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While the so-called compound Poisson’s distributions are frequently spoken of ¥,
there is no such with the normal distributions to our poor knowledge. Namely, if a
random variable x has a probability density ¢(x; 61, 6s,---), and the parameters 6; being
again random variables distribute with the frequency function (61, 6s,---), the com-
pound g-distribution is defined by

Fl)= S:...Sl(p(x;gl, Oy - W01, Oy -0, Oy -, 0

with Sm r (61, O3, ---)d0, By ---= 1.

In particular the compound normal distribution with mean a and variance ¢ is

fe="{" ot e oneo)dads, @

where

p(xsa, o)= 17—2%1’—;6}%){ — (xQ_a-Z)z} and S: Stw«}r(a, o)da do=1.

We shall discuss the latter somewhat in detail. When +r is known f is obtainable merely
by integration, while, if fis given, «J» should be found by solving (2) as an integral
equation. Thereby theoretically Laplace transform and practically Gauss’ method of
numerical integration by selected ordinates might be efficiently utilized.

§ L.

All integrands in (1) and (2) being assumed to be positive and integrable, the
order of integrations can be changed, and

f={[| ¢t ao)v@odalar={ g o)as

B S;[qu) LIEXRACKY do]daz S 1 o1 (x,a)da. &

1) E. g. W. Feller, Probability Theory and its Applications, 1952, p. 221.
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Or, if we set

%, @)= 212 ) oz, 0 — 2%, o)
i o) =280 fiar=2le ) "
with ey (@)= S:«[r(a, o)do, Yo (o) = Siw«}r(a, o‘)dzz,}

both f and f; are also compound normal frequency functions, although they might get
out of normality in form, and

f@={ falw )= | _fra ¥, ®)

where ¥1(a) and ¥ (o) stand for cumulative distribution functions of @ and o respective-
ly, and d¥1(a)=+r:1(a)da, d¥ (o) =1s(c)do.
In particular, if ¢ and o be independent of each other

‘l"(as O—) = "P'l (a)“#Z(G)a (6)

and
o= pwa i) fiao= smedar@, 0

yet (5) still hold.

Theorem 1. [(x, o) is normal in x when and only when \a, o) is normal in a.
For, let

\11‘2(0")

Y (e, o)= N P{—

omy |, ®

272

where m and 7 are constant if ¢ and o independent, otherwise both or one of them shall
be variable as functions of ¢®. On account of (4) and (3) we have

fw, )=\ (@@ 090, )da/ ko)

=1 Sw exp{—~(x2;f)2—-(a“m)2}da

20T ) - 272
— M_l— _ (x— m)2
- 1/Q7r(o-2 + %) =P { 2+ 7‘2)} ’ )

which shows that fa(x, o) is Mz, m, /6% +72).
To prove the converse, we have to solve the integral equation

o= = «;»(iir;) = - -5 ‘o

2) We have assumed that ¢ (@, o) is normal in @, which means that m and 7 in (8) do not contain a.
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in which the right hand side is written in the standardized form instead of the last ex-
pression in (9), because o, 7 and m can be temporarily as constants considered. As a
matter of fact, in consequence of scattering of a in (10), the dispersion of the resultant
distribution should be greater than before integration, and therefore o <1.

Now putting x=0s, a= —ot equation (10) reduces to

St exp{—v(s+t)2}1!f e ((Tt) G)dt-eXpL 30?57},
viz.
S:F_” 2@ di=1(s), (11)

where

g =exp( "%) W —ot, ) ale)  and )= exp (3(1 —o?)s).

This integral equation presents a Laplace transform, and a known inversion formula is
capable to be applied”. Assuming that (11) converges absolutely on the line R s=c¢ in
the complex s-plane, the inversion formula enunciates

. 1 c+iT - " _ .
g@=limsL ("ot G=ctin)
On calculating this limiting value, we obtain
g(t)—- exp {c+3(1 —~¢72)c2}g exp{ —4n"} cos By dn,
where A=2%(1—0%)>0, B=¢t+c(l1—0?%). By use of a known formula
o -at? —1 2 _ 182
Soe cosBE dE 2/; exp{ zﬁ}’ (a>0)

we have

_ 1 2 >
g(”)_,/m)e"p{ﬁ(l—#)} S

Remembering that t= —a/c and exp< ) g(t)=1(a, o)/4r=(c), we attain finally

) ;
W)= exp |~ gy, a2)

which completes the proof?.

