T. Tamura and N. Kimura: On decompositions of a commutative semigroup, Kōdai Math. Sem. Rep., No. 4. Dec. 1954, 109–112.

Remark

In this paper, the notation $A \subset B$ means that A is a proper subset of B or A=B,