NOTES ON THE FUNCTIONS OF TWO COMPLEX VARIABLES

By

Isae Shimoda

(Received September 30, 1957)

In this note,* we want to try some extension of the theorem of Hartogs in connection with the problem which was presented by Professor Hukuhara long ago.

Hartogs' Theorem: If a function f(x, y) is regular in each variable, then it is regular with respect to (x, y).

Professor Hukuhara asked if a function f(x, y) was yet regular or not when f(x, y) was regular with respect to y for only x_n which converged to an inner point x_0 .

He extended Osgood's Theorem as follows¹⁾: If a function f(x, y) is regular with respect to x for a fixed y and regular with respect to y for x_n which tends to x_0 in D and moreover bounded, then f(x, y) is regular.

Let x and y be complex variables lying in the domain D and D' respectively. (D, D') shoes the multiple domain of D and D', which are simply connected.

Theorem 1. If a complex valued function f(x, y) defined in (D, D') is regular with respect to x in D for any fixed y in D' and regular with respect to y in D' for fixed x_m $(m=1, 2, 3, \dots)$ which converges to x_0 in D', then there exist regular points dencely in (D, D').

Proof. Let D_1 and D_1' be arbitrary bounded domains whose closures lying in D and D' respectively. Put

$$\begin{split} M(y) &= \underset{x \in D_1}{\operatorname{Max.}} |f(x, y)| \;, \qquad \text{for a fixed } y, \\ S_k &= \underset{y}{E} [M(y) \angle K] \;, \end{split}$$

and

that is, S_k is a set of points y satisfying $M(y) \angle K$. Suppose that a sequence of points $\{y_n\}$ converging to y_0 are included in S_k . Put $f(x, y_n) = f_n(x)$, then $f_n(x)$ is regular in D_1 and satisfies $|f_n(x)| \angle K$. This shoes that $\{f_n(x)\}$ is a normal familly in D_1 . On the other hand, for a fixed x_m , $f(x_m, y)$ is regular with respect to y. Then we see that $\lim_{n\to\infty} f(x_m, y_n) = f(x_m, y_0)$, that is, $\lim_{n\to\infty} f_n(x_m) = f(x_m, y_0)$, where $m=1, 2, 3, \cdots$.

Appealing to the theorem of Vitali, $f_n(x)$ converges uniformly to $f_0(x)$, which is regular in D_1 . Since y_0 is an inner point of D_1 , $f(x, y_0)$ is regular with respect to x. Moreover, $f_0(x_m) = f(x_m, y_0)$ for $m = 1, 2, 3, \dots$. Since x_m tends to x_0 which is an inner point of D_1 , we see that $f(x) = f(x, y_0)$. Since $|f(x, y_0)| \leq K$,

$$|f(x, y_0)| = \lim_{n\to\infty} |f_n(x)| \angle K$$
 in D_1 .

The regularity of $f(x, y_0)$ on D shows that

$$|f(x, y_0)| \leq K$$
 on D_1 .

That is, y_0 is included in S_k and we see that S_k is a closed set. Now, we must show that at least a set S_k of $\{S_k\}$ include a circle. Let an any one of $\{S_k\}$ does not include a circle. Then there exists a closed circle C_1 in D_1 such that the intersection of C_1 and S_1 is the null set. If such circle C does not exist, then there exists at least a point of S_1 in an arbitrary neighbourhood of y, which is an arbitrary point in D_1 . y must lie in S_1 , because S_1 is a closed set. That is, $S_1 \supset D_1$ and we see that clearly S_1 include a closed circle, contradicting to the assumption that S_1 does not include a closed circle. Thus, we see that there exist a closed circle C_1 such that $C_1 \cdot S_1 = 0$. On the same way, we have a closed circle C_2 such that $C_1 \supset C_2$, $C_2 \cdot S_2 = 0$, and so on, we have a sequence of closed circle $\{C_k\}$ such that $C_1 > C_2 > C_3 > \cdots > C_k > \cdots$, $C_k \cdot S_k = 0$. Clearly, $\prod_{k=0}^{\infty} C_k = 0$. Then, for an arbitrary point y in $\prod_{k=0}^{\infty} C_k$, we have $M(y) = +\infty$, because, if M(y) < K, $y \in S_k$ contradicting to the fact that $y \in C_k$. Clearly, y is an inner point of D_1 and then M(y) must be finite which contradicts to $M(y) = +\infty$. Thus we see that there exists at least S_k which includes a closed circle C. Then,

$$|f(x, y)| \leq K$$

when (x, y) lies on (D_1, C) .