3) Cf. D. V. Widder, The Laplace Transform, 1946, p. 241,

4) Since (a, o) is to be real positive, Pa(o) in (12) shall be zero for 1< <co. Also for ¢ =1~0, Y(a,0)
presents an indeterminate form, but then on interpretting the main factor as a singular normal distribution,
Wa,0) dads  tends to Ya(o)de, which becomes in general an infinitesimal, unless ¥2(s) has there a finite

1
jump 3, so thatj1 R a,0)dado =35.
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Corollary. In case a and o are independent, fi(x, o) is normal if and only if
Ai(a@) is normal®.

Theorem 2. +(a,0) or\ria) being normal in a, the final distribution f(x) in general
becomes non-normal, and rather specially it offers a single normal distribution.

By theorem 1 the frequency function fi(x, o) becomes normal, but

oa

fx)= S:fz(xa o)d¥ (o) = S h‘jrz———-ﬁ) exp {— M}dwg(a) (13)

01/ 27( Ao +72

1s simply a superposition of normal distributions. Specially, if it happens that only on
a discrete set S, m=ms, o>+ 1>=0j and Ssdélf 2(6) =1 hold, so that d¥;(c) =0 on the

complementary continuous set §', then f(x) reduces to @(x, mo, ov). Here, of course, the
integral should be understood as Stieltjes’ one. However, to discuss the case that ra(o)
is of continuous type, we should consult with the equation

Vlgiexp {_%2}=S:—1/2‘T(Lﬁ exp{—~2(<z—2_+n%}dép'2(a), (14)

where m and 7 are some functions of ¢ and % 'x(c) represents the cumlative distribution
function. Or, expressing (14) in form of characteristics

exp { —2/2)= S: exp {imt — (o? +72)¢/2JAT o(o),
viz.
1— S: exp {imt—1(o? + 72 — %} dF o(o). (15)
Hence

S: exp { — (o + 72— 1)&} (cos mt+i sin me) dF (o)== 1. (16)
The imaginary part’s appearance being only superficial, we may write

S: exp { —3(c®+ 7 — 1)*} (cos me+sin me) d¥ (o) =1.
By virtue of the first mean value theorem

(cos mgt+sin mgt)S: exp { =32+ — 1)} AT (o) =1
and

cos mgt Sw exp { —#(*+ 7= 1)f*} d¥s(o)=1,
0

i S“ exp { =3 (27— 1)} d¥o(0) =0,
0

5) This does not mean that f(x) becomes normal: Compare e.g. Ex. 4 in §3.
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in view of (16). Hence we have mgt=2n7= and

S: exp{—3(*+7*—1)2} d¥ (o)= 1.
But, if 6®+ 7721 on a continuous subset S with non-zero measure, the order of magni-
tude of this integral could be altered from 1 by taking ¢ sufficiently large. Hence it

must hold that ¢*+7?=1 on the whole continuous integration interval. Further, now
that o® 47> — 1=0, the real part of (16) becomes

1= S:cos it A o(o) = S” (- "15‘ o) Ao
for all values of ¢, so that
1= S: dgp'z(d)’ 0= S: m2dgp‘2‘((f), ......
Hence m=0 throughout and 7*=1—¢". Thus we obtain from (8)

1/27r(1 —a?)
=0 a>1

I G R
Yla,o)= e p{ 2(1_02>} 0<0‘<l} an

1
where, it is no matter whatsoever +r2(c) may be, only if +rs(e) = 0 and Sox{rz(a) do=1
consists. Or, more specially if we assume the rectangular distribution yra(0)=11in 0 <o <1,
we obtain

la,o _— exp {_ Q(_Icz_%} (I>0% (18)

as a typical solution of the integral equation
#w0.0)={"{" pewarv (o) dads. (19)
The above proof is little pleasing. A more rigorous proof is postponed for a future
work together with the following problem: Starting from «j«(a,c) that is not normal in
a (even the singular normal distribution being exclusive) so that f2(x,0) is non-normal,

can the final distribution f(x) be normal after all? If our conjecture be permitted, we
surmise that this shall be impossible.

§ 2.

