A NOTE ON SUBORDINATION

Hitoshi ABE

(Received September 30, 1956)

1. Introduction The following result is well known as Hurwitz-Bochner's theorem [1][2].⁽¹⁾

If
$$w = f(z)$$
 is regular in $|z| < 1$, $f(0) = 0$, $f'(0) = 1$, and $f(z) \neq 0$

except z=0, the conformal image of f(z) assumes every value in |w|<1/16. In the present paper we generalize this theorem and deal with the related problems with it by the principle of subordination.

As a preliminary remark we shall give a notion of Q(z) whose properties are as follows [3].

$$Q(z) = 16z \prod_{n=1}^{\infty} \left(\frac{1+z^{2n}}{1+z^{2n-1}} \right)^{8}, \qquad (|z| < 1).$$

 $Q(z)=J(\frac{1}{\pi i}\log z)$, where J(z) is the elliptic modular function.

Let the surface M be the conformal image of |z| < 1 by Q(z). M has no branch point. M covers every point of w-plane except $w = 0, 1, \infty$. M does not cover $w = 1, \infty$, but the w = 0 is covered by one sheet of M only.

2. Lemma 1.
$$|Q(z)| \leq Q(-r)$$
, $(|z| = r < 1)$.

Proof. Each factor of infinite products which constitutes Q(z) has its greatest absolute value on |z|=r only when z=-r, and therefore we have the above estimate clearly. **Lemma 2.** Let $w=f(z)=a_1z+\cdots$, be regular and $f(z)\neq 0$ except z=0 in |z|<1. If f(z) omits a value α in |z|<1, the following estimates are got.

(i) $|a_1| \le 16 |\alpha|$, that is, the conformal image of f(z) assumes every va'ue in $|w| < |a_1|/16$.

(ii)
$$|f(z)| \le |\alpha| \cdot Q(-r)$$
, $(|z| = r < 1)$.

Proof. Let us consider

$$P(z) = Q^{-1} \left(\frac{f(z)}{\alpha} \right),$$

where $Q^{-1}(w)$ is the inverse function of Q(z).

f(z) leaves out w=0 except z=0 in |z|<1, and therefore P(z) is analytic in 0<|z|<1. On the other hand the regularity of P(z) hold good at z=0. Hence $f(z)/\alpha$ is subordinate to Q(z) and by the principle of subordination we get

⁽¹⁾ The bracket denotes the number of the references.

$$|\alpha^{-1}f'(0)| \le Q'(0)$$

 $|\alpha^{-1}f(z)| \le |Q(z)| \le Q(-r) \quad (|z| = r < 1).$

These complete the proof.

Remark. The above estimates are sharp as is shown by $f_0(z) = \alpha Q(z)$. $|\alpha|$ in the latter result of this lemma is can not be made smaller than $|a_1|/16$. The former result was got by the same method by Bochner [1][3].

Theorem 1. Let $w = f(z) = a_p z^p + \cdots$, be regular and $f(z) \neq 0$ except z = 0 in |z| < 1.

- (i) The values taken by w = f(z) cover the circle $|w| < |a_p|/16^p$ p times or more times.
- (ii) The conformal image of the unit circle by w = f(z) completely covers the interior of a circle about the origin whose rudius is $|a_p|/16$. We can state this result in detail, namely, If w = f(z) omit a value α ,

$$|a_p| \leq 16 |\alpha|$$

(iii)
$$|f(z)| \leq |\alpha| \cdot Q(-r^p) \qquad (|z| = r < 1).$$

These bounds are best possible.

Proof.

First in order to prove the former result we consider $g(z) = (f(z))^{1/p}$. Since $f(z) \neq 0$ except z = 0 in |z| < 1, g(z) is regular and $g(z) \neq 0$ except z = 0 in |z| < 1. Hence when lemma 2 is used with respect to g(z), the proof of (i) will be given.

Secondly we prove the latter results (ii) and (iii). Let us consider

$$F(z) = Q(z^p) = 16z^p + \cdots$$

The Riemann surface onto which the unit circle is mapped by F(z) has no branch point, and covers every point in w-plane infinite times except $w=0,1,\infty$. It does not cover $w=1,\infty$, but w=0 is covered by its p sheets only. Now we put

$$R(z) = F^{-1}\left(\frac{f(z)}{\alpha}\right).$$

Under the same conditions in the proof of lemma 2, R(z) is regular in 0 < |z| < 1, and R(z) is regular at z = 0 more. We can get easy

$$|R'(0)| = \left| \frac{a_p}{16\alpha} \right|^{\frac{1}{p}}$$

Furthermore

$$R(0) = 0, |R(z)| < 1.$$

Hence

$$|R'(0)| \leq 1$$
, that is, $|a_p| \leq 16 |\alpha|$.

On the other hand f(z) is subordinate to $\alpha F(z)$ and therefore

$$|f(z)| \leq \max_{|z|=r} |\alpha F(z)| \leq |\alpha| \cdot Q(-r^p)(|z|=r < 1).$$

Theorem 2. Let $w = f(z) = a_1 z + \cdots$, be regular and $f(z) \neq 0$ except z = 0 in |z| < 1. If f(z) leaves out two values α and $-\alpha$, then

$$|a_1| \leq 4 |\alpha|, \qquad |f(z)| \leq |\alpha| \cdot Q^{\frac{1}{2}}(-r^2).$$

Namely, if $w = f(z) = z + \cdots$, is an odd regular function in |z| < 1 and $f(z) \neq 0$ except z = 0, the values taken by w = f(z) cover fully |w| < 1/4. These bounds are best possible. (2) **Proof.** As the superordinate function to $f(z)/\alpha$ we consider

$$Q_1(z) = \sqrt{Q(z^2)} = 4z + \cdots$$

And then $Q_1(z)$ is an odd regular function in |z| < 1 and the other properties of $Q_1(z)$ are quite similar to ones of Q(z) except the fact that it does not assume both 1, and -1[2]. Namely $Q_1^{-1}\left(\frac{f(z)}{\alpha}\right)$ is analyticin |z| < 1 like the case of lemma 1 and therefore we have the forme result of this theorem by the principle of subordination. The latter result is evident.

