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The analytic function in the abstract space developed remarkably in the recent
time. Many theorems of analytic functions has been extended to the complex Banach
spaces by Angus E. Taylor and others. We’ll proceed here to a investigation on the
some characteristics of a power series in the complex Banach spaces. Let E,E’ be complex-
B-spaces.
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Hence M in (1) is the radius of bound. This completes the proof.
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Since €& is arbitrary positive number, we see that f(x) is bounded (in the large) in
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In this theorem, ¢ is not necessarily a radius of bound of f(x), because the following

example shows.
Now, let p(>1) be an any finite posive integer, m be a positive integer and
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la1] <las| <-+<|a,| be complex numbers such that |< |a,|<k<oo, where k is a
constant.
In the power series f(x):i;hn(x)(zi]a,,ﬂ) which have the coeflicients such that
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then imy sup| ()] = 1 ...(2), where |aaz------ ap| implies s of
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theorem 4. This shows to the fact that o#s.
Theorem 3. Put lim sup Nl tlzen () is bounded (in the large) in [|x|| <N
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M of Theorem $ is not necessarily a radius of bound of f(x) as the following example
shows. '

Let us consider the function f(x)=>)nx; in the complex I,-space @& such that
n=1

2 DV x="(21,%2,+,%ny -+ ) Where i | x,|2< oo, Then we can express the homogeneous poly-
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Of course, A\ is not necessarily a radius of bound of f(x).

Theorem 4 If sup. lim ”I]IZh"(Daq T ?exwts in a power series f(x)= Zhn(x), then s is
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a radius of analyticity of f(x).
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Hencelim ¥/ ]|, (x)]] g}}f,ﬂ (s_lef‘—noi’/llhno(x)i|>=—~l~é and since & is arbitrary on ||x|| =1,
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Consequently, we have the following result as well, that is,
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Therefore, s is a radius of analyticity of f(x) from (1) and (2).
This completes the proof.

Theorem 5 Put“ sup @lelz% = %, then f(x) is analytic in ||x|| < ', which is not
necessarily a radius of analyticity.

Proof For an arbitrary element x in the set ||x|| =1 we have
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Thus if we take the limit, then we have l?ri f/]]hn(x)ljgiig(wl_g)% T,
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Therefore, sup lim ]z < ,1
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Hence, f(x) is analytic in ||»] </, which is not necessarily a radius of analytictiy.
Theorem 6 (The extension of Tauber’s theorem)

Let the radius of analyticity of f(x)= }j:‘, h(x) be s, x be a point on the boundary of the sphere
n=0
of convergence, and O be center of the sphere of convergence. When o converges to 1 along the

radius whick join o and x, im f(ax)=A exists, and alsoﬁ% hox) converges as n|lh,(x){|—0.
a—1 n=

Then, the sumi ha(x) equals to A.
n=0
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