We shall show that the normality of ««(a,o) in @ does not necessitate the final
normal distribution.
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Ex. 1. Let
y(a,o)=ko™" exp{—(a—bﬂ}, €))

252

- n—2
where ¢>0,2>2 and k= /%(1/87> /P(% = l)- Performing integrations, the com-

pound normal distribution becomes

L T o)

f(x) - S:S:"?(x’a,d)\!ﬁ(a, ) dade= F('_;l__ ]) 1/;7c[1 T

N

a Student-like distribution. Really, on taking «>>0, and writing

62=n"2—2a2’ x:ga, b____Ba,

we get

r(*zY) =

[’( >1/(n D7 n—2 dg—sn_z(f)df (3)

f@)dx=f(af) adé=

which is Student’s distribution with n—2 degrees of freedom.
In particular, if =3, =0, ¢*=%, so that

1+ 24
"If(as 0_) 1/2 e 3EX p{ "”E }’ (4')
then
fx)= (Cauchy’s distribution). ®)

7 (1 -I- x%)

Conversely, given f(x), to find v(a,s), we ought to solve the integral equation
) =["\" pwaorpndsds ©®)

such that ya,o)=0, Sg\;r(a, o) dado=1, the latter of which, however, follows naturally

from the equation itself, as we integrate (6) in regard to x, assuming Fubini. But the
above kind of integral equation with two parameters seems not yet to have been thoro-
ughly treated and even the existence of the solution, its uniqueness and continuity &c.
are not clear. For the present we shall assume all these affirmatively, except the uni-
queness, for, evidently solution (1.17) shows that it contains a somewhat arbitrary func-
tion +ry(0). Hence to get a solution of (6) we are obliged to proceed after Gauss’
method of numerical integration as follows:

At first transforming the variable as
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a= B tan %t, o-=')’tan~4ﬂ~(]+u), N

g, o) = <B tan g-t, vtan%(l +u)>=ZBy(t,u)

with arbitrary /3,7, equation (6) can be written as

flx)= %Sl_l Sl_l KXo, t,u) Y(t,u) Zp,(t,u) didu (8)

where
X2, t,u)= % exp{ —(x— Btan %t)‘?/Q'yz tanz% A+l (9)
Y(u) = —;gse&%t secz%(l +u)/tan%(l +u). (10)

Then, by means of Gauss’ method of selected ordinates we get

Je)= 23 2 RuRs i an
where
Y= Xﬁy(% (8 uv) Y(t#, uv) Zﬁv (tm uv)s < 1 2)

where X, and Y are prescribed while Zg,(z,,u,) to be found, the number of which being
mn=1[. Therefore, if we select x=2x, (A.=1,2,.-.--. ,l) appropriately, we have the follow-
ing I equations :

f(xx)=313 1/2__‘1 RuR X (o005 Ly 1) Y0 18) Zpy(tys 1) (13)
Solving these simultaneous linear equations, the values of [ unknown Zg,(z,,u,) could be
determined.

Making B=v=1, we get the values of Z(z,u) at I points (¢,,u,) and consequently
the values of z=q(a,0) at (a.,0,) and thus the outline of the surface z =+r(a,0) would
be manifested. To amplify the plotting points any more we may make 8,v=1,2,...,%,
&c., combine them in various ways and the shape of the distribution surface could be
acculated. '

After the above plan, I. Wajiki executed numerical computations of Ex. 1, i.e.
equation (6) with (5) taking m=n=>5, the result of which, however, was very unpleas-
ing : the calculated values are much more multiplied with theoretical ones.

However, the adoption of Gauss’ method of selected ordinates for the case of
double integral is by no means of no promise. Really

Ex. 2. Letting e.g. Ja,0)=ka/c® in 0<a<y 1—(s—1) and 1<o<2, but

2 65177831, and

Jr(a,)=0 everywhere else, we obtain k= 1Zlog.d
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V1 (o-1)2

f(x)=Sj So 1/Qlﬂaexp{ (x a) }«,!r(a,zr)dada,

so that by exact integrations

vic{o=1)?

2
0)= _ka__ a® ) —
f(0) SI SO 1/2_7104exp{_§?},dada 0.2770032,

while, on transforming ¢ =33 +u) and a=%1/1— (o — X1+ )=/ B+ u)(1 —u)(1 +2),
we get

f<0)=i‘gl_lsl_1k = G+ 8(3+u)

and whence

f (o)—§ ;R R, ,/ 22 k“(g”fz—ii;;‘”—)exp{ “;E‘g)f J:)"")z} 0.2770029.

Thus the theoretical value obtained by exact double integral coincides pretty good with
the value calculated by Gauss’ approximation.

§ 3.