We can moreover generalize this theorem, that is,

Theorem. 2'. Let $w=f(z)=a_pz^p+\cdots$, be regular in |z|<1, and $f(z)\neq 0$ except z=0. If f(z) leaves out the values α , and $-\alpha$, then

$$|a_p| \le 4 |\alpha|, |f(z)| \le |\alpha| \cdot Q^{\frac{1}{2}}(-r^{2p}), (|z| = r < 1).$$

Proof. If we consider the superordinate function

$$Q^{\frac{1}{2}}(z^{2p}) = 4z^p + \cdots,$$

the results are evident.

Theorem 3. Let $w = f(z) = a_p z^p + \cdots$, be regular and not zero except z = 0 in |z| < 1. If f(z) leaves out the values $-\infty \le w \le \frac{-1}{4}$, f(z) is subject to the following inequalities.

$$|a_p| \le 1$$
, $|f(z)| \le \frac{r^p}{(1-r^p)^2}$, $(|z|=r<1)$

These bounds are sharp as is shown by

$$F(z) = \frac{z^p}{(1-z^p)^2}$$

Proof. As the superordinate function to f(z) we consider F(z). The Riemann surface onto which the unit circle is mapped by F(z) has no branch point except z=0. Hence

$$S(z) = F^{-1}(f(z))$$

is analytic in 0 < |z| < 1. On the other hand S(z) has regularity at z = 0 whose derivertive has $(a_p)^{\frac{1}{p}}$ there. Moreover S(0) = 0 and |S(z)| < 1. Hence we have the above results.

⁽²⁾ If the condition that $f(z) \neq 0$ except z=0, is omitted, we have the following result, which is well known [3]. $|a_1| \leq k |\alpha| , \qquad k = \Gamma^4(\frac{1}{4})/4\pi^2$

We can get the following estimates by means of the same method also.

Theorem 4. If $w=f(z)=a_pz^p+\cdots$, is regular in |z|<1, leaves out the values $-\infty \le w \le -\alpha$, and $\alpha \le w \le \infty$, $(\alpha > 0)$, and vanishes at z=0 only,

$$|a_p| \leq 2\alpha$$
, $|f(z)| \leq \frac{2\alpha r^p}{1-r^{2p}}$. $(|z|=r)$.

These bounds are best possible as is shown by

$$F(z) = \frac{2\alpha z^p}{(1+z^{2p})}$$

3. We consider the case where f(z) is meromorphic in |z| < 1.

Theorem 5. Let $w = f(z) = a_1 z + a_3 z^3 + \cdots$, be an odd meromorphic function in |z| < 1 and $f(z) \neq 0$ except z = 0, then the image by this function covers fully the cirle

$$|w|<\frac{|a_1|}{8}.$$

The result is best possible as is shown by

$$f_0(z) = \frac{2Q_1(z)}{1 + Q_1^2(z)}$$

Proof. It is clear that $f_0(z)$ is an odd meromorphic function and does not take 1 and -1 b because of the property of $Q_1(z)$.

Let us consider

$$F(z) = \frac{1}{1 - f_0(z)} = \frac{1 + Q_1^2(z)}{(1 - Q_1(z))^2}$$

Then

$$F'(z) = \frac{2(1+Q_1(z))}{(1-Q_1(z))^3}Q'_1(z) \neq 0 \quad (|z| < 1),$$

because $Q'_1(z) \neq 0$ in |z| < 1.

If f(z) leaves out α and $-\alpha$, we consider $g(z)=f(z)/\alpha$. The function $(1-g(z))^{-1}$ is subordinate to F(z) because of the proerty of F(z). And therefore

$$\left|\frac{a_1}{\alpha}\right| \leq F'(0) = 8$$

This completes the proof.

Remark. If $f(z)=a_1z\cdots$, is meromorphic and vanishes at z=0 only in |z|<1, f(z) takes at least one value of each coupl $\pm w$ belonging to the circl

$$|w| < \frac{|a_1|}{8}$$

The proof is quite similar if $Q(z)(2-Q(z))^{-1}$ is considered as the superordinate function.

Here we state the related result with this theorem.

Theorem 6. Let $f(z) = a_1 z + \cdots$, be an odd meromorphic function in |z| < 1, then the image by f(z) covers fully the circle

$$|w| < \frac{2|a_1|\pi^2}{\Gamma^4(\frac{1}{4})}$$

This result is best possible.

Proof. Like the case in theorem 5 we consider

$$f_0(z) = \frac{2F(z)}{1+F^2(z)}, F(z) = 2J\Big[i\Big(\frac{1+z}{1-z}\Big)\Big] - 1.$$

F(z) leaves out 1 and -1, but every value except these values is taken infinite times. Furthermore $F'(z) \neq 0$ in |z| < 1, because J(z) has no branch point [3]. Hereafter we may do like the proof of theorem 5.

References

- [1] S. Bochner, Remarks on the theorems of Picad-Landau and Picard-Schottky, J. London Math. Soc, (1926), pp.100-103.
 - [2] J. N. Littlewood, Lectures on the theory of functions, Oxford (1944), pp. 196-197.
 - [3] Z. Nehari, Conformal Mapping, Mcgraw-Hill, (1952), pp. 226-236, pp. 318-330.