Appealing to the extended theorem of Osgood, we see that f(x, y) is regular in (D_1, C) . D_1 is an arbitrary closed bounded domain including $\{x_n\}$ in D, and so f(x, y) is regular in $(D, C)^{3}$. D_1' is an arbitrary bounded closed domain in D', we can select D' as a closure of a neighbourhood of an arbitrary point in D_1' . Thus, we see that f(x, y) is regular almost everywhere in (D, D').

Theorem 2. If f(x, y) defined in (D, D') satisfies following conditions 1) f(x, y) is regular with respect to x in D for an arbitrarily fixed y in D', 2) for a sequence $\{x_n\}$ in D converging an inner point x_0 in D, $f(x_n, y)$ is regular with respect to y in D', then D' is divided into at most denumerable simply connected domains $\{E_m\}$ such that f(x, y) is regular in (D, E_m) and $E_i \cdot E_j$ is a set of one dimension.

Proof. Appealing to Theorem 1, we see that there exists a circle C in D' such that f(x, y) is regular in (D, C). Extending f(x, y) analytically from the domain (D, C), we have (D, E), where E is a domain in D' and f(x, y) is regular in (D, E). Let K be an arbitrary simple closed Jordan curve having the length.

Put
$$F(x, y) = \frac{1}{2\pi i} \int_{K} \frac{f(x, \zeta)}{\zeta - y} d\zeta,$$

where y lies in the inside of K. Let G be a domain which lies inside of K.

Then F(x, y) is regular in (D, G). On the other hand,

$$F(x_n, y) = \frac{1}{2\pi i} \int_K \frac{f(x_n, \zeta)}{\zeta - y} d\zeta = f(x_n, y) ,$$

by the assumption 2). Thus we have $F(x_n, y) = f(x_n, y)$, for $n = 1, 2, \dots$, for fixed y arbitrarily in E. Then we see that $f(x, y) \equiv F(x, y)$ in (D, E) and f(x, y) is extended analytically in (D, G). That is, there does not exist any singular point of f(x, y) for y in E. This shoes that E is the simply connected set. Generally, such a set E are denumerable at most in D' and moreover clearly $E_i \cdot E_i$ is a set of one dimension.

References

1) Proof: Let x_n tends to x_0 in D and T be a circle such that $|x-x_0| \le r$ which is included in D and C be the boundary of T. Without losing generality, we may think that $\{x_n\}$ lie in T. For an arbitrary y in D', we have

$$f(x, y) = \sum_{n=0}^{\infty} f_n(y) (x - x_0)^n$$
,

where

$$f_n(y) = \frac{1}{2\pi i} \int_c \frac{f(x, y)}{(x - x_0)^{n+1}} dx$$
, for $n = 0, 1, 2, \dots$.

Since f(x, y) is bounded in (D, D'), there exists a positive number M such that $|f(x, y)| \leq M$ in (D, D'). Then we have

$$|f_n(y)| \leq \left| \frac{1}{2\pi i} \int_c \frac{f(x, y)}{(x - x_0)^{n+1}} dx \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(x, y)|}{r^{n+1}} r d\theta$$

$$\leq \frac{M}{r^n},$$

where $x=x_0+re^{i\theta}$ and $dx=ire^{i\theta}d\theta$. Let $x=x_m$,

 $f(x_m, y) = f_0(y) + \sum_{n=0}^{\infty} f_n(y) (x_m - x_0)^n.$ $|f(x_m, y) - f_0(y)| = |\sum_{n=1}^{\infty} f_n(y) (x_m - x_0)^n|$ $\leq M \sum_{1}^{\infty} \left(\frac{|x_m - x_0|}{r}\right)^n$ $= \frac{M|x_m - x_0|}{r}.$

Then

Let x_m tend to x_0 , then we see that $f(x_m, y)$ converges uniformly to $f_0(y)$. Since $f(x_m, y)$ is regular with respect to y, $f_0(y)$ is also regular. By the mathematical induction we see that the regular function

$$\frac{1}{(x_m-x_0)^n} \{ f(x_m, y) - f_0(y) - f_1(y)(x_m-x_0) - \cdots - f_{n-1}(y)(x_m-x_0)^{n-1} \}$$

converges uniformly to $f_n(y)$ and so $f_n(y)$ is regular. Thus we see that

$$f(x, y) = \sum_{n=0}^{\infty} f_n(y)(x-x_0)^n$$

converges uniformly in (T, D') and so f(x, y) is regular in (T, D'). By the method of the analytical continuation, f(x, y) becomes regular in (D, D').

- 2) S. Bochner and W. T. Martin: Several complex variables.
- 3) D_1 is extended to D by the usual way, since f(x, y) is regular with respect to x in D for an arbitrary fixed y in D'.
 - *) I expect the advice of the general public, since I don't know much of this field.