Specially we consider the case that ¢ and o are independent, so that J(a,o)=
Y1(@nro(c). The integral equation now becomes

fa = o exp |- E g (s o) dado W

2o

In this case, if one of unknown functions «ri, {2 be presumed, the other could be there-
with decided by solving the usual integral equation with one parameter.

1° If 4, is presumed, and consequently

[lemp{- }:ﬁi@ do=K(a,), )

which forms a symmetrical kernel, is made known, to find 4, we have to solve the in-
tegral equation

f@=|" K@n(ara 3)

2° If 4 is known and so also

S” eXp{ - ("2;? }%_(‘%d =H (o, ), ()
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then +r; should be determined from the integral equation

Fla)= S:H(a, Wralo0)do (5)

Both (3) and (5) belong to Fredholm’s equations of the first kind. So they may be
somewhat theoretically discussed, although below only numerical computations are
stressed.

Ex. 3. Let the frequency function of ¢ be a truncated one, and

Yra(o) =0, (0<a<)
=1/c" (I1<o< 00).} ®)
Then we have by (2)
K(a,x)= mel —exp{—#x—a)*}]. @)
‘On the other hand, making
Yi(a)=4%, (—1<a<)
=0 (la] >1), } 8)
we get
flx)= m [2—(x+1) exp{ —3(x — 1)} +(x— 1) exp { —3(x+ 1)"}]

+ 3%+ 1) = Ox— 1], 9)
‘where D %)= ;/17_ Sx exp( — ﬁ;)dx.
T} oo

Conversely presumed (9) and (6), yr1(a) is to be sought as the solution of equation (3),
viz.

=\" [1—ex —3(x—a)’ s __ [ xpylajaa
fy={" [1-expl-t—ap L0 (" KGalda  (10)

We assume that «r(a) is continuous, except at points a= = 1, because (9) behaves at
%= %1 singular though apparently. Gauss’ method of numerical integration could be

applied so far as the integrand is continuous throughout the considered interval, so that
we should separate the whole integration interval as follows:

f(x)=S =S +S?+S_1:(i)+(ii)+(iii). (1)

oo
—oco —co

Firstly

G) = %S 1_ . 2K(a, x)«[rl(a)dazé R2K(a, )1 (a)-
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. s
Secondly, putting a=sec v (1 +1),

.. w 7 " T 7r T :
(i) =%S_1?K<secz—(l +t),x‘> sec T(l'-H) tanZ(l +t)\p1(sec 4 (1 +t)>d£

=1]" 1Ot = 3R Lo M 0.
Thirdly
(iii) =%S1 —7E—K< — sec%(l + t),x)sec%(l +1) tan%(l +t)\]/‘1( ——secg—(l +t)>dt

1 m
=3]_ M= SR MG w0y )
- =
These three expressions being substituted in (11) and taking x==x, we obtain

F @) =3 IR Ko 2t + 3R Lro 1 2)

+ ziRuM(tmxv)ll"l(t#% v=12,.--, n(: k+1+ m)
frgm

Solving these n linear equations simultaneously with respect to » unknowns ~’s, their
roots yield the values of U=+ri(a) at a=ax, ar, a, and throw light on its graph. After
this scheme I. Wajiki taking k=I=m=3, obtained the following nine equations:

1) when x=0:

0.09574U,+0.17731U,+0.09574U; + 0.01236 U, + 0.12450U5

+0.17135U540.01236U; 4+ 0.12450U34-0.17135U5=10.18433;
2) when x=0.1:

0.09209U, 4+ 0.17686U, 4 0.09911U;+0.01292U,4-0.13189U;

+0.17755U5+0.011770U,+0.11720U+ 0.16547U;=10.18398 ;
3) when x= —0.1:

0.09911U, +0.1786U;+ 0.09209Us+0.01177 U+ 0.11720T;

+0.16547Us+0.01292U; +0.13189Us 4+ 0.17755U,=0.18398;
4) when x=0.2:

0.08822U,+40.17555U, +0.10215U5+0.01346U,+ 0.13933U;

4+0.18409U5+0.001118U,4-0.110080U;5+0.159890U,=0.18290;
5) when x=—0.2:

0.10215U,40.17555U, + 0.08822U;--0.01118U,+ 0.11008U;

+0.15989U;+0.01346U,+0.13933Us+- 0.18409U,=0.18290;
6) when x=0.3:

0.084190U,+0.17338U,+-0.10480U;+0.01395U,+ 0.14672U;

+0.19100U5+0.01058U; +0.10320U5 + 0.15459U,=0.18115;
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7) when x= —0.3:
0.10480U, + 0.17338U,-+ 0.08419U,+0.01058U,+ 0.10320U;
+0.15459U54-0.01395U; 4+ 0.14672U5 4+ 0.19100U,=0.18115;
8) when x=10.4:
0.080060; 4+ 0.17040U,+ 0.10702U; + 0.14409U,+0.15397Us;
+0.19830Us+ 0.00999U; + 0.9659Us + 0.14954Uy=0.17868;;
9) when x=—0.4:
0.10702U,+0.17040U; + 0.08006U; + 0.00999U,+ 0.09659U5
+0.14954Uq+ 0.14409U; + 0.15397Us + 0.19830U5,= 0.17868.

Assuming
\!l‘](a,()—-_—" U1= Uzz Ug:%‘, ’l!f‘l(tl)\)——' U4= U5=—" UG: 0, ’l{/’]_((l;,,)—‘: U7= U3= U9= 0,

and calculating the left handed sides, we obtain the following equations

1) x=0: 0.18439=0.18433, 6) x=0.3: 0.18118=0.18115,
2) x=0.1: 0.18403=0.18398, 7) x=-—03: 0.18118==0.18115,
3) x=-—0.1: 0.18403=0.18398, 8) x=0.4: 0.17874=0.17868,
4) x=0.2: 0.18296=10.18290, 9) x=—0.4: 0.17874=0.17868.

5) x=—0.2: 0.18296=0.18290, ]

"Thus the figures on both the sides agree almost up to the fourth decimal place.

Ex. 4. 1If Jra)= 1/12_” exp(~—#a®), then (4) becomes

Further, assuming

Pa()=0/(1+6)%, (13)

we obtain

f(x)=72i—ﬂ:;{l—exp(—%2>}, (1)

Thus equation (5) reduces to

1/21— 2{1—CXPK )} 8:1/27{%_:0?) P{ 2(1+ 2)}11"2(0)(10', (15)

the solution of which is nothing but expression (13).

The integral equation (15) can be solved theoretically on referring to Laplace
transform®. Namely, on setting 2s=x% 1=(1+¢°)7", the interval 0 <o <o is trans-

6) D. V. Widder, loc. cit., p. 66.
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formed into 1>¢>0, and equation (15) to

1—e™° o 1—¢ dt .
5 =y s (16)
Hence, if we write
fls)=(1—e)/s (17)
and g@:‘[’z(l/?)/ ty/1—1 (0<< I)} (18)
=0, (1<t o0)

the above equation reduces to

0= e g (19)

By a known inversion formula, we get for ¢>0

1 c+iT T 1 ___e—c—-ir] .
)= lm — N ——] _S 276 pletine
g= lim QmS f(s)eds me-\ P e dn

:g_g ccosqt+nsinyt—e” [ccosn(t—l)—l—nsmn(t—l)d
4 E+7°

But

veos B S nsmb’n g 0. >0
S,)_H]n 0 Vit ?726 or [B>0,v>

hold, as easily shown by the theory of residues. These formulas being applied to the
before standing integrals with caution about signs, we obtain the following result:

gl)=1, if 0<¢<l, but otherwise g(t)=0.

Remembering that g(t)= ap2<]/1 , )/m/l —tand t=(1+%)"", we get

M/?me in 1>¢>0, viz. ds(o)=0/(1+¢2)" in 0< o< oo,

which agrees with (13).
In order to solve the same integral equation numerically, first transforming (15)

by o=tan % (1+41), we have

f(x)=%§1_1%‘/%exp{— %cosz%(l +t)}. secg— (1+1). m,!rz<tan %(1 +t)>dt.

Setting further sec%(l 1) e (tan -Z:-(l +£))=X(t), we have only to compute by aid of
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. . 2 a2 =n x* T
Gauss’ method of n ordinates g (l —e ’2) =v§=‘i R, exp{— o €08 7‘:(1 +6,) 1X(@).

Letting e.g. n=35, and x=0, 0.5, 1, 1.5, 2, we have five equations involving five
unknowns X(z). Solving these simultaneous linear equations with respect to X(z),
'T. Kawashiro calculated the values of +r:(s) as in the following table, the true values
being those obtained from (13):

fr=tan77t (1+t) 0.0733 0.3792 1 2.6368 13. 5465

cal. Yo(o) 0.0717 0. 3087 0.3560 0.1180 0.0057

true Ya(o) 0.0732 0.3100 0.3536 0.1176 0.